NIR-II AIEgens for High-Contrast Intravital Fluorescence Angiography: Recent Advances and Prospects

Zhijun Zhang , Xue Li , Hao Yang , Caifa You , Kui Ren , Zengming Yang , Miaomiao Kang , Dong Wang , Ben Zhong Tang

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70102

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70102 DOI: 10.1002/agt2.70102
REVIEW

NIR-II AIEgens for High-Contrast Intravital Fluorescence Angiography: Recent Advances and Prospects

Author information +
History +
PDF

Abstract

The vasculature, as the essential biological network for oxygen and nutrients delivery and the dynamic regulatory center for physiological processes, is fundamentally important for maintaining human health and life quality. Accurate visualization of vascular structures, as well as real-time monitoring of hemodynamic parameters and molecular profiles associated with vascular function, are therefore crucial for early diagnosis and preventive interventions of vascular diseases. Fluorescence imaging technology, particularly in the second near-infrared window (NIR-II; 1000–1700 nm), offers distinct advantages for these demanding imaging requirements not only due to its high sensitivity, excellent spatial resolution, and real-time monitoring capability but also thanks to the superior signal-to-background ratio and large tissue penetration depth of NIR-II fluorescence. Among diverse NIR-II fluorescent probes, aggregation-induced emission luminogens (AIEgens) stand out for their intrinsic organic nature and, more importantly, for their unique aggregation-enhanced emission properties, which clearly differentiates them from traditional fluorophores and enable high-resolution imaging. Currently, a series of high-performance NIR-II AIEgens featuring relatively high fluorescence brightness and long emission wavelengths with emission tails even extending into the NIR-IIa (1300–1400 nm) and NIR-IIb (1500–1700 nm) subwindows have been reported and demonstrated encouraging results in intravital fluorescence angiography. This minireview summarizes recent advances in NIR-II AIEgens for various vascular imaging applications, categorized by anatomical locations, including cerebral, abdominal, hindlimb, ear, axillary, renal, and tumor angiography. The molecular design strategies and nanoengineering approaches to achieve longer emission wavelengths, higher fluorescence brightness, and improved bioavailability are highlighted. Finally, the remaining challenges and future directions are discussed from the aspects of materials engineering, application scenarios expansion, and clinical translation.

Keywords

aggregation-induced emission / intravital angiography / molecular engineering / nanocarrier design / NIR-II fluorescence imaging

Cite this article

Download citation ▾
Zhijun Zhang, Xue Li, Hao Yang, Caifa You, Kui Ren, Zengming Yang, Miaomiao Kang, Dong Wang, Ben Zhong Tang. NIR-II AIEgens for High-Contrast Intravital Fluorescence Angiography: Recent Advances and Prospects. Aggregate, 2025, 6(8): e70102 DOI:10.1002/agt2.70102

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. M. Ridker and N. R. Cook, “Statins: New American Guidelines for Prevention of Cardiovascular Disease,” The Lancet 382 (2013): 1762-1765.

[2]

A. G. Goodwill and J. C. Frisbee, “Oxidant Stress and Skeletal Muscle Microvasculopathy in the Metabolic Syndrome,” Vascular Pharmacology 57 (2012): 150-159.

[3]

Y. Wang and G. Oliver, “Current Views on the Function of the Lymphatic Vasculature in Health and Disease,” Genes & Development 24 (2010): 2115-2126.

[4]

J. Das, S. Chakraborty, and T. K. Maiti, “Mechanical Stress-Induced Autophagic Response: a Cancer-Enabling Characteristic?,” Seminars in Cancer Biology 66 (2020): 101-109.

[5]

I. J. Kullo and T. W. Rooke, “Peripheral Artery Disease,” New England Journal of Medicine 374 (2016): 861-871.

[6]

M. De Palma, D. Biziato, and T. V. Petrova, “Microenvironmental Regulation of Tumour Angiogenesis,” Nature Reviews Cancer 17 (2017): 457-474.

[7]

Y. Wang, M. Ji, S. Jiang, et al., “Augmenting Vascular Disease Diagnosis by Vasculature-Aware Unsupervised Learning,” Nature Machine Intelligence 2 (2020): 337-346.

[8]

G. Thomas, R. Tacke, C. C. Hedrick, and R. N. Hanna, “Nonclassical Patrolling Monocyte Function in the Vasculature,” Arteriosclerosis, Thrombosis, and Vascular Biology 35 (2015): 1306-1316.

[9]

L. F. Drager, R. D. McEvoy, F. Barbe, G. Lorenzi-Filho, and S. Redline, “Sleep Apnea and Cardiovascular Disease,” Circulation 136 (2017): 1840-1850.

[10]

C. Viallard and B. Larrivée, “Tumor Angiogenesis and Vascular Normalization: Alternative Therapeutic Targets,” Angiogenesis 20 (2017): 409-426.

[11]

D. Hanahan, “Hallmarks of Cancer: New Dimensions,” Cancer Discovery 12 (2022): 31-46.

[12]

M. D. Sweeney, A. P. Sagare, and B. V. Zlokovic, “Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders,” Nature Reviews Neurology 14 (2018): 133-150.

[13]

M. D. Sweeney, K. Kisler, A. Montagne, A. W. Toga, and B. V. Zlokovic, “The Role of Brain Vasculature in Neurodegenerative Disorders,” Nature Neuroscience 21 (2018): 1318-1331.

[14]

American Diabetes Association, “Peripheral Arterial Disease in People with Diabetes,” Diabetes Care 26 (2003): 3333-3341.

[15]

P. K. Upputuri, K. Sivasubramanian, C. S. Mark, and M. Pramanik, “Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine,” BioMed Research International 2015 (2015): 1-9.

[16]

Z. Wang, X. Wang, J. B. Wan, F. Xu, N. Zhao, and M. Chen, “Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging,” Small 17 (2021): e2103780.

[17]

D. J. Murphy, A. Aghayev, and M. L. Steigner, “Vascular CT and MRI: a Practical Guide to Imaging Protocols,” Insights Imaging 9 (2018): 215-236.

[18]

A. L. Antaris, H. Chen, K. Cheng, et al., “A Small-Molecule Dye for NIR-II Imaging,” Nature Materials 15 (2016): 235-242.

[19]

A. Schmermund, J. Eckert, M. Schmidt, A. Magedanz, and T. Voigtländer, “Coronary Computed Tomography Angiography: a Method Coming of Age,” Clinical Research in Cardiology 107 (2018): 40-48.

[20]

Q. Bashir, A. Ishfaq, and A. A. Baig, “Safety of Diagnostic Cerebral and Spinal Digital Subtraction Angiography in a Developing Country: a Single-Center Experience,” Interventional Neurology 7 (2018): 99-109.

[21]

F. Zhao, Z. Zhou, Y. Yan, et al., “Effect of Fixation on Neovascularization During Bone Healing,” Medical Engineering & Physics 36 (2014): 1436-1442.

[22]

H. S. Choi, S. L. Gibbs, J. H. Lee, et al., “Targeted Zwitterionic Near-Infrared Fluorophores for Improved Optical Imaging,” Nature Biotechnology 31 (2013): 148-153.

[23]

C. Li, G. Chen, Y. Zhang, F. Wu, and Q. Wang, “Advanced Fluorescence Imaging Technology in the Near-Infrared-II Window for Biomedical Applications,” Journal of the American Chemical Society 142 (2020): 14789-14804.

[24]

K. Welsher, Z. Liu, S. P. Sherlock, et al., “A Route to Brightly Fluorescent Carbon Nanotubes for Near-Infrared Imaging in Mice,” Nature Nanotechnology 4 (2009): 773-780.

[25]

G. Hong, Y. Zou, A. L. Antaris, et al., “Ultrafast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-Infrared Window,” Nature Communications 5 (2014): 4206.

[26]

J. Li, Z. Feng, X. Yu, D. Wu, T. Wu, and J. Qian, “Aggregation-Induced Emission Fluorophores Towards the Second Near-Infrared Optical Windows with Suppressed Imaging Background,” Coordination Chemistry Reviews 472 (2022): 214792.

[27]

S. Zhu, Q. Yang, A. L. Antaris, et al., “Molecular Imaging of Biological Systems with a Clickable Dye in the Broad 800- to 1,700-nm Near-Infrared Window,” Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 962-967.

[28]

Z. Xu, Y. Jiang, M. Fan, et al., “Aggregation-Induced Emission Nanoprobes Working in the NIR-II Region: from Material Design to Fluorescence Imaging and Phototherapy,” Advanced Optical Materials 9 (2021): 2100859.

[29]

C. Ou, L. An, Z. Zhao, et al., “Promoting Near-Infrared II Fluorescence Efficiency by Blocking Long-Range Energy Migration,” Aggregate 4 (2023): e290.

[30]

Y. Liu, Y. Li, S. Koo, et al., “Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: from Strategic Design toward Molecular Imaging and Theranostics,” Chemical Reviews 122 (2022): 209-268.

[31]

Q. Li, Q. Ding, Y. Li, et al., “Novel Small-Molecule Fluorophores for in Vivo NIR-IIa and NIR-IIb Imaging,” Chemical Communications 56 (2020): 3289-3292.

[32]

S. Diao, J. L. Blackburn, G. Hong, et al., “Fluorescence Imaging in Vivo at Wavelengths beyond 1500 Nm,” Angewandte Chemie International Edition 54 (2015): 14758-14762.

[33]

D. Franke, D. K. Harris, O. Chen, et al., “Continuous Injection Synthesis of Indium Arsenide Quantum Dots Emissive in the Short-Wavelength Infrared,” Nature Communications 7 (2016): 12749.

[34]

D. J. Naczynski, M. C. Tan, M. Zevon, et al., “Rare-earth-doped Biological Composites as in Vivo Shortwave Infrared Reporters,” Nature Communications 4 (2013): 2199.

[35]

H. Zhang, Y. Fan, P. Pei, C. Sun, L. Lu, and F. Zhang, “Tm 3+ -Sensitized NIR-II Fluorescent Nanocrystals for in Vivo Information Storage and Decoding,” Angewandte Chemie International Edition 58 (2019): 10153-10157.

[36]

Z. Tao, G. Hong, C. Shinji, et al., “Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 Nm,” Angewandte Chemie International Edition 52 (2013): 13002-13006.

[37]

Z. Zhang, M. Kang, H. Tan, et al., “The Fast-Growing Field of Photo-Driven Theranostics Based on Aggregation-Induced Emission,” Chemical Society Reviews 51 (2022): 1983-2030.

[38]

S. P. Yang, J. Y. Zhang, Z. J. Zhang, et al., “More Is Better: Dual-Acceptor Engineering for Constructing Second Near-Infrared Aggregation-Induced Emission Luminogens to Boost Multimodal Phototheranostics,” Journal of the American Chemical Society 145 (2023): 22776-22787.

[39]

M. B. Reinhart, C. R. Huntington, L. J. Blair, B. T. Heniford, and V. A. Augenstein, “Indocyanine Green,” Surgical Innovation 23 (2016): 166-175.

[40]

T. Wakabayashi, A. B. Cacciaguerra, Y. Abe, et al., “Indocyanine Green Fluorescence Navigation in Liver Surgery,” Annals of Surgery 275 (2022): 1025-1034.

[41]

D. Yan, Z. Zhang, J. Zhang, et al., “An All-Rounder for NIR-II Phototheranostics: Well-Tailored 1064 Nm-Excitable Molecule for Photothermal Combating of Orthotopic Breast Cancer,” Angewandte Chemie International Edition 136 (2024): e202401877.

[42]

Z. Sun, X. Hua, M. Bao, et al., “CXCL9+ Macrophage-Targeted NIR-II Aggregation-Induced Emission Nanoprobes for the Early Diagnosis of Myocarditis,” Nano Today 54 (2024): 102107.

[43]

B. Li, M. Zhao, L. Feng, et al., “Organic NIR-II Molecule with Long Blood Half-Life for in Vivo Dynamic Vascular Imaging,” Nature Communications 11 (2020): 3102.

[44]

V. G. Bandi, M. P. Luciano, M. Saccomano, et al., “Targeted Multicolor in Vivo Imaging Over 1,000 Nm Enabled by Nonamethine Cyanines,” Nature Methods 19 (2022): 353-358.

[45]

J. Lin, X. Zeng, Y. Xiao, et al., “Novel Near-Infrared II Aggregation-Induced Emission Dots for in Vivo Bioimaging,” Chemical Science 10 (2019): 1219-1226.

[46]

Z. Wang, L. Yu, Y. Wang, et al., “Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy,” Advanced Science 9 (2022): e2104793.

[47]

X. Li, H. Yang, P. Zheng, et al., “Aggregation-Induced Emission Materials: a Platform for Diverse Energy Transformation and Applications,” Journal of Materials Chemistry A 11 (2023): 4850-4875.

[48]

J. Luo, Z. Xie, J. W. Y. Lam, et al., “Aggregation-Induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,” Chemical Communications 18 (2001): 1740-1741.

[49]

J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, and B. Z. Tang, “Aggregation-Induced Emission: Together We Shine, United We Soar!,” Chemical Reviews 115 (2015): 11718-11940.

[50]

Kenry, B. Z. Tang, and B. Liu, “Catalyst: -Induced Emission—How Far Have We Come, and Where Are We Going Next?,” Chemistry 6 (2020): 1195-1198.

[51]

Z. Zhang, H. Cheng, Z. Yang, et al., “An NIR-III 3P Excitable AIE Nanoprobe for High-Quality Intravital Deep-Brain Angiography,” Aggregate 6 (2025): e70055.

[52]

Z. Xu, X. Li, Z. Yang, et al., “An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma,” Advanced Materials 37 (2025): 2413164.

[53]

Y. Qin, N. Niu, X. Li, et al., “Long-Term in Vivo Fluorescence Analyses and Imaging-Guided Tumor Surgery in the Second Near-Infrared Window Using a Supramolecular Metallacage,” Aggregate 6 (2025): e708.

[54]

W. Zhang, X. Li, M. Kang, et al., “Anthraquinone-Centered Type I Photosensitizer With Aggregation-Induced Emission Characteristics for Tumor-Targeted Two-Photon Photodynamic Therapy,” ACS Materials Letters 6 (2024): 2174-2185.

[55]

J. Tavakoli, Q. Hu, J. L. Tipper, and Y. Tang, “Aggregation-Induced Emission Biomarkers for Early Detection of Orthopaedic Implant Failure,” Aggregate 5 (2024): e645.

[56]

H. Xu, L. Yuan, Q. Shi, Y. Tian, and F. Hu, “Ultrabright NIR-II Nanoprobe for Image-Guided Accurate Resection of Tiny Metastatic Lesions,” Nano Letters 24 (2024): 1367-1375.

[57]

J. Qi, X. Duan, W. Liu, et al., “Dragonfly-Shaped Near-Infrared AIEgen with Optimal Fluorescence Brightness for Precise Image-Guided Cancer Surgery,” Biomaterials 248 (2020): 120036.

[58]

F. Zhang and B. Z. Tang, “Near-Infrared Luminescent Probes for Bioimaging and Biosensing,” Chemical Science 12 (2021): 3377-3378.

[59]

Q. Zhang, P. Yu, Y. Fan, et al., “Bright and Stable NIR-II J-Aggregated AIE Dibodipy-Based Fluorescent Probe for Dynamic in Vivo Bioimaging,” Angewandte Chemie International Edition 60 (2021): 3967-3973.

[60]

H. Shen, F. Sun, X. Zhu, et al., “Rational Design of NIR-II AIEgens With Ultrahigh Quantum Yields for Photo- and Chemiluminescence Imaging,” Journal of the American Chemical Society 144 (2022): 15391-15402.

[61]

G. Qian, B. Dai, M. Luo, et al., “Band Gap Tunable, Donor-Acceptor-Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence,” Chemistry of Materials 20 (2008): 6208-6216.

[62]

W. Xu, D. Wang, and B. Z. Tang, “NIR-II AIEgens: a Win-Win Integration Towards Bioapplications,” Angewandte Chemie International Edition 60 (2021): 7476-7487.

[63]

M. Kang, Z. Zhang, N. Song, et al., “Aggregation-Enhanced Theranostics: AIE Sparkles in Biomedical Field,” Aggregate 1 (2020): 80-106.

[64]

S. Liu, Y. Li, R. T. K. Kwok, J. W. Y. Lam, and B. Z. Tang, “Structural and Process Controls of AIEgens for NIR-II Theranostics,” Chemical Science 12 (2020): 3427-3436.

[65]

X. Zhou, Y. Zeng, S. Li, et al., “Polymeric Engineering of AIEgens for NIR-II Fluorescence Imaging and Detection of Abdominal Metastases of Ovarian Cancer in Vivo,” Journal of Materials Chemistry B 11 (2023): 11217-11221.

[66]

S. Liu, R. Chen, J. Zhang, et al., “Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer,” ACS Nano 14 (2020): 14228-14239.

[67]

S. L. Song, Y. Zhao, M. M. Kang, et al., “An NIR-II Excitable AIE Small Molecule With Multimodal Phototheranostic Features for Orthotopic Breast Cancer Treatment,” Advanced Materials 36 (2024): 2309748.

[68]

J. Li, Z. Zhang, S. Jiang, et al., “NIR-II Excitable Semiconducting Polymers With AIE Characteristics for Fluorescence-Photoacoustic Imaging-Guided Synergistic Phototherapy,” Advanced Functional Materials 34 (2024): 2401627.

[69]

Y. Qin, X. Li, S. Lu, et al., “Modular Construction of AIE-Active Supramolecular Cages With Tunable Fluorescence for NIR-II Blood Vessel Imaging,” ACS Materials Letters 5 (2023): 1982-1991.

[70]

R. Zhang, Z. Bi, L. Zhang, et al., “Blood Circulation Assessment by Steadily Fluorescent Near-Infrared-II Aggregation-Induced Emission Nano Contrast Agents,” ACS Nano 17 (2023): 19265-19274.

[71]

Y. Li, Z. Cai, S. Liu, et al., “Design of AIEgens for Near-Infrared IIb Imaging through Structural Modulation at Molecular and Morphological Levels,” Nature Communications 11 (2020): 1255.

[72]

X. Wang, X. Yang, G. Jiang, et al., “Unlocking the NIR-II AIEgen for High Brightness through Intramolecular Electrostatic Locking,” Angewandte Chemie International Edition 63 (2024): e202404142.

[73]

D. Li, X. Deng, Z. Xu, et al., “Molecular Engineering of NIR-II AIE Luminogen Excited at 1700 Nm for Ultradeep Intravital Brain Two-Photon Fluorescence Imaging,” Advanced Functional Materials 33 (2023): 2303967.

[74]

Z. Feng, S. Bai, J. Qi, et al., “Biologically Excretable Aggregation-Induced Emission Dots for Visualizing through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine,” Advanced Materials 33 (2021): 2008123.

[75]

J. Qi, N. Alifu, A. Zebibula, et al., “Highly Stable and Bright AIE Dots for NIR-II Deciphering of Living Rats,” Nano Today 34 (2020): 100893.

[76]

Y. Li, H. Zhu, X. B. Wang, et al., “Small-Molecule Fluorophores for Near-Infrared IIb Imaging and Image-Guided Therapy of Vascular Diseases,” CCS Chemistry 4 (2022): 3735-3750.

[77]

S. Bian, X. Zheng, W. Liu, et al., “Pyrrolopyrrole Aza-BODIPY-Based NIR-II Fluorophores for in Vivo Dynamic Vascular Dysfunction Visualization of Vascular-Targeted Photodynamic Therapy,” Biomaterials 298 (2023): 122130.

[78]

Y. Jia, S. T. Bailey, T. S. Hwang, et al., “Quantitative Optical Coherence Tomography Angiography of Vascular Abnormalities in the Living human Eye,” Proceedings of the National Academy of Sciences of the United States of America 112 (2015): E2395-E2402.

[79]

M. B. Chen, J. A. Whisler, J. Fröse, C. Yu, Y. Shin, and R. D. Kamm, “On-Chip Human Microvasculature Assay for Visualization and Quantification of Tumor Cell Extravasation Dynamics,” Nature Protocols 12 (2017): 865-880.

[80]

P. Cen, J. Huang, C. Jin, et al., “Aggregation-Induced Emission Luminogens for in Vivo Molecular Imaging and Theranostics in Cancer,” Aggregate 4 (2023): e352.

[81]

J. Qi, C. Sun, A. Zebibula, et al., “Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region,” Advanced Materials 30 (2018): e1706856.

[82]

S. H. Siddiqi, K. P. Kording, J. Parvizi, and M. D. Fox, “Causal Mapping of Human Brain Function,” Nature Reviews Neuroscience 23 (2022): 361-375.

[83]

B. Díaz-Castro, S. Robel, and A. Mishra, “Astrocyte Endfeet in Brain Function and Pathology: Open Questions,” Annual Review of Neuroscience 46 (2023): 101-121.

[84]

A. Moheet, S. Mangia, and E. R. Seaquist, “Impact of Diabetes on Cognitive Function and Brain Structure,” Annals of the New York Academy of Sciences 1353 (2015): 60-71.

[85]

H. Kadry, B. Noorani, and L. Cucullo, “A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity,” Fluids and Barriers of the CNS 17 (2020): 69.

[86]

S. N. Ohashi, J. H. DeLong, M. G. Kozberg, et al., “Role of Inflammatory Processes in Hemorrhagic Stroke,” Stroke: A Journal of Cerebral Circulation 54 (2023): 605-619.

[87]

Y. Zhao, X. Zhang, X. Chen, and Y. Wei, “Neuronal Injuries in Cerebral Infarction and Ischemic Stroke: from Mechanisms to Treatment,” International Journal of Molecular Medicine 49 (2022): 15.

[88]

G. M. Potter, F. M. Chappell, Z. Morris, and J. M. Wardlaw, “Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and Its Observer Reliability,” Cerebrovascular Diseases 39 (2015): 224-231.

[89]

M. D. Sweeney, Z. Zhao, A. Montagne, A. R. Nelson, and B. V. Zlokovic, “Blood-Brain Barrier: from Physiology to Disease and Back,” Physiological Reviews 99 (2019): 21-78.

[90]

L. Librizzi, M. de Cutis, D. Janigro, et al., “Cerebrovascular Heterogeneity and Neuronal Excitability,” Neuroscience Letters 667 (2018): 75-83.

[91]

E. J. Miller, G. M. Nelson, J. J. Shultz, and G. G. Davis, “Diagnosis of Sudden Unexplained Death in Epilepsy by Immunohistochemical Staining for Prolactin in Cerebral Vessels,” American Journal of Forensic Medicine and Pathology 24 (2003): 28-31.

[92]

Y. Wu, F. Li, Y. Wu, et al., “Lanthanide Luminescence Nanothermometer With Working Wavelength Beyond 1500 Nm for Cerebrovascular Temperature Imaging in Vivo,” Nature Communications 15 (2024): 2341.

[93]

Y. Yang, Y. Chen, P. Pei, et al., “Fluorescence-Amplified Nanocrystals in the Second Near-Infrared Window for in Vivo Real-Time Dynamic Multiplexed Imaging,” Nature Nanotechnology 18 (2023): 1195-1204.

[94]

Z. Feng, Y. Li, S. Chen, et al., “Engineered NIR-II Fluorophores with Ultralong-Distance Molecular Packing for High-Contrast Deep Lesion Identification,” Nature Communications 14 (2023): 5017.

[95]

S. Song, Y. Wang, Y. Zhao, et al., “Molecular Engineering of AIE Luminogens for NIR-II/IIb Bioimaging and Surgical Navigation of Lymph Nodes,” Matter 5 (2022): 2847-2863.

[96]

X. Li, X. Ou, Z. Yang, et al., “Win-Win Integration of Genetically Engineered Cellular Nanovesicles With High-Absorbing Multimodal Phototheranostic Molecules for Boosted Cancer Photo-Immunotherapy,” Advanced Materials 37 (2025): 2416590.

[97]

J. Meng, Z. Feng, S. Qian, et al., “Mapping Physiological and Pathological Functions of Cortical Vasculature through Aggregation-Induced Emission Nanoprobes Assisted Quantitative, in Vivo NIR-II Imaging,” Biomaterials Advances 136 (2022): 212760.

[98]

D. Gao, Y. Li, Y. Wu, et al., “Albumin-Consolidated AIEgens for Boosting Glioma and Cerebrovascular NIR-II Fluorescence Imaging,” ACS Applied Materials & Interfaces 15 (2023): 3-13.

[99]

D. Li, L. Deng, Z. Hu, et al., “Optical Clearing Imaging Assisted Evaluation of Urokinase Thrombolytic Therapy on Cerebral Vessels with Different Sizes,” Biomedical Optics Express 13 (2022): 3243.

[100]

D. C. Brewster, J. L. Cronenwett, J. W. Hallett, K. W. Johnston, W. C. Krupski, and J. S. Matsumura, “Guidelines for the Treatment of Abdominal Aortic Aneurysms: Report of a Subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery,” Journal of Vascular Surgery 37 (2003): 1106-1117.

[101]

M. Di Nisio, N. van Es, and H. R. Büller, “Deep Vein Thrombosis and Pulmonary Embolism,” Lancet 388 (2016): 3060.

[102]

L. M. van der Pol, C. Tromeur, I. M. Bistervels, et al., “Pregnancy-Adapted YEARS Algorithm for Diagnosis of Suspected Pulmonary Embolism,” New England Journal of Medicine 380 (2019): 1139-1149.

[103]

T. Tritschler, N. Kraaijpoel, G. Le Gal, and P. S. Wells, “Venous Thromboembolism,” The Journal of the American Medical Association 320 (2018): 1583.

[104]

Y. Li, M. Zha, G. Yang, S. Wang, J. S. Ni, and K. Li, “NIR-II Fluorescent Brightness Promoted by “Ring Fusion” for the Detection of Intestinal Inflammation,” Chemistry - A European Journal 27 (2021): 13085-13091.

[105]

P. Cheng, X. Du, S. Chen, et al., “Donor-Acceptor-Donor Near-Infrared-II Aggregation-Induced Emission Luminogens (AIEgens) Encapsulated Within Nanometer-Sized Exosomes for Tumor Imaging,” ACS Applied Nano Materials 6 (2023): 10736-10745.

[106]

Z. Zhang, X. Fang, Z. Liu, et al., “Semiconducting Polymer Dots With Dual-Enhanced NIR-IIa Fluorescence for Through-Skull Mouse-Brain Imaging,” Angewandte Chemie International Edition 59 (2020): 3691-3698.

[107]

Y. Liu, J. Liu, D. Chen, et al., “Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging,” Angewandte Chemie International Edition 59 (2020): 21049-21057.

[108]

Y. X. Li, S. P. Su, C. H. Yang, et al., “Molecular Design of Ultrabright Semiconducting Polymer Dots With High NIR-II Fluorescence for 3D Tumor Mapping,” Advanced Healthcare Materials 10 (2021): e2100993.

[109]

T. R. Cardinal, K. R. Struthers, T. J. Kesler, M. D. Yocum, D. T. Kurjiaka, and J. B. Hoying, “Chronic Hindlimb Ischemia Impairs Functional Vasodilation and Vascular Reactivity in Mouse Feed Arteries,” Frontiers in Physiology 2 (2011): 91.

[110]

P. Nowak-Sliwinska, K. Alitalo, E. Allen, et al., “Consensus Guidelines for the Use and Interpretation of Angiogenesis Assays,” Angiogenesis 21 (2018): 425-532.

[111]

A. Kawashima, C. M. Sandler, R. D. Ernst, E. P. Tamm, S. M. Goldman, and E. K. Fishman, “CT Evaluation of Renovascular Disease,” Radiographics 20 (2000): 1321-1340.

[112]

B. Önal, E. T. Ilgit, S. Akpek, G. Erbas, and A. Akkaya, “Endovascular Treatment of Obstructive Iliac Artery Dissections,” Acta Radiologica 46 (2005): 359-365.

[113]

N. Pantic, M. Cvetkovic, J. Milin-Lazovic, et al., “Deep Venous Thrombosis in Patients with Atresia of the Inferior Vena Cava and Right Kidney Hypoplasia (KILT syndrome): Systematic Review of the Literature,” Vascular Medicine 29 (2024): 320-327.

[114]

J. A. Barnes, M. A. Eid, M. A. Creager, and P. P. Goodney, “Epidemiology and Risk of Amputation in Patients With Diabetes Mellitus and Peripheral Artery Disease,” Arteriosclerosis, Thrombosis, and Vascular Biology 40 (2020): 1808-1817.

[115]

M. S. Conte, A. W. Bradbury, P. Kolh, et al., “Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia,” Journal of Vascular Surgery 69 (2019): 3S-125S.e40.

[116]

Q. Wang, T. Liang, J. Wu, Z. Li, and Z. Liu, “Dye-Sensitized Rare Earth-Doped Nanoparticles With Boosted NIR-IIb Emission for Dynamic Imaging of Vascular Network-Related Disorders,” ACS Applied Materials & Interfaces 13 (2021): 29303-29312.

[117]

S. Liu, C. Chen, Y. Li, et al., “Constitutional Isomerization Enables Bright NIR-II AIEgen for Brain-Inflammation Imaging,” Advanced Functional Materials 30 (2020): 1908125.

[118]

X. Min, J. Zhang, R.-H. Li, et al., “Encapsulation of NIR-II AIEgens in Virus-Like Particles for Bioimaging,” ACS Applied Materials & Interfaces 13 (2021): 17372-17379.

[119]

S. Jiang, H. Zhao, W. Zhang, et al., “An Automated Organoid Platform With Inter-Organoid Homogeneity and Inter-Patient Heterogeneity,” Cell Reports Medicine 1 (2020): 100161.

[120]

S. Liu, H. Ou, Y. Li, et al., “Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging,” Journal of the American Chemical Society 142 (2020): 15146-15156.

[121]

J. Li, N. Niu, D. Wang, et al., “As Aggregation-Induced Emission Meets With Noncovalent Conformational Locks: Subtly Regulating NIR-II Molecules for Multimodal Imaging-Navigated Synergistic Therapies,” Angewandte Chemie International Edition 64 (2025): e202413219.

[122]

Y. Li, Y. Liu, Q. Li, et al., “Novel NIR-II Organic Fluorophores for Bioimaging beyond 1550 Nm,” Chemical Science 11 (2020): 2621-2626.

[123]

S. H. Oh, H. W. Kyung, N. Kang, Y. J. Seo, and D. W. Kim, “The Vascular System of the Superior Auricular Artery: Anatomical Study and Clinical Application,” Dermatologic Surgery 37 (2011): 65-72.

[124]

S. H. Kim, S. H. Han, Y. Song, C. S. Park, and J. J. Song, “Arteriovenous Malformation of the External Ear: a Clinical Assessment with a Scoping Review of the Literature,” Brazilian Journal of Otorhinolaryngology 83 (2017): 683-690.

[125]

A. D. Farmer, A. Strzelczyk, A. Finisguerra, et al., “International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020),” Frontiers in Human Neuroscience 14 (2020): 568051.

[126]

Y. Li, D. Hu, Z. Sheng, et al., “Self-Assembled AIEgen Nanoparticles for Multiscale NIR-II Vascular Imaging,” Biomaterials 264 (2021): 120365.

[127]

D. Yan, T. Li, Y. Yang, et al., “A Water-Soluble AIEgen for Noninvasive Diagnosis of Kidney Fibrosis via SWIR Fluorescence and Photoacoustic Imaging,” Advanced Materials 34 (2022): e2206643.

[128]

O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots,” Journal of Physical Chemistry Letters 1 (2010): 2445-2450.

[129]

S. Hatami, C. Würth, M. Kaiser, et al., “Absolute Photoluminescence Quantum Yields of IR26 and IR-emissive Cd 1−X Hg X Te and PbS Quantum Dots—Method- and Material-Inherent Challenges,” Nanoscale 7 (2015): 133-143.

[130]

J. E. Murphy, M. C. Beard, A. G. Norman, et al., “PbTe Colloidal Nanocrystals:  Synthesis, Characterization, and Multiple Exciton Generation,” Journal of the American Chemical Society 128 (2006): 3241-3247.

[131]

K. Hergan, T. Amann, and W. Oser, “Sonoanatomie Der Axilla,” Ultraschall in Der Medizin - European Journal of Ultrasound 12 (1991): 236-243.

[132]

E. A. Elster, S. Hewlett, D. P. DeRienzo, S. Donovan, J. Georgia, and C. C. Yavorski, “Adventitial Cystic Disease of the Axillary Artery,” Annals of Vascular Surgery 16 (2002): 134-137.

[133]

Y. M. Park, J. S. Park, H. K. Yoon, and W. T. Yang, “Imaging-Pathologic Correlation of Diseases in the Axilla,” American Journal of Roentgenology 200 (2013): W130-W142.

[134]

D. L. Franga, M. L. Hawkins, and J. S. Mondy, “Management of Subclavian and Axillary Artery Injuries: Spanning the Range of Current Therapy,” The American Surgeon 71 (2005): 303-307.

[135]

K. S. Blum, S. T. Proulx, P. Luciani, J. C. Leroux, and M. Detmar, “Dynamics of Lymphatic Regeneration and Flow Patterns after Lymph Node Dissection,” Breast Cancer Research and Treatment 139 (2013): 81-86.

[136]

Z. Sheng, Y. Li, D. Hu, et al., “Centimeter-Deep NIR-II Fluorescence Imaging With Nontoxic AIE Probes in Nonhuman Primates,” Research (Washington, DC) 2020 (2020): 4074593.

[137]

Q. Y. Chen, J. W. Xie, Q. Zhong, et al., “Safety and Efficacy of Indocyanine Green Tracer-Guided Lymph Node Dissection During Laparoscopic Radical Gastrectomy in Patients With Gastric Cancer,” JAMA Surgery 155 (2020): 300.

[138]

J. Watanabe, I. Takemasa, M. Kotake, et al., “Blood Perfusion Assessment by Indocyanine Green Fluorescence Imaging for Minimally Invasive Rectal Cancer Surgery (EssentiAL trial),” Annals of Surgery 278 (2023): e688-e694.

[139]

S. Hariharan, A. K. Israni, and G. Danovitch, “Long-Term Survival After Kidney Transplantation,” New England Journal of Medicine 385 (2021): 729-743.

[140]

A. L. H. Gerken, K. Nowak, A. Meyer, et al., “Ureterovesical Anastomosis Complications in Kidney Transplantation: Definition, Risk Factor Analysis, and Prediction by Quantitative Fluorescence Angiography With Indocyanine Green,” Journal of Clinical Medicine 11 (2022): 6585.

[141]

R. Boissier, V. Hevia, H. M. Bruins, et al., “The Risk of Tumour Recurrence in Patients Undergoing Renal Transplantation for End-Stage Renal Disease After Previous Treatment for a Urological Cancer: A Systematic Review,” European Urology 73 (2018): 94-108.

[142]

B. Volkan-Salanci and B. Erbas, “Imaging in Renal Transplants: an Update,” Seminars in Nuclear Medicine 51 (2021): 364-379.

[143]

F. Giovanardi, F. Nudo, Q. Lai, et al., “Surgical Technique Notes of Arterial Vascular Reconstruction During Kidney Transplantation: Personal Experience and Literature Review,” Transplantation Proceedings 51 (2019): 128-131.

[144]

R. Zhang, P. Shen, Y. Xiong, et al., “Bright, Photostable and Long-Circulating NIR-II Nanoparticles for Whole-Process Monitoring and Evaluation of Renal Transplantation,” National Science Review 11 (2024): nwad286.

[145]

J. Folkman, “Tumor Angiogenesis,” Advances in Cancer Research 43 (1985): 175-203.

[146]

A. K. Kanugula, R. K. Adapala, A. Jamaiyar, et al., “Endothelial TRPV4 Channels Prevent Tumor Growth and Metastasis via Modulation of Tumor Angiogenesis and Vascular Integrity,” Angiogenesis 24 (2021): 647-656.

[147]

S. Guelfi, K. Hodivala-Dilke, and G. Bergers, “Targeting the Tumour Vasculature: From Vessel Destruction to Promotion,” Nature Reviews Cancer 24 (2024): 655-675.

[148]

J. Garcia, H. I. Hurwitz, A. B. Sandler, et al., “Bevacizumab (Avastin®) in Cancer Treatment: a Review of 15 Years of Clinical Experience and Future Outlook,” Cancer Treatment Reviews 86 (2020): 102017.

[149]

M. De Palma and D. Hanahan, “Milestones in Tumor Vascularization and Its Therapeutic Targeting,” Nature Cancer 5 (2024): 827-843.

[150]

R. I. Teleanu, C. Chircov, A. M. Grumezescu, and D. M. Teleanu, “Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment,” Journal of Clinical Medicine 9 (2019): 84.

[151]

A. Palazon, P. A. Tyrakis, D. Macias, et al., “An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression,” Cancer Cell 32 (2017): 669-683.e5.

[152]

A. Ji, H. Lou, C. Qu, et al., “Acceptor Engineering for NIR-II Dyes With High Photochemical and Biomedical Performance,” Nature Communications 13 (2022): 3815.

[153]

P. H. Cheng and K. Y. Pu, “Molecular Imaging and Disease Theranostics With Renal-Clearable Optical Agents,” Nature Reviews Materials 6 (2021): 1095-1113.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/