A Universal Doping Strategy for Boosting Luminescence Efficiency of Blue-Emitting Hybrid Zn Halides as Ultrastable and Underwater Scintillators

Zhi-Wei Chen , Na Lin , Xin-Yue Zhang , Yu-Sha Yan , Li Xiao , Yi-Fan Wu , Cheng-Yang Yue , Dongpeng Yan , Xiao-Wu Lei

Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70112

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70112 DOI: 10.1002/agt2.70112
RESEARCH ARTICLE

A Universal Doping Strategy for Boosting Luminescence Efficiency of Blue-Emitting Hybrid Zn Halides as Ultrastable and Underwater Scintillators

Author information +
History +
PDF

Abstract

Underwater blue-emitting X-ray scintillator is important for the resource exploration and communication in deep sea, but remains a significant challenge for perovskites. Herein, we proposed a universal Pb2+-doping strategy toward a family of stable 0D Zn halide AnZnBr4 realizing highly efficient blue-emitting scintillation. First-principles calculations indicate that doped-Pb2+ introduced extremely narrow impurity bands, which prompt more carriers into conduction bands, leading to near-unity PLQY. Meanwhile, these halides can withstand complex aqueous solutions containing various chemical substances in wide pH range (1–14) demonstrating ultrahigh water-resistance stabilities. More significantly, these halides exhibit satisfactory scintillation and imaging performance with highest light yield (31,500 photons MeV−1), low detection limit (141.2 nGyair s−1) and large spatial resolution (15.10 lp/mm), ranking among the top-performing Zn halide scintillators reported to date. The high water-resistance stabilities and satisfactory scintillation performance endow these halides advanced underwater X-ray imaging. This work not only provides a universal strategy to explore highly-efficient blue-emitting perovskite scintillators, but also realizes application of high-resolution X-ray imaging in underwater environment.

Keywords

blue - light emission / low-dimensional metal halides / underwater X-ray imaging / universal doping strategy / water-resistance stability

Cite this article

Download citation ▾
Zhi-Wei Chen, Na Lin, Xin-Yue Zhang, Yu-Sha Yan, Li Xiao, Yi-Fan Wu, Cheng-Yang Yue, Dongpeng Yan, Xiao-Wu Lei. A Universal Doping Strategy for Boosting Luminescence Efficiency of Blue-Emitting Hybrid Zn Halides as Ultrastable and Underwater Scintillators. Aggregate, 2025, 6(9): e70112 DOI:10.1002/agt2.70112

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

(a) H. Zhou, M. Kong, H. Yuan, et al., “Real-Time Underwater Object Detection Technology for Complex Underwater Environments Based on Deep Learning,” Ecological Informatics 82 (2024): 102680. (b) H. Huang, Z. Sun, S. Liu, et al., “Underwater Hyperspectral Imaging for In Situ Underwater Microplastic Detection,” Science of the Total Environment 776 (2021): 145960. (c) B. Liu, Z. Liu, S. Men, et al., “Underwater Hyperspectral Imaging Technology and Its Applications for Detecting and Mapping the Seafloor: A Review,” Sensors 20 (2020): 4962. (d) S. Fayaz, S. A. Parah, and G. J. Qureshi, “Underwater Object Detection: Architectures and Algorithms—A Comprehensive Review,” Multimedia Tools and Applications 81 (2022): 20871-20916. (e) S. Hu and T. Liu, “Underwater Rescue Target Detection Based on Acoustic Images,” Sensors 24 (2024): 1780.

[2]

(a) Y. Wang, T. Zhang, W. Zhao, et al., “Machine Learning-Guided Discovery of Copper(I)-Iodide Cluster Scintillators for Efficient X-ray Luminescence Imaging,” Angewandte Chemie International Edition 64 (2024): e202413672. (b) S.-B. Xiao, X. Zhang, X. Mao, H.-J. Yang, Z.-N. Chen, and L.-J. Xu, “Ultrahigh X-ray Imaging Spatial Resolution Enabled by an 0D Mn(II) Hybrid Scintillator,” Advanced Functional Materials 34 (2024): 2404003. (c) T. Chen, Y. Xu, A. Ying, C. Yang, Q. Lin, and S. Gong, “Through-Space Charge-Transfer Organogold(III) Complexes Enable High-Performance X-ray Scintillation and Imaging,” Angewandte Chemie International Edition 63 (2024): e202401833.

[3]

(a) T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Scientific Reports 7 (2017): 40480. (b) X. Yang, Z. Tong, Y. Dai, et al., “100 m Full-Duplex Underwater Wireless Optical Communication Based on Blue and Green Lasers and High Sensitivity Detectors,” Optics Communication 498 (2021): 127261.

[4]

(a) F. Zhang, Y. Zhou, Z. Chen, et al., “Large-Area X-ray Scintillator Screen Based on Cesium Hafnium Chloride Microcrystals Films With High Sensitivity and Stability,” Laser & Photonics Reviews 17 (2023): 2200848. (b) W. Gao, G. Niu, L. Yin, et al., “One-Dimensional All-Inorganic K 2 CuBr 3 With Violet Emission as Efficient X-ray Scintillators,” ACS Applied Electronic Materials 2 (2020): 2242-2249.

[5]

(a) W. J. Mir, A. Alamoudi, J. Yin, et al., “Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbI 3 Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes,” Journal of the American Chemical Society 144 (2022): 13302-13310. (b) H. Liu, T. B. Shonde, O. J. Olasupo, et al., “Organic Semiconducting Ligands Passivated CsPbBr 3 Nanoplatelets for Blue Light-Emitting Diodes,” ACS Energy Letters 8 (2023): 4259-4266. (c) S. Chen, J. Lin, J. Huang, et al., “CsPbBr 3 @Glass Nanocomposite With Green-Emitting External Quantum Efficiency of 75% for Backlit Display,” Advanced Functional Materials 34 (2024): 2309293.

[6]

(a) X. Wu, Z. Guo, S. Zhu, et al., “Ultrathin, Transparent, and High Density Perovskite Scintillator Film for High Resolution X-ray Microscopic Imaging,” Advancement of Science 9 (2022): 2200831. (b) S. Shi, H. Yao, D. Chen, Z. Li, Z. Xu, and Q. Wang, “CsPbX 3 Based X-ray Detectors,” Advanced Optical Materials 11 (2023): 2300795. (c) Z. Yang, J. Yao, L. Xu, W. Fan, and J. Song, “Designer Bright and Fast CsPbBr3 Perovskite Nanocrystal Scintillators for High-Speed X-ray Imaging,” Nature Communications 15 (2024): 8870.

[7]

(a) R. K. Behera, S. Das Adhikari, S. K. Dutta, A. Dutta, and N. Pradhan, “Blue-Emitting CsPbCl 3 Nanocrystals: Impact of Surface Passivation for Unprecedented Enhancement and Loss of Optical Emission,” Journal of Physical Chemistry Letters 9 (2018): 6884-6891. (b) G. H. Ahmed, J. K. El-Demellawi, J. Yin, et al., “Giant Photoluminescence Enhancement in CsPbCl 3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation,” ACS Energy Letters 3 (2018): 2301-2307. (c) L. Protesescu, S. Yakunin, M. I. Bodnarchuk, et al., “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission With Wide Color Gamut,” Nano Letters 15 (2015): 3692-3696.

[8]

(a) D. Zhang, T. Pan, J. Wang, et al., “Polymerized Carbon Dots With Broad Emission and Suppressed Aggregation-Caused Quenching Effect Toward Electroluminescent White Light-Emitting Diodes,” Advanced Optical Materials 12 (2024): 2401128. (b) H. He, S. Mei, Z. Wen, et al., “Recent Advances in Blue Perovskite Quantum Dots for Light-Emitting Diodes,” Small 18 (2022): 2103527. (c) M. Leng, Y. Yang, Z. Chen, et al., “Surface Passivation of Bismuth-Based Perovskite Variant Quantum Dots To Achieve Efficient Blue Emission,” Nano Letters 18 (2018): 6076-6083.

[9]

(a) Z.-H. Wang, C.-H. Liu, L. Zheng, et al., “Promoting WLED-Excited High Temperature Long Afterglow by Orthogonally Anchoring Chromophores into 0D Metal-Organic Cages,” Angewandte Chemie International Edition 64 (2024): e202417593. (b) S. Feng, Y. Ma, S. Wang, et al., “Light/Force-Sensitive 0D Lead-Free Perovskites: From Highly Efficient Blue Afterglow to White Phosphorescence With Near-Unity Quantum Efficiency,” Angewandte Chemie International Edition 61 (2022): e202116511. (c) Y. Hu, J. Jin, K. Han, and Z. Xia, “Unveiling the Role of Cu+ Doping in Rb2AgBr3 Scintillators Toward Enhanced Photoluminescence Quantum Efficiency and Light Yield,” Advanced Optical Materials 12 (2024): 2302063. (d) K. Han, J. Jin, Y. Wang, et al., “Hybrid Eu(II)-Bromide Scintillators With Efficient 5d-4f Bandgap Transition for X-ray Imaging,” Light: Science & Applications 13 (2024): 222.

[10]

(a) R. An, Q. Wang, Y. Liang, et al., “Reversible Structural Phase Transitions in Zero-Dimensional Cu(I)-Based Metal Halides for Dynamically Tunable Emissions,” Angewandte Chemie International Edition 64 (2025): e202413991. (b) D.-Y. Liu, H.-Y. Li, R.-P. Han, H.-L. Liu, and S.-Q. Zang, “Multiple Stimuli-Responsive Luminescent Chiral Hybrid Antimony Chlorides for Anti-Counterfeiting and Encryption Applications,” Angewandte Chemie International Edition 62 (2023): e202307875.

[11]

(a) T. Xu, Y. Li, M. Nikl, et al., “Lead-Free Zero-Dimensional Organic-Copper(I) Halides as Stable and Sensitive X-ray Scintillators,” ACS Applied Materials & Interfaces 14 (2022): 14157-14164. (b) Y. Wang, T. Zhou, J. Chen, et al., “Zero-Dimensional Organic–Inorganic Hybrid Zinc Halides for Multiple Applications in Anti-Counterfeiting, X-ray Imaging and White LEDs,” Advanced Optical Materials 12 (2024): 2301864.

[12]

(a) H. Zheng, R. Zhang, X. Wu, et al., “Strain-Driven Solid-Solid Crystal Conversion in Chiral Hybrid Pseudo-Perovskites With Paramagnetic-to-Ferromagnetic Transition,” Journal of the American Chemical Society 145 (2023): 3569-3576. (b) T. He, Y. Zhou, P. Yuan, et al., “Copper Iodide Inks for High-Resolution X-ray Imaging Screens,” ACS Energy Letters 8 (2023): 1362-1370. (c) T. B. Shonde, M. Chaaban, H. Liu, et al., “Molecular Sensitization Enabled High Performance Organic Metal Halide Hybrid Scintillator,” Advanced Materials 35 (2023): 2301612.

[13]

(a) B. Zhou, F. Fang, Z. Liu, et al., “Self-Trapped Exciton Emission in Highly Polar 0D Hybrid Ammonium/Hydronium-Based Perovskites Triggered by Antimony Doping,” Journal of the American Chemical Society 146 (2024): 15198-15208. (b) M. L. Zaffalon, Y. Wu, F. Cova, et al., “Zero-Dimensional Gua 3 SbCl 6 Crystals as Intrinsically Reabsorption-Free Scintillators for Radiation Detection,” Advanced Functional Materials 33 (2023): 2305564. (c) B. Zhou, Z. Qi, M. Dai, C. Xing, and D. Yan, “Ultralow-Loss Optical Waveguides Through Balancing Deep-Blue TADF and Orange Room Temperature Phosphorescence in Hybrid Antimony Halide Microstructures,” Angewandte Chemie International Edition 62 (2023): e202309913. (d) J. Jin, K. Han, Y. Hu, and Z. Xia, “Zn 2+ Doping in Organic Manganese(II) Bromide Hybrid Scintillators Toward Enhanced Light Yield for X-ray Imaging,” Advanced Optical Materials 11 (2023): 2300330.

[14]

(a) W. Zhu, R. Li, X. Liu, et al., “Photophysical Properties of Copper Halides With Strongly Confined Excitons and Their High-Performance X-ray Imaging,” Advanced Functional Materials 34 (2024): 2316449. (b) B. Yang, L. Yin, G. Niu, et al., “Lead-Free Halide Rb 2 CuBr 3 as Sensitive X-ray Scintillator,” Advanced Materials 31 (2019): 1904711. (c) X. Zhao, G. Niu, J. Zhu, et al., “All-Inorganic Copper Halide as a Stable and Self-Absorption-Free X-ray Scintillator,” Journal of Physical Chemistry Letters 11 (2020): 1873-1880. (d) W. Bu, Y. Yan, P. Liu, et al., “In-Situ Growth of Cs5Cu3Cl6I2 Nanocrystals Within AAO Arrays for X-ray Imaging,” Chemical Engineering Journal 492 (2024): 151908.

[15]

Y. Li, P. Vashishtha, Z. Zhou, et al., “Room Temperature Synthesis of Stable, Printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) Colloidal Nanocrystals With Near-Unity Quantum Yield Green Emitters (X = Cl),” Chemistry of Materials 32 (2020): 5515-5524.

[16]

(a) Y.-P. Lin, S. Hu, J. Xu, et al., “Bright Green Emitter of Mn-doped C4H12N2ZnX4 (X = Cl, Br) for X-ray Radiography and WLEDs,” Chemical Engineering Journal 468 (2023): 143818. (b) M. Sun, C. Wang, H. Wang, and G. Zhao, “Lead-Free Zero-Dimensional Zn-Based Metal Halides of Highly Efficient Blue Luminescence From Self-Trapping Exciton,” Journal of Physical Chemistry Letters 14 (2023): 4365-4371.

[17]

(a) Y.-Y. Ma, Y.-M. Sun, W.-J. Xu, et al., “Ultrastable 0D Organic Zinc Halides With Highly Efficient Blue Light Emissions,” Advanced Optical Materials 10 (2022): 2200386. (b) J.-Q. Zhao, D.-Y. Wang, T.-Y. Yan, et al., “Synchronously Improved Multiple Afterglow and Phosphorescence Efficiencies in 0D Hybrid Zinc Halides With Ultrahigh Anti-Water Stabilities,” Angewandte Chemie International Edition 63 (2024): e202412350.

[18]

D. Y. Li, Y. H. Liu, Q. Wang, X. W. Lei, C. Y. Yue, and Z. H. Jing, “Zero-Dimensional Hybrid Zinc Halides With Blue Light Emissions,” Materials Today Chemistry 31 (2023): 101604.

[19]

J. Liao, C. Chen, Y. Bai, J. Yao, B. Zou, and R. Zeng, “Tunable Emission of Pb(II) and Sb(III) Codoped 2D Hybrid BDACdBr 4 Metal Halides for Cryptographic Anticounterfeiting Applications,” ACS Applied Electronic Materials 5 (2023): 5224-5233.

[20]

(a) A. Yangui, R. Roccanova, T. M. McWhorter, Y. Wu, M.-H. Du, and B. Saparov, “Hybrid Organic-Inorganic Halides (C5H7N2)2MBr4 (M = Hg, Zn) With High Color Rendering Index and High-Efficiency White-Light Emission,” Chemistry of Materials 31 (2019): 2983-2991. (b) T. D. Creason, H. Fattal, I. W. Gilley, et al., “Stabilized Photoemission From Organic Molecules in Zero-Dimensional Hybrid Zn and Cd Halides,” Inorganic Chemistry Frontiers 9 (2022): 6202-6210.

[21]

P. Cheng, L. Feng, Y. Liu, et al., “Doped Zero-Dimensional Cesium Zinc Halides for High-Efficiency Blue Light Emission,” Angewandte Chemie International Edition 59 (2020): 21414-21418.

[22]

J.-F. Liao, Z. Zhang, L. Zhou, Z. Tang, and G. Xing, “Achieving Near-Unity Red Light Photoluminescence in Antimony Halide Crystals via Polyhedron Regulation,” Angewandte Chemie International Edition 63 (2024): e202404100.

[23]

K. Zhang, S. Chen, X. Zhang, B. Wang, and X. Li, “Highly Effective Hybrid Antimony Chloride Emitter With Antithermal Quenching Phosphorescence Emission for Solid-State Lighting,” Chemical Engineering Journal 489 (2024): 151317.

[24]

Z. Ma, X. Ji, S. Lin, et al., “Recent Advances and Opportunities of Eco-Friendly Ternary Copper Halides: A New Superstar in Optoelectronic Applications,” Advanced Materials 35 (2023): 2300731.

[25]

X. He, H. Peng, Q. Wei, et al., “Realizing Efficient Emission and Triple-Mode Photoluminescence Switching in Air-Stable Tin(IV)-Based Metal Halides via Antimony Doping and Rational Structural Modulation,” Aggregate 5 (2024): e407.

[26]

S. Zhou, Y. Chen, K. Li, et al., “Photophysical Studies for Cu(i)-Based Halides: Broad Excitation Bands and Highly Efficient Single-Component Warm White-Light-Emitting Diodes,” Chemical Science 14 (2023): 5415-5424.

[27]

(a) Z.-F. Hu, Z.-L. Chai, Q. Zhou, L.-C. Feng, W.-K. Dong, and Y.-J. Ding, “The First Salamo-Type Mixed-Ligand Cu(II) Coordination Polymer: Synthesis, Crystal Structure and Theoretical Studies,” Journal of Molecular Structure 1287 (2023): 135709. (b) Y.-M. Chai, H.-B. Zhang, X.-Y. Zhang, and L.-Q. Chai, “X-ray Structures, Spectroscopic, Antimicrobial Activity, ESP/HSA and TD/DFT Calculations of Bi(III) Complex Containing Imidazole Ring,” Journal of Molecular Structure 1256 (2022): 132517.

[28]

K. Han, J. Jin, X. Zhou, Y. Duan, M. V. Kovalenko, and Z. Xia, “Narrow-Band Green-Emitting Hybrid Organic-Inorganic Eu (II)-Iodides for Next-Generation Micro-LED Displays,” Advanced Materials 36 (2024): 2313247.

[29]

C.-Q. Jing, Q.-L. Liu, C.-H. Zhao, Y.-Y. Zhao, C.-Y. Yue, and X.-W. Lei, “Ultrapure Green Light Emission in One-Dimensional Hybrid Lead Perovskites: Achieving Recommendation 2020 Standard,” Journal of Materials Chemistry C 9 (2021): 15047-15055.

[30]

G. Peng, F. Qiu, Z. Li, H. Wang, Q. Li, and Z. Jin, “Single-Source Evaporated High-Quality Single-Phase Cs3Cu2I5 Scintillator Films for High Performance X-ray Imaging,” Advanced Functional Materials 34 (2024): 2403052.

[31]

Y. Zhan, P. Cai, X. Pu, et al., “Exceptional Optical Performance of the Zero-Dimensional Hybrid Cuprous Halide ETPA 2 Cu 2 I 4 as an X-ray Scintillator,” Inorganic Chemistry Frontiers 11 (2024): 579-588.

[32]

(a) H. Peng, O. Xu, Q. Zhao, S. Yuan, and B. Zou, “Ultrabroad White/Near-Infrared Multiexciton Emission in Single Metal Halide Crystals With Near 100% Luminous Efficiency and Efficient X-ray Radioluminescence for Pixel-Level X-ray to Near-Infrared Image Fusion and 3D Imaging,” Advanced Functional Materials (2025): 2424915, https://doi.org/10.1002/adfm.202424915. (b) H. Yin, B. Song, Y. Tong, et al., “Ultrafast Scintillator Based on Zirconium-Doped Cesium Zinc Chloride Single Crystals and Their Charge Carrier Dynamics,” Laser & Photonics Reviews 18 (2024): 2400394. (c) Y.-Y. Wang, W.-T. Song, X.-R. Yao, et al., “A New Polar Lead-Free Hybrid Halide X-ray Scintillator,” Advanced Optical Materials 12 (2024): 2400190. (d) T. B. Shonde, H. Liu, O. J. Olasupo, et al., “Aggregation-Induced Emission Organic Metal Halide Complex for X-ray Scintillation,” Materials Horizons 11 (2024): 3076-3081.

[33]

N. Lin, X. Wang, H.-Y. Zhang, et al., “Zero-Dimensional Copper(I) Halide Microcrystals as Highly Efficient Scintillators for Flexible X-ray Imaging,” ACS Applied Materials & Interfaces 16 (2024): 41165-41175.

[34]

(a) J. H. Heo, D. H. Shin, J. K. Park, D. H. Kim, S. J. Lee, and S. H. Im, “High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-ray Imaging,” Advanced Materials 30 (2018): 1801743. (b) W. Shao, X. Wang, Z. Zhang, et al., “Highly Efficient and Flexible Scintillation Screen Based on Manganese (II) Activated 2D Perovskite for Planar and Nonplanar High-Resolution X-ray Imaging,” Advanced Optical Materials 10 (2022): 2102282. (c) J. Zheng, Y. Zeng, J. Wang, et al., “Hydrogen-Rich 2D Halide Perovskite Scintillators for Fast Neutron Radiography,” Journal of the American Chemical Society 143 (2021): 21302-21311.

[35]

J.-X. Zheng, Z.-A. Zhou, T. Feng, et al., “Hydrophobic Long-Chain Two-Dimensional Perovskite Scintillators for Underwater X-ray Imaging,” Rare Metals 43 (2024): 175-185.

[36]

Q. Zhou, W. Li, J. Xiao, A. Li, and X. Han, “Low-Dimensional Metal Halide for High Performance Scintillators,” Advanced Functional Materials 34 (2024): 2402902.

[37]

(a) L. Liu, H. Hu, W. Pan, et al., “Robust Organogel Scintillator for Self-Healing and Ultra-Flexible X-ray Imaging,” Advanced Materials 36 (2024): 2311206. (b) H. Meng, Y. Li, F. Zhang, et al., “Stable Organic-Inorganic Hybrid Sb(III) Halide Scintillator for Nonplanar Ultra-Flexible X-ray Imaging,” Advanced Functional Materials 35 (2025): 2412597.

[38]

H. Wang, J. Wang, X. Song, et al., “Copper Organometallic Iodide Arrays for Efficient X-ray Imaging Scintillators,” ACS Central Science 9 (2023): 668-674.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/