Electrostatic Self-Assembly of Ag-NPs Mediated by Eu3+ Complexes for Physically Unclonable Function Labels

Yao Kou , Yanan Guo , Lijuan Liang , Xue Li , Yifan Wang , Pingru Su , Chun-Hua Yan , Yu Tang

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e701

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e701 DOI: 10.1002/agt2.701
RESEARCH ARTICLE

Electrostatic Self-Assembly of Ag-NPs Mediated by Eu3+ Complexes for Physically Unclonable Function Labels

Author information +
History +
PDF

Abstract

Physically unclonable functions (PUFs) are essential for anticounterfeiting. Creating high-stability, multimode, and secure labels remains challenging. Herein, we present a novel self-assembly method for modulating the optical signals of rare-earth (RE) complexes via interactions with Ag nanoparticles (Ag-NPs). Initially, we engineered a positively charged Eu3+ complex ([EuL3]3+), which promotes the self-assembly of negatively charged Ag-NPs to form Eu/Ag-NPs composites. The assembly of Ag-NPs induces a surface plasmon effect that boosts the luminescent quantum yield and Raman signal intensities, and modifies the luminescence lifetime of the [EuL3]3+. Crucially, these micron-scale Eu/Ag-NPs can be applied to substrates, facilitating high-resolution signal acquisition and diverse information encoding within limited space. Validation experiments reveal that PUF labels crafted using Eu/Ag-NPs exhibit inherent randomness and uniqueness, along with stable and repeatable signal output. The strategic self-assembly of Ag-NPs, mediated by [EuL3]3+, along with the effective modulation of material properties, paves the way for advancing high-resolution, high-information-density solutions in anticounterfeiting technologies.

Keywords

Ag nanoparticles / anticounterfeiting / assembly / physical unclonable functions / rare-earth complexes

Cite this article

Download citation ▾
Yao Kou, Yanan Guo, Lijuan Liang, Xue Li, Yifan Wang, Pingru Su, Chun-Hua Yan, Yu Tang. Electrostatic Self-Assembly of Ag-NPs Mediated by Eu3+ Complexes for Physically Unclonable Function Labels. Aggregate, 2025, 6(3): e701 DOI:10.1002/agt2.701

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Abdollahi, H. Roghani-Mamaqani, B. Razavi, and M. Salami-Kalajahi, “Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges,” ACS Nano 14 (2020): 14417.

[2]

Y. Shen, X. Le, Y. Wu, and T. Chen, “Stimulus-Responsive Polymer Materials Toward Multi-Mode and Multi-Level Information Anti-Counterfeiting: Recent Advances and Future Challenges,” Chemical Society Reviews 53 (2024): 606.

[3]

Y. Tang, Y. Cai, K. Dou, et al., “Dynamic Multicolor Emissions of Multimodal Phosphors by Mn2+ Trace Doping in Self-Activated CaGa4O7,” Nature Communications 15 (2024): 3209.

[4]

X. X. Yang, N. Li, C. Li, et al., “Chiral Liquid Crystalline Metal-Organic Framework Thin Films for Highly Circularly Polarized Luminescence,” Journal of the American Chemical Society 146 (2024): 16213.

[5]

Z. Zhang, J. Jin, Y. Lin, et al., “Multisite Fine-Tuning in Hybrid Cadmium Halides Enables Wide Range Emissions for Anti-Counterfeiting,” Angewandte Chemie International Edition 63 (2024): e202400760.

[6]

T. Zhou, J. Chen, T. Wang, et al., “One-Dimensional Chain Viologen-Based Lanthanide Multistimulus-Responsive Materials With Photochromism, Photoluminescence, Photomagnetism, and Ammonia/Amine Vapor Sensing,” ACS Applied Materials & Interfaces 14 (2022): 57037.

[7]

P. Feng, X. Yang, X. Feng, et al., “Highly Stable Perovskite Quantum Dots Modified by Europium Complex for Dual-Responsive Optical Encoding,” ACS Nano 15 (2021): 6266.

[8]

Q. Wang, B. Lin, M. Chen, C. Zhao, H. Tian, and D. H. Qu, “A Dynamic Assembly-Induced Emissive System for Advanced Information Encryption With Time-Dependent Security,” Nature Communications 13 (2022): 4185.

[9]

Q. Qi, S. Huang, X. Liu, and I. Aprahamian, “1,2-BF 2 Shift and Photoisomerization Induced Multichromatic Response,” Journal of the American Chemical Society 146 (2024): 6471.

[10]

X. Li, Y. Xie, B. Song, et al., “A Stimuli-Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption,” Angewandte Chemie International Edition 56 (2017): 2689.

[11]

Y. Q. Zhang, L. Chen, B. Liu, S. P. Yu, Y. Z. Yang, and X. G. Liu, “Multicolor Afterglow Carbon Dots: Luminescence Regulation, Preparation, and Application,” Advanced Functional Materials 34 (2024): 2315366.

[12]

G. D. Zhao, Y. Kou, N. Song, et al., “Intelligent Colorimetric Indicators for Quality Monitoring and Multilevel Anticounterfeiting With Kinetics-Tunable Fluorescence,” ACS Nano 17 (2023): 7624.

[13]

T. Ma, T. Li, L. Zhou, X. Ma, J. Yin, and X. Jiang, “Dynamic Wrinkling Pattern Exhibiting Tunable Fluorescence for Anticounterfeiting Applications,” Nature Communications 11 (2020): 1811.

[14]

H. Liu, D. D. Ren, P. F. Gao, et al., “Multicolor-Tunable Room-Temperature Afterglow and Circularly Polarized Luminescence in Chirality-Induced Coordination Assemblies,” Chemical Science 13 (2022): 13922.

[15]

H. Zhao, Q. Wang, Z. Wen, et al., “Excitation Wavelength-Dependent Fluorescence of a Lanthanide Organic Metal Halide Cluster for Anti-Counterfeiting Applications,” Angewandte Chemie International Edition 62 (2023): e202316336.

[16]

D. Y. Liu, H. Y. Li, R. P. Han, H. L. Liu, and S. Q. Zang, “Multiple Stimuli-Responsive Luminescent Chiral Hybrid Antimony Chlorides for Anti-Counterfeiting and Encryption Applications,” Angewandte Chemie International Edition 62 (2023): e202307875.

[17]

L. Ding and X. D. Wang, “Luminescent Oxygen-Sensitive Ink to Produce Highly Secured Anticounterfeiting Labels by Inkjet Printing,” Journal of the American Chemical Society 142 (2020): 13558.

[18]

J. Wei, C. Y. Liu, J. Y. Duan, et al., “Conformation-Dependent Dynamic Organic Phosphorescence Through Thermal Energy Driven Molecular Rotations,” Nature Communications 14 (2023): 627.

[19]

D. Liu, K. Weng, S. Lu, et al., “Direct Optical Patterning of Perovskite Nanocrystals With Ligand Cross-linkers,” Science Advances 8 (2022): eabm8433.

[20]

Y. Wang, I. Fedin, H. Zhang, and D. V. Talapin, “Direct Optical Lithography of Functional Inorganic Nanomaterials,” Science 357 (2017): 385.

[21]

X. W. Yu, H. Y. Zhang, and J. H. Yu, “Luminescence Anti-Counterfeiting: From Elementary to Advanced,” Aggregate 2 (2021): 20.

[22]

H. Ko, D. G. Kang, Y. J. Choi, et al., “Polarization-Dependent Thin Films With Biaxial Anisotropic Absorption Constructed by a Single Coating and Subsequent Topochemical Polymerization of Chromophores,” Journal of the American Chemical Society 146 (2024): 4393.

[23]

M. Cao, Y. Ren, Y. Wu, et al., “Biobased and Biodegradable Films Exhibiting Circularly Polarized Room Temperature Phosphorescence,” Nature Communications 15 (2024): 2375.

[24]

X. Chen, X. F. Hou, X. M. Chen, and Q. Li, “An Ultrawide-Range Photochromic Molecular Fluorescence Emitter,” Nature Communications 15 (2024): 5401.

[25]

S. M. Park, G. Park, and D. K. Yoon, “Paintable Physical Unclonable Functions Using DNA,” Advanced Materials 35 (2023): e2302135.

[26]

P. Martinez, I. Papagiannouli, D. Descamps, et al., “Laser Generation of Sub-Micrometer Wrinkles in a Chalcogenide Glass Film as Physical Unclonable Functions,” Advanced Materials 32 (2020): e2003032.

[27]

J. Zhang, Y. Liu, C. Njel, S. Ronneberger, N. V. Tarakina, and F. F. Loeffler, “An All-in-One Nanoprinting Approach for the Synthesis of a Nanofilm Library for Unclonable Anti-Counterfeiting Applications,” Nature Nanotechnology 18 (2023): 1027.

[28]

J. Yang, M. Feng, J. Wang, et al., “Bionic Micro-Texture Duplication and RE3+ Space-Selective Doping of Unclonable Silica Nanocomposites for Multilevel Encryption and Intelligent Authentication,” Advanced Materials 35 (2023): e2306003.

[29]

J. Zhang, R. Tan, Y. Liu, et al., “Printed Smart Devices for Anti-Counterfeiting Allowing Precise Identification With Household Equipment,” Nature Communications 15 (2024): 1040.

[30]

N. Sun, Z. Chen, Y. Wang, S. Wang, Y. Xie, and Q. Liu, “Random Fractal-Enabled Physical Unclonable Functions With Dynamic AI Authentication,” Nature Communications 14 (2023): 2185.

[31]

T. Zhang, L. Wang, J. Wang, et al., “Multimodal Dynamic and Unclonable Anti-Counterfeiting Using Robust Diamond Microparticles on Heterogeneous Substrate,” Nature Communications 14 (2023): 2507.

[32]

P. Chen, D. Li, Z. Li, et al., “Programmable Physical Unclonable Functions Using Randomly Anisotropic Two-Dimensional Flakes,” ACS Nano 17 (2023): 23989.

[33]

Y. Han, S. Lee, E. K. Lee, H. Yoo, and B. C. Jang, “Strengthening Multi-Factor Authentication Through Physically Unclonable Functions in PVDF-HFP-Phase-Dependent a-IGZO Thin-Film Transistors,” Advanced Science 11 (2024): 2309221.

[34]

A. Scholz, L. Zimmermann, U. Gengenbach, et al., “Hybrid Low-Voltage Physical Unclonable Function Based on Inkjet-Printed Metal-Oxide Transistors,” Nature Communications 11 (2020): 5543.

[35]

Y. S. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical Unclonable Functions,” Nature Electronics 3 (2020): 81.

[36]

S. Nocentini, U. Ruhrmair, M. Barni, D. S. Wiersma, and F. Riboli, “All-Optical Multilevel Physical Unclonable Functions,” Nature Materials 23 (2024): 369.

[37]

J. Huang, X. Jin, X. Yang, T. Zhao, H. Xie, and P. Duan, “Near-Infrared Circularly Polarized Luminescent Physical Unclonable Functions,” ACS Nano 18 (2024): 15888.

[38]

K. Wang, J. Shi, W. Lai, et al., “All-Silicon Multidimensionally-Encoded Optical Physical Unclonable Functions for Integrated Circuit Anti-Counterfeiting,” Nature Communications 15 (2024): 3203.

[39]

H. Im, J. Yoon, B. So, et al., “Four-Dimensional Physical Unclonable Functions and Cryptographic Applications Based on Time-Varying Chaotic Phosphorescent Patterns,” ACS Nano 18 (2024): 11703.

[40]

L. Ludvikova, E. Simon, M. Deygas, et al., “Near-Infrared Co-Illumination of Fluorescent Proteins Reduces Photobleaching and Phototoxicity,” Nature Biotechnology 42 (2024): 872.

[41]

Q. Yang, Y. X. Wu, J. D. Chen, et al., “Plasmonic Nanomaterial-Enhanced Fluorescence and Raman Sensors: Multifunctional Platforms and Applications,” Coordination Chemistry Reviews 507 (2024): 215768.

[42]

W. Feng, L. D. Sun, and C. H. Yan, “Ag Nanowires Enhanced Upconversion Emission of NaYF4:Yb,Er Nanocrystals via a Direct Assembly Method,” Chemical Communications 29 (2009): 4393.

[43]

J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, et al., “Present and Future of Surface-Enhanced Raman Scattering,” ACS Nano 14 (2020): 28.

[44]

Y. Liu, K. K. Chui, Y. N. Fang, S. Z. Wen, X. L. Zhuo, and J. F. Wang, “Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds Into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection,” ACS Nano 18 (2024): 11234.

[45]

X. Wang, S. C. Huang, S. Hu, S. Yan, and B. Ren, “Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy,” Nature Reviews Physics 2 (2020): 253.

[46]

R. Liu, M. Geng, J. Ai, et al., “Deterministic Positioning and Alignment of a Single-Molecule Exciton in Plasmonic Nanodimer for Strong Coupling,” Nature Communications 15 (2024): 4103.

[47]

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. G. de Abajo, “Optimization of Nanoparticle-Based SERS Substrates Through Large-Scale Realistic Simulations,” ACS Photonics 4 (2017): 329.

[48]

Y. Gu, C. He, Y. Zhang, L. Lin, B. D. Thackray, and J. Ye, “Gap-Enhanced Raman Tags for Physically Unclonable Anticounterfeiting Labels,” Nature Communications 11 (2020): 516.

[49]

W. Ding, Y. Xia, H. Song, T. Li, D. Yang, and A. Dong, “Macroscopic Superlattice Membranes Self-Assembled From Gold Nanobipyramids With Precisely Tunable Tip Arrangements for SERS,” Angewandte Chemie International Edition 63 (2024): e202401945.

[50]

S. Lim, Y. Cho, J. H. Kang, et al., “Metallosupramolecular Multiblock Copolymers of Lanthanide Complexes by Seeded Living Polymerization,” Journal of the American Chemical Society 146 (2024): 18484.

[51]

D. Q. Yang, H. M. Li, and H. R. Li, “Recent Advances in the Luminescent Polymers Containing Lanthanide Complexes,” Coordination Chemistry Reviews 514 (2024): 215875.

[52]

A. Ruiz-Arias, F. Fueyo-Gonzalez, C. Izquierdo-Garcia, et al., “Exchangeable Self-Assembled Lanthanide Antennas for PLIM Microscopy,” Angewandte Chemie International Edition 63 (2024): e202314595.

[53]

X. Yu, A. A. Ryadun, D. I. Pavlov, T. Y. Guselnikova, A. S. Potapov, and V. P. Fedin, “Highly Luminescent Lanthanide Metal-Organic Frameworks With Tunable Color for Nanomolar Detection of Iron(III), Ofloxacin and Gossypol and Anti-Counterfeiting Applications,” Angewandte Chemie International Edition 62 (2023): e202306680.

[54]

J. I. Deneff, K. S. Butler, L. E. S. Rohwer, et al., “Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags,” Angewandte Chemie International Edition 60 (2021): 1203.

[55]

J. I. Deneff, L. E. S. Rohwer, K. S. Butler, et al., “Orthogonal Luminescence Lifetime Encoding by Intermetallic Energy Transfer in Heterometallic Rare-Earth MOFs,” Nature Communications 14 (2023): 981.

[56]

S. A. Maier, P. G. Kik, H. A. Atwater, et al., “Local Detection of Electromagnetic Energy Transport Below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides,” Nature Materials 2 (2003): 229.

[57]

J. Grunes, J. Zhu, E. A. Anderson, and G. A. Somorjai, “Ethylene Hydrogenation Over Platinum Nanoparticle Array Model Catalysts Fabricated by Electron Beam Lithography: Determination of Active Metal Surface Area,” Journal of Physical Chemistry B 106 (2002): 11463.

[58]

M. Zayats, A. B. Kharitonov, S. P. Pogorelova, O. Lioubashevski, E. Katz, and I. Willner, “Probing Photoelectrochemical Processes in Au-CdS Nanoparticle Arrays by Surface Plasmon Resonance: Application for the Detection of Acetylcholine Esterase Inhibitors,” Journal of the American Chemical Society 125 (2003): 16006.

[59]

B. A. Grzybowski, A. Winkleman, J. A. Wiles, Y. Brumer, and G. M. Whitesides, “Electrostatic Self-Assembly of Macroscopic Crystals Using Contact Electrification,” Nature Materials 2 (2003): 241.

[60]

M. E. Leunissen, C. G. Christova, A. P. Hynninen, et al., “Ionic Colloidal Crystals of Oppositely Charged Particles,” Nature 437 (2005): 235.

[61]

E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, and C. B. Murray, “Structural Diversity in Binary Nanoparticle Superlattices,” Nature 439 (2006): 55.

[62]

A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. Bishop, and B. A. Grzybowski, “Electrostatic Self-Assembly of Binary Nanoparticle Crystals With a Diamond-Like Lattice,” Science 312 (2006): 420.

[63]

T. Bian, A. Gardin, J. Gemen, et al., “Electrostatic Co-Assembly of Nanoparticles With Oppositely Charged Small Molecules Into Static and Dynamic Superstructures,” Nature Chemistry 13 (2021): 940.

[64]

J. Wang, T. S. Peled, and R. Klajn, “Photocleavable Anionic Glues for Light-Responsive Nanoparticle Aggregates,” Journal of the American Chemical Society 145 (2023): 4098.

[65]

Q. A. Zhang, W. Y. Li, C. Moran, et al., “Seed-Mediated Synthesis of Ag Nanocubes With Controllable Edge Lengths in the Range of 30-200 nm and Comparison of Their Optical Properties,” Journal of the American Chemical Society 132 (2010): 11372.

[66]

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. N. Xia, “Maneuvering the Surface Plasmon Resonance of Silver Nanostructures Through Shape-Controlled Synthesis,” Journal of Physical Chemistry B 110 (2006): 15666.

[67]

B. H. Wu, H. Y. Yang, H. Q. Huang, G. X. Chen, and N. F. Zheng, “Solvent Effect on the Synthesis of Monodisperse Amine-Capped Au Nanoparticles,” Chinese Chemical Letters 24 (2013): 457.

[68]

J. He, X. Huang, Y. C. Li, et al., “Self-Assembly of Amphiphilic Plasmonic Micelle-Like Nanoparticles in Selective Solvents,” Journal of the American Chemical Society 135 (2013): 7974.

[69]

S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” Journal of Physical Chemistry B 103 (1999): 8410.

[70]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum Plasmon Resonances of Individual Metallic Nanoparticles,” Nature 483 (2012): 421.

[71]

K. Binnemans, “Lanthanide-Based Luminescent Hybrid Materials,” Chemical Reviews 109 (2009): 4283.

[72]

S. Chen, Z. L. Yang, L. Y. Meng, J. F. Li, C. T. Williams, and Z. Q. Tian, “Electromagnetic Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Scattering From Gold Flat Surfaces,” Journal of Physical Chemistry C 119 (2015): 5246.

[73]

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate,” Angewandte Chemie International Edition 46 (2007): 9040.

[74]

C. Y. Li, M. Meng, S. C. Huang, et al., ““Smart” Ag Nanostructures for Plasmon-Enhanced Spectroscopies,” Journal of the American Chemical Society 137 (2015): 13784.

[75]

P. R. Su, T. Wang, P. P. Zhou, et al., “Self-Assembly-Induced Luminescence of Eu3+-Complexes and Application in Bioimaging,” National Science Review 9 (2022): nwab016.

[76]

X. Q. Guo, L. P. Zhou, S. J. Hu, L. X. Cai, P. M. Cheng, and Q. F. Sun, “Hexameric Lanthanide-Organic Capsules With Tertiary Structure and Emergent Functions,” Journal of the American Chemical Society 143 (2021): 6202.

[77]

X. X. Han, R. S. Rodriguez, C. L. Haynes, Y. Ozaki, and B. Zhao, “Surface-Enhanced Raman Spectroscopy,” Nature Reviews Methods Primers 1 (2022): 87.

[78]

X. Gao, H. Wang, H. Dong, J. Shao, Y. Shao, and L. Zhang, “Tunable Key-Size Physical Unclonable Functions Based on Phase Segregation in Mixed Halide Perovskites,” ACS Applied Materials & Interfaces 15 (2023): 23429.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/