A Multifunctional Probe for Visualization of the Nanoscale Distribution of Cholesterol in Cells by Expansion Microscopy

Gang Wen , Dominic A. Helmerich , Lisa Behringer-Pließ , Markus Sauer

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70104

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70104 DOI: 10.1002/agt2.70104
RESEARCH ARTICLE

A Multifunctional Probe for Visualization of the Nanoscale Distribution of Cholesterol in Cells by Expansion Microscopy

Author information +
History +
PDF

Abstract

Unraveling the nanoscale distribution of small molecules in cells is of central importance for the understanding of cellular functions and the development of drugs. However, particularly the visualization of lipids such as cholesterol—a central compound of cell membranes—with high spatial resolution remains challenging because they cannot be efficiently immobilized for super-resolution microscopy investigations. Here we developed an azido- and amino-modified cholesterol probe that can be efficiently fixed and labeled with fluorophores by click chemistry. In combination with expansion microscopy, its cellular localization and interaction with other cellular proteins can be precisely determined in fixed cells at varying time points after addition. Our approach allows us to detect the endocytic pathway of cholesterol with unprecedented spatial resolution and shows that cholesterol is efficiently ingested in endocytic vesicles and accumulates as cholesterol aggregates with an average size of ∼37 nm in late endosomes and lysosomes, respectively.

Keywords

expansion microscopy / multifunctional cholesterol probes / super-resolution / tracking

Cite this article

Download citation ▾
Gang Wen, Dominic A. Helmerich, Lisa Behringer-Pließ, Markus Sauer. A Multifunctional Probe for Visualization of the Nanoscale Distribution of Cholesterol in Cells by Expansion Microscopy. Aggregate, 2025, 6(8): e70104 DOI:10.1002/agt2.70104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) F. R. Maxfield and I. Tabas, “Role of Cholesterol and Lipid Organization in Disease,” Nature 438 (2005): 612-621. b) J. L. Goldstein and M. S. Brown, “A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins,” Cell 161 (2015): 161-172. c) K. Simons and E. Ikonen, “How Cells Handle Cholesterol,” Science 290 (2000): 1721-1726. d) O. G. Mouritsen and M. J. Zuckermann, “What’s so Special About Cholesterol,” Lipids 39 (2004): 1101-1113. e) D. Lingwood and K. Simons, “Lipid Rafts as a Membrane-Organizing Principle,” Science 327 (2010): 46-50.

[2]

a) J. L. Goldstein and M. S. Brown, “The Cholesterol Quartet,” Science 292 (2001): 1310-1312. b) M. Hao, S. X. Lin, O. J. Karylowski, D. Wüstner, T. E. McGraw, and F. R. Maxfield, “Vesicular and Non-vesicular Sterol Transport in Living Cells,” Journal of Biological Chemistry 277 (2002): 609-617. c) M. S. Brown and J. L. Goldstein, “A Receptor-Mediated Pathway for Cholesterol Homeostasis,” Science 232 (1986): 34-47. d) C. Enrich, C. Rentero, A. Hierro, and T. Grewal, “Role of Cholesterol in SNARE-mediated Trafficking on Intracellular Membranes,” Journal of Cell Science 128 (2015): 1071-1081.

[3]

a) M. Hölttä-Vuori, R. L. Uronen, J. Repakova, et al., “BODIPY-Cholesterol: A New Tool to Visualize Sterol Trafficking in Living Cells and Organisms,” Traffic 9 (2008): 1839-1849. b) D. Wüstner, “Fluorescent Sterols as Tools in Membrane Biophysics and Cell Biology,” Chemistry and Physics of Lipids 146 (2007): 1-25. c) D. L. Marks, R. Bittman, and R. E. Pagano, “Use of Bodipy-labeled Sphingolipid and Cholesterol Analogs to Examine Membrane Microdomains in Cells,” Histochemistry and Cell Biology 130 (2008): 819-832. d) M. Maekawa and G. D. Fairn, “Molecular Probes to Visualize the Location, Organization and Dynamics of Lipids,” Journal of Cell Science 127 (2014): 4801-4812.

[4]

a) K. Hofmann, C. Thiele, H.-F. Schött, et al., “A Novel Alkyne Cholesterol to Trace Cellular Cholesterol Metabolism and Localization,” Journal of Lipid Research 55 (2014): 583-591. b) C. Y. Jao, D. Nedelcu, L. V. Lopez, T. N. Samarakoon, R. Welti, and A. Salic, “Bioorthogonal Probes for Imaging Sterols in Cells,” ChemBioChem 16 (2015): 611-617.

[5]

a) C. Dietrich, L. Bagatolli, Z. Volovyk, et al., “Lipid Rafts Reconstituted in Model Membranes,” Biophysical Journal 80 (2001): 1417-1428. b) H. M. Kim, H. J. Choo, S. Y. Jung, et al., “A Two-Photon Fluorescent Probe for Lipid Raft Imaging: C-Laurdan,” ChemBioChem 8 (2007): 553-559.

[6]

a) M. Amaro, F. Reina, M. Hof, C. Eggeling, and E. Sezgin, “Laurdan and Di-4-ANEPPDHQ Probe Different Properties of the Membrane,” Journal of Physics D: Applied Physics 50 (2017): 134004. b) J. Dinic, H. Biverståhl, L. Mäler, and I. Parmryd, “Laurdan and di-4-ANEPPDHQ Do Not Respond to Membrane-inserted Peptides and Are Good Probes for Lipid Packing,” Biochimica Et Biophysica Acta, Biomembranes 1808 (2011): 298-306.

[7]

O. A. Kucherak, S. Oncul, Z. Darwich, et al., “Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes,” Journal of the American Chemical Society 132 (2010): 4907-4916.

[8]

a) F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion Microscopy,” Science 347 (2015): 543-548. b) G. Wen, V. Leen, T. Rohand, M. Sauer, and J. Hofkens, “Current Progress in Expansion Microscopy: Chemical Strategies and Applications,” Chemical Reviews 123 (2023): 3299-3323.

[9]

a) T. J. Chozinski, A. R. Halpern, H. Okawa, et al., “Expansion Microscopy With Conventional Antibodies and Fluorescent Proteins,” Nature Methods 13 (2016): 485-488. b) P. W. Tillberg, F. Chen, K. D. Piatkevich, et al., “Protein-retention Expansion Microscopy of Cells and Tissues Labeled Using Standard Fluorescent Proteins and Antibodies,” Nature Biotechnology 34 (2016): 987-992.

[10]

a) G. Wen, M. Vanheusden, A. Acke, et al., “Evaluation of Direct Grafting Strategies via Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy,” ACS Nano 14 (2020): 7860-7867. b) R. Götz, T. C. Kunz, J. Fink, et al., “Nanoscale Imaging of Bacterial Infections by Sphingolipid Expansion Microscopy,” Nature Communications 11 (2020): 6173.

[11]

a) F. Chen, A. T. Wassie, A. J. Cote, et al., “Nanoscale Imaging of RNA With Expansion Microscopy,” Nature Methods 13 (2016): 679-684. b) G. Wen, M. Vanheusden, V. Leen, et al., “A Universal Labeling Strategy for Nucleic Acids in Expansion Microscopy,” Journal of the American Chemical Society 143 (2021): 13782-13789.

[12]

D.-e. Sun, X. Fan, Y. Shi, et al., “Click-ExM Enables Expansion Microscopy for all Biomolecules,” Nature Methods 18 (2021): 107-113.

[13]

a) S. Truckenbrodt, C. Sommer, S. O. Rizzoli, and J. G. Danzl, “A Practical Guide to Optimization in X10 Expansion Microscopy,” Nature Protocols 14 (2019): 832-863. b) J.-B. Chang, F. Chen, Y.-G. Yoon, et al., “Iterative Expansion Microscopy,” Nature Methods 14 (2017): 593-599. c) S. Wang, T. W. Shin, H. B. Yoder, et al., “Single-Shot 20-Fold Expansion Microscopy,” Nature Methods 21 (2024): 2128-2134.

[14]

a) M. Rühling, L. Kersting, F. Wagner, et al., “Trifunctional Sphingomyelin Derivatives Enable Nanoscale Resolution of Sphingomyelin Turnover in Physiological and Infection Processes via Expansion Microscopy,” Nature Communications 15 (2024): 7456. b) N. H. Revelo, D. Kamin, S. Truckenbrodt, et al., “A New Probe for Super-resolution Imaging of Membranes Elucidates Trafficking Pathways,” Journal of Cell Biology 205 (2014): 591-606.

[15]

a) H. Nonaka, T. Mino, S. Sakamoto, et al., “Revisiting PFA-mediated Tissue Fixation Chemistry: FixEL Enables Trapping of Small Molecules in the Brain to Visualize Their Distribution Changes,” Chem 9 (2023): 523-540. b) S. Zhu, M. C. Deen, Y. Zhu, et al., “A Fixable Fluorescence-Quenched Substrate for Quantitation of Lysosomal Glucocerebrosidase Activity in both Live and Fixed Cells,” Angewandte Chemie International Edition 135 (2023): e202309306. c) G. K. Park, J. H. Lee, A. Levitz, et al., “Lysosome-Targeted Bioprobes for Sequential Cell Tracking From Macroscopic to Microscopic Scales,” Advanced Materials 31 (2019): 1806216. d) J. Chen, T. Stephan, F. Gaedke, et al., “An Aldehyde-crosslinking Mitochondrial Probe for STED Imaging in Fixed Cells,” PNAS 121 (2024): e2317703121. e) G. Wen, X. Chen, P. Eiring, V. Leen, J. Hofkens, and M. Sauer, “Functionalized Docetaxel Probes for Refined Visualization of Mitotic Spindles by Expansion Microscopy,” Journal of the American Chemical Society 147 (2025): 6604-6611.

[16]

D. M. Charbonneau and H.-A. Tajmir-Riahi, “Study on the Interaction of Cationic Lipids With Bovine Serum Albumin,” Journal of Physical Chemistry B 114 (2010): 1148-1155.

[17]

J. Altuzar, J. Notbohm, F. Stein, et al., “Lysosome-targeted Multifunctional Lipid Probes Reveal the Sterol Transporter NPC1 as a Sphingosine Interactor,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2213886120.

[18]

a) T. Kobayashi, U. M. Vischer, C. Rosnoblet, et al., “The Tetraspanin CD63/lamp3 Cycles Between Endocytic and Secretory Compartments in Human Endothelial Cells,” Molecular Biology of the Cell 11 (2000): 1829-1843. b) G. Van Niel, S. Charrin, S. Simoes, et al., “The Tetraspanin CD63 Regulates ESCRT-independent and -dependent Endosomal Sorting During Melanogenesis,” Developmental Cell 21 (2011): 708-721.

[19]

a) C. Bond, S. Hugelier, J. Xing, E. M. Sorokina, and M. Lakadamyali, “Heterogeneity of Late Endosome/Lysosomes Shown by Multiplexed DNA-PAINT Imaging,” Journal of Cell Biology 224 (2024): e202403116. b) L. Shearer and N. Petersen, “Distribution and Co-localization of Endosome Markers in Cells,” Heliyon 5 (2019): e02375.

[20]

H. G. Damstra, B. Mohar, M. Eddison, A. Akhmanova, L. C. Kapitein, and P. W. Tillberg, “Visualizing Cellular and Tissue Ultrastructure Using Ten-fold Robust Expansion Microscopy (TREx),” eLife 11 (2022): e73775.

[21]

B. Mesmin and F. R. Maxfield, “Intracellular Sterol Dynamics,” Biochimica Et Biophysica Acta, Molecular and Cell Biology of Lipids 1791 (2009): 636-645.

[22]

N. E. Wolins, B. Rubin, and D. L. Brasaemle, “TIP47 Associates With Lipid Droplets,” Journal of Biological Chemistry 276 (2001): 5101-5108.

[23]

a) X. Zhao, J. Q. Garcia, K. Tong, et al., “Polarized Endosome Dynamics Engage Cytoplasmic Par-3 That Recruits Dynein During Asymmetric Cell Division,” Science Advances 7 (2021): eabg1244. b) S. Bolte and F. P. Cordelières, “A Guided Tour Into Subcellular Colocalization Analysis in Light Microscopy,” Journal of Microscopy 224 (2006): 213-232. c) J. Gruenberg, “The Endocytic Pathway: A Mosaic of Domains,” Nature Reviews Molecular Cell Biology 2 (2001): 721-730.

[24]

a) O. Engebraaten, C. Yau, K. Berg, et al., “RAB5A expression is a Predictive Biomarker for Trastuzumab Emtansine in Breast Cancer,” Nature Communications 12 (2021): 6427. b) J. K. Verma, R. Rastogi, and A. Mukhopadhyay, “Leishmania donovani Resides in Modified Early Endosomes by Upregulating Rab5a Expression via the Downregulation of miR-494,” PLoS Pathogens 13 (2017): e1006459. c) W. Yuan and C. Song, “The Emerging Role of Rab5 in Membrane Receptor Trafficking and Signaling Pathways,” Biochemistry Research International 2020 (2020): 1-10.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/