In-Situ Functional Crosslinking Enables Facile Construction of Rigid Poly(Ethylene Oxide) Network for High Performance All-Solid-State Batteries

Liang Shan , Bitian Chen , Yunhan Hu , Xiangqin Gan , Han Si , Yongqi Wang , Zhaojun Chen , Yiyong Zhang , Yinbo Zhou , Liming Ding , Junqiao Ding

Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70117

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70117 DOI: 10.1002/agt2.70117
RESEARCH ARTICLE

In-Situ Functional Crosslinking Enables Facile Construction of Rigid Poly(Ethylene Oxide) Network for High Performance All-Solid-State Batteries

Author information +
History +
PDF

Abstract

Poly(ethylene oxide) (PEO) based electrolytes have garnered considerable attention in all-solid-state lithium metal batteries with superior safety and energy density, but suffer from low-ion conductivity and poor cycling stability. Herein, a novel in-situ functional crosslinking strategy is proposed to overcome these limitations simultaneously, where a two-in-one bis-diazirine molecule (C1) is not only used as a rigid cross-linker, but also functions as an electron-withdrawing inducer. Benefitting from such an integration of two functionalities into one cross-linker, a rigid PEO electrolyte network can be facilely constructed, while exhibiting disrupted crystallization, robust mechanical strength, loosened Li─O binding to boost the Li+ transport, and anion-rich Li+ coordinated structure to favor the generation of a stable LiF-rich solid electrolyte interface. As a result, a remarkable ion conductivity of 1.4 × 10−3 S cm−1 is achieved at 60°C together with a Li+ transference number of 0.63. And the corresponding LiFePO4||Li and NCM811||Li filled batteries present significantly improved rate performance and capacity retention cycling life compared with the pristine PEO electrolyte, highlighting the great potential of in-situ functional crosslinking for high performance all-solid-state batteries.

Keywords

all-solid-state lithium metal batteries / electron-withdrawing inducer / in-situ functional crosslinking / poly(ethylene oxide) based electrolytes / two-in-one bis-diazirine cross-linker

Cite this article

Download citation ▾
Liang Shan, Bitian Chen, Yunhan Hu, Xiangqin Gan, Han Si, Yongqi Wang, Zhaojun Chen, Yiyong Zhang, Yinbo Zhou, Liming Ding, Junqiao Ding. In-Situ Functional Crosslinking Enables Facile Construction of Rigid Poly(Ethylene Oxide) Network for High Performance All-Solid-State Batteries. Aggregate, 2025, 6(9): e70117 DOI:10.1002/agt2.70117

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) D. Zhang, Y. Liu, Z. Sun, et al., “Eutectic-Based Polymer Electrolyte With the Enhanced Lithium Salt Dissociation for High-Performance Lithium Metal Batteries,” Angewandte Chemie International Edition 62 (2023): e202310006. b) X. Zhou, B. Zhang, F. Huang, F. Li, Z. Ma, and J. Liu, “Difunctional MOF for Dendrite-Free All-Solid-State Lithium Metal Batteries by Synergistic Effect of Hydrogen Bond and Electrostatic Interaction,” Nano Energy 108 (2023): 108221. c) L. Liu, Y. Li, T. Su, C. Li, et al., “Sandwich-Model Cathode Electrolyte Interphase Facilitating All-Climate High-Voltage Nickel-Rich Cathode-Based Lithium Metal Batteries with LiBF4-Based Electrolyte,” Advanced Materials (2025): 2508595, https://doi.org/10.1002/adma.202508595.

[2]

a) W. Liang, X. Zhou, B. Zhang, et al., “The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte With Enhanced Charge Transfer for LiF-Rich SEI Generation in Lithium Metal Batteries,” Angewandte Chemie International Edition 63 (2024): e202320149. b) D. Chen, R. Li, C. Liu, and K. Jiang, “Electrospraying Si/SiO x/C and Sn/C Nanosphere Arrays on Carbon Cloth for High-Performance Flexible Lithium-Ion Batteries,” Journal of Semiconductors 46 (2025): 012605. c) M. Ye, X. Hao, J. Zeng, et al., “Research Progress of Alkaline Earth Metal Iron-Based Oxides as Anodes for Lithium-Ion Batteries,” Journal of Semiconductors 45 (2024): 021801.

[3]

Y. Cheng, Z. Cai, J. Xu, et al., “Zwitterionic Cellulose-Based Polymer Electrolyte Enabled by Aqueous Solution Casting for High-Performance Solid-State Batteries,” Angewandte Chemie International Edition 63 (2024): e202400477.

[4]

S. Han, P. Wen, H. Wang, et al., “Sequencing Polymers to Enable Solid-State Lithium Batteries,” Nature Materials 22 (2023): 1515-1522.

[5]

a) Z. Cui and A. Manthiram, “Thermal Stability and Outgassing Behaviors of High-Nickel Cathodes in Lithium-Ion Batteries,” Angewandte Chemie International Edition 62 (2023): e202307243. b) L. Yang, Q. Liu, H. Ma, et al., “Functional Nanosheet Fillers With Fast Li+ Conduction for Advanced All-Solid-State Lithium Battery,” Energy Storage Materials 62 (2023): 102954.

[6]

G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, and Y. Meng, “Polymer-Based Solid Electrolytes: Material Selection, Design, and Application,” Advanced Functional Materials 31 (2020): 2007598.

[7]

a) H. Zhang, J. Deng, H. Xu, et al., “Molecule Crowding Strategy in Polymer Electrolytes Inducing Stable Interfaces for All-Solid-State Lithium Batteries,” Advanced Materials 36 (2024): 2403848. b) J. Hou, W. Xie, L. Shang, et al., “Nanocrystals With Aggregate Anionic Structure Enable Ion Transport Decoupling of Chain Segment Movement in Poly(Ethylene Oxide) Electrolytes,” Angewandte Chemie International

[8]

a) P. Ding, L. Wu, Z. Lin, et al., “Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries,” Journal of the American Chemical Society 145 (2023): 1548-1556. b) H. An, M. Li, Q. Liu, et al., “Strong Lewis-Acid Coordinated PEO Electrolyte Achieves 4.8V-Class All-Solid-State Batteries Over 580 WhKg−1,” Nature Communications 15 (2024): 9150.

[9]

R. Li, H. Hua, X. Yang, et al., “The Deconstruction of a Polymeric Solvation Cage: A Critical Promotion Strategy for PEO-Based All-Solid Polymer Electrolytes,” Energy & Environmental Science 17 (2024): 5601-5612.

[10]

D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, and H. Zhu, “Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations,” Matter 3 (2020): 57-94.

[11]

a) Y. Cui, X. Liang, J. Chai, et al., “High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy Toward Facile Synthesis,” Advanced Science 4 (2017): 1700174. b) J. Maccallum, M. Smith, and C. Vincent, “The Effects of Radiation-Induced Crosslinking on the Conductance of LiClO4·PEO Electrolytes,” Solid State Ionics 11 (1984): 307-312.

[12]

a) W. H. Meyer, “Polymer Electrolytes for Lithium-Ion Batteries,” Advanced Materials 10 (1998): 439-448. b) S. Tan, X. Zeng, Q. Ma, X. Wu, and Y. Guo, “Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries,” Electrochemical Energy Reviews 1 (2018): 113-138.

[13]

W. Wei, Z. Xu, L. Xu, X. Zhang, H. Xiong, and J. Yang, “Flexible Ionic Conducting Elastomers for All-Solid-State Room-Temperature Lithium Batteries,” ACS Applied Energy Materials 1 (2018): 6769-6773.

[14]

Y. Zhu, J. Cao, H. Chen, Q. Yu, and B. Li, “High Electrochemical Stability of a 3D Cross-Linked Network PEO@Nano-SiO2 Composite Polymer Electrolyte for Lithium Metal Batteries,” Journal of Materials Chemistry A 7 (2019): 6832-6839.

[15]

R. Xu, S. Xu, F. Wang, et al., “Double Crosslinked Polymer Electrolyte by C-S-C Group and Metal-Organic Framework for Solid-State Lithium Batteries,” Small Structure 4 (2022): 2200206.

[16]

F. Fu, Y. Zheng, N. Jiang, et al., “A Dual-Salt PEO-Based Polymer Electrolyte With Cross-Linked Polymer Network for High-Voltage Lithium Metal Batteries,” Chemical Engineering Journal 450 (2022): 137776.

[17]

a) Y. Liu, F. Fu, H. Teng, et al., “Dual-Phase Elastomeric Electrolyte With a Latitude-Longitude Interwoven Structure for High-Energy Solid-State Lithium Metal Batteries,” Advanced Energy Materials 14 (2024): 2402040. b) Y. Zou, Y. He, H. Li, S. Deng, W. Tang, and S. Deng, “PEO-Based Electrolyte Filled With UV-Cured 3D Cross-Linked Polymer Network for Lithium Metal Batteries,” Journal of Energy Storage 104 (2024): 114619. c) F. Fu, W. Lu, Y. Zheng, et al., “Regulating Lithium Deposition via Bifunctional Regular-Random Cross-Linking Network Solid Polymer Electrolyte for Li Metal Batteries,” Journal of Power Sources 484 (2021): 229186.

[18]

M. L. Lepage, C. Simhadri, C. Liu, et al., “A Broadly Applicable Cross-Linker for Aliphatic Polymers Containing C─H Bonds,” Science 366 (2019): 875-878.

[19]

S. Yang, S. Yi, J. Yun, et al., “Carbene-Mediated Polymer Cross-Linking With Diazo Compounds by C─H Activation and Insertion,” Macromolecules 55 (2022): 3423-3429.

[20]

X. Liu, Y. Li, J. Liu, H. Wang, X. Zhuang, and J. Ma, “570 Wh Kg−1-Grade Lithium Metal Pouch Cell With 4.9 V Highly Li + Conductive Armor-Like Cathode Electrolyte Interphase via Partially Fluorinated Electrolyte Engineering,” Advanced Materials 36 (2024): 2401505.

[21]

L. Yang, L. Wang, Q. Hu, et al., “Creating Electrostatic Shielding Effects Through Dual-Salt Strategy to Regulate Coordination Environment of Li⁺ and Realize High-Performance All-Solid-State Lithium Metal Batteries,” Energy Storage Materials 77 (2025): 104210.

[22]

D. Halat, R. Snyder, S. Sundararaman, et al., “Modifying Li + and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion,” Chemistry of Materials 33 (2021): 4915-4926.

[23]

Y. Qin, H. Wang, J. Zhou, et al., “Binding FSI to Construct a Self-Healing SEI Film for Li-Metal Batteries by In Situ Crosslinking Vinyl Ionic Liquid,” Angewandte Chemie International Edition 63 (2024): e202402456.

[24]

Q. Zhang, J. Pan, P. Lu, et al., “Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries,” Nano Letters 16 (2011): 2011-2016.

[25]

S. Liu, X. Ji, N. Piao, et al., “An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes,” Angewandte Chemie International Edition 60 (2021): 3661-3671.

[26]

J. P. Hoffknecht, A. Wettstein, J. Atik, et al., “Coordinating Anions “to the Rescue” of the Lithium Ion Mobility in Ternary Solid Polymer Electrolytes Plasticized With Ionic Liquids,” Advanced Energy Materials 13 (2022): 2202789.

[27]

Z. Piao, R. Gao, Y. Liu, G. Zhou, and H. M. Cheng, “A Review on Regulating Li+ Solvation Structures in Carbonate Electrolytes for Lithium Metal Batteries,” Advanced Materials 35 (2023): 2206009.

[28]

a) S. Liu, X. Shen, L. Wei, et al., “Molecular Coordination Induced High Ionic Conductivity of Composite Electrolytes and Stable LiF/Li3N Interface in Long-TERM Cycling All-Solid-State Lithium Metal Batteries,” Energy Storage Materials 59 (2023): 102773. b) H. Wang, X. Li, Q. Zeng, et al., “A Novel Hyperbranched Polyurethane Solid Electrolyte for Room Temperature Ultra-Long Cycling Lithium-Ion Batteries,” Energy Storage Materials 66 (2024): 103188.

[29]

C. Fang, Y. Huang, Y. Sun, et al., “Revealing and Reconstructing the 3D Li-Ion Transportation Network for Superionic Poly(Ethylene) Oxide Conductor,” Nature Communications 15 (2024): 6781.

[30]

a) C. He, H. Ying, L. Cai, et al., “Tailoring Stable PEO-Based Electrolyte/Electrodes Interfaces via Molecular Coordination Regulating Enables 4.5 V Solid-State Lithium Metal Batteries,” Advanced Functional Materials 34 (2024): 2410350. b) X. Yang, L. Fang, J. Li, et al., “Multipolar Conjugated Polymer Framework Derived Ionic Sieves via Electronic Modulation for Long-Life All-Solid-State Li Batteries,” Angewandte Chemie International Edition 63 (2024): e202401957.

[31]

a) M. Ma, F. Shao, P. Wen, et al., “Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability Toward Li Anodes and High-Voltage Cathodes,” ACS Energy Letters 6 (2021): 4255-4264. b) O. Sheng, C. Jin, J. Luo, et al., “Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes With High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance,” Nano Letters 18 (2018): 3104-3112.

[32]

K. Nie, X. Wang, J. Qiu, et al., “Increasing Poly(Ethylene Oxide) Stability to 4.5 V by Surface Coating of the Cathode,” ACS Energy Letters 5 (2020): 826-832.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/