Voltage-Induced Hysteretic Resistance in Nematic Order of SmFeAsO

Zhiyue Li , Wanshun Du , Lingzhe Liao , Ziqing Sun , Zhuorui Zhang , Tianyue Wen , Zhekai Zhang , Wei Tao , Tingyong Chen

Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70098

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70098 DOI: 10.1002/agt2.70098
RESEARCH ARTICLE

Voltage-Induced Hysteretic Resistance in Nematic Order of SmFeAsO

Author information +
History +
PDF

Abstract

Point-contact spectroscopy has been utilized to study SmFeAsO, the parent compound of the “1111” iron superconductors. A bias voltage drives the point contact through antiferromagnetic and structural transitions via the ballistic Joule heating effect. Surprisingly, the bias voltage also induces a hysteretic conductance only in the temperature range of the nematic order, while there is no such behavior in the temperature-dependent resistance. The larger the maximum bias voltage, the bigger the conductance changes in the hysteresis, but always exclusively in the nematic order regime. The voltage-driven conductance hysteresis, which is not affected by a magnetic field of 5 T, suggests the nematic order in the SmFeAsO sample may be from an electronic origin and can be controlled by a voltage.

Keywords

nematic order / point-contact spectroscopy / SmFeAsO

Cite this article

Download citation ▾
Zhiyue Li, Wanshun Du, Lingzhe Liao, Ziqing Sun, Zhuorui Zhang, Tianyue Wen, Zhekai Zhang, Wei Tao, Tingyong Chen. Voltage-Induced Hysteretic Resistance in Nematic Order of SmFeAsO. Aggregate, 2025, 6(9): e70098 DOI:10.1002/agt2.70098

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Tinkham, Introduction to Superconductivity. 2nd ed. (McGraw-Hill, Inc., 1996).

[2]

J. R. Kirtley, C. C. Tsuei, J. Z. Sun, et al., “Symmetry of the Order Parameter in the High-Tc Superconductor YBa2Cu3O7,” Nature 373 (1995): 225-228.

[3]

Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered Superconductor LaO1−xFxFeAs (x = 0.05−0.12) With Tc = 26 K,” Journal of the American Chemical Society 130 (2008): 3296-3297.

[4]

I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, “Unconventional Superconductivity With a Sign Reversal in the Order Parameter of LaFeAsO1−xFx,” Physical Review Letter 101 (2008): 057003.

[5]

K. Kuroki, H. Usui, S. Onari, R. Arita, and H. Aoki, “Pnictogen Height as a Possible Switch Between High-Tc Nodeless and Low-Tc Nodal Pairings in the Iron-Based Superconductors,” Physical Review B 79 (2009): 224511.

[6]

P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, “Gap Symmetry and Structure of Fe-Based Superconductors,” Reports on Progress in Physics 74 (2011): 124508.

[7]

A. V. Chubukov, “Pairing Mechanism in Fe-Based Superconductors,” Annual Review of Condensed Matter Physics 3 (2012): 57-92.

[8]

F. Wang and D. Lee, “The Electron-Pairing Mechanism of Iron-Based Superconductors,” Science 332 (2011): 200-204.

[9]

S. Hosoi, K. Matsuura, K. Ishida, et al., “Nematic Quantum Critical Point Without Magnetism in FeSe1−xSx Superconductors,” Proceedings of the National Academy of Sciences of the United States of America 113 (2016): 8139-8143.

[10]

P. Malinowski, Q. Jiang, J. J. Sanchez, et al., “Suppression of Superconductivity by Anisotropic Strain Near a Nematic Quantum Critical Point,” Nature Physics 16 (2020): 1189-1193.

[11]

R. M. Fernandes, A. I. Coldea, H. Ding, I. R. Fisher, P. J. Hirschfeld, and G. Kotliar, “Iron Pnictides and Chalcogenides: A New Paradigm for Superconductivity,” Nature 601 (2022): 35-44.

[12]

J. H. Chu, H. H. Kuo, J. G. Analytis, and I. R. Fisher, “Divergent Nematic Susceptibility in an Iron Arsenide Superconductor,” Science 337 (2012): 710-712.

[13]

H. H. Kuo, J. H. Chu, J. C. Palmstrom, S. A. Kivelson, and I. R. Fisher, “Ubiquitous Signatures of Nematic Quantum Criticality in Optimally Doped Fe-Based Superconductors,” Science 352 (2016): 958-962.

[14]

J. Sourd, S. Tencé, E. Gaudin, and S. Burdin, “Nonlocal Kondo Coupling and Selective Doping From Cerium f Electrons in Iron-based Superconductors,” Physical Review B 109 (2024): 045117.

[15]

T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, “A BCS-Like Gap in the Superconductor SmFeAsO0.85F0.15,” Nature 453 (2008): 1224-1227.

[16]

M. Yi, Y. Zhang, Z. Shen, and D. Lu, “Role of the Orbital Degree of Freedom in Iron-Based Superconductors,” NPJ Quantum Materials 2 (2017): 57.

[17]

X. Lu, J. T. Park, R. Zhang, et al., “Nematic Spin Correlations in the Tetragonal state of Uniaxial-Strained BaFe2−xNixAs2,” Science 345 (2014): 657-660.

[18]

A. Böhmer, P. Burger, F. Hardy, et al., “Nematic Susceptibility of Hole-Doped and Electron-Doped BaFe2As2 Iron-Based Superconductors From Shear Modulus Measurements,” Physical Review Letter 112 (2014): 047001.

[19]

J. Chu, J. G. Analytis, K. De Greve, et al., “In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor,” Science 329 (2010): 824-826.

[20]

C. Mirri, A. Dusza, S. Bastelberger, et al., “Origin of the Resistive Anisotropy in the Electronic Nematic Phase of BaFe2As2 Revealed by Optical Spectroscopy,” Physical Review Letter 115 (2015): 107001.

[21]

T. Chuang, M. P. Allan, J. Lee, et al., “Nematic Electronic Structure in the “Parent” State of the Iron-Based Superconductor Ca(Fe1−xCox)2As2,” Science 327 (2010): 181-184.

[22]

J. Ansari and K. Sauer, “Spin-3/2 Nuclear Magnetic Resonance: Exact Analytical Solutions for Aligned Systems and Implications for Probing Fe-Based Superconductors,” Physical Review B 110 (2024): 214422.

[23]

M. Miura, S. Eley, K. Iida, et al., “Quadrupling the Depairing Current Density in the Iron-Based Superconductor SmFeAsO1-xHx,” Nature Materials 23 (2024): 1370-1378.

[24]

M. Ma, P. Bourges, Y. Sidis, et al., “Low-Energy Spin Excitations in the Optimally Doped CaFe0.88Co0.12AsF Superconductor Studied With Inelastic Neutron Scattering,” Physical Review B 107 (2023): 184516.

[25]

Q. Si, R. Yu, and E. Abrahams, “High-Temperature Superconductivity in Iron Pnictides and Chalcogenides,” Nature Reviews Materials 1 (2016): 16017.

[26]

G. R. Stewart, “Superconductivity in Iron Compounds,” Review of Modern Physics 83 (2011): 1589-1652.

[27]

P. C. Dai, “Antiferromagnetic Order and Spin Dynamics in Iron-Based Superconductors,” Review of Modern Physics 87 (2015): 855-896.

[28]

K. Ishida, Y. Nakai, and H. Hosono, “To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report,” Journal of the Physical Society of Japan 78 (2009): 062001.

[29]

D. C. Johnston, “The Puzzle of High Temperature Superconductivity in Layered Iron Pnictides and Chalcogenides,” Advances in Physics 59 (2010): 803-1061.

[30]

J. Paglione and R. L. Greene, “High-Temperature Superconductivity in Iron-Based Materials,” Nature Physics 6 (2010): 645-658.

[31]

H. H. Wen and S. Li, “Materials and Novel Superconductivity in Iron Pnictide Superconductors,” Annual Review of Condensed Matter Physics 2 (2011): 121-140.

[32]

R. M. Fernandes, A. V. Chubukov, and J. Schmalian, “What Drives Nematic Order in Iron-Based Superconductors?,” Nature Physics 10 (2014): 97-104.

[33]

E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, “Nematic Fermi Fluids in Condensed Matter Physics,” Annual Review of Condensed Matter Physics 1 (2010): 153-178.

[34]

E. Fradkin, S. A. Kivelson, and J. M. Tranquada, “Colloquium: Theory of Intertwined Orders in High Temperature Superconductors,” Review of Modern Physics 87 (2015): 457-482.

[35]

C. Fang, H. Yao, W. Tsai, J. Hu, and S. A. Kivelson, “Theory of Electron Nematic Order in LaFeAsO,” Physical Review B 77 (2008): 224509.

[36]

C. Xu, M. Müller, and S. Sachdev, “Ising and Spin Orders in the Iron-Based Superconductors,” Physical Review B 78 (2008): 020501(R).

[37]

S. Nandi, M. G. Kim, A. Kreyssig, et al., “Anomalous Suppression of the Orthorhombic Lattice Distortion in Superconducting Ba(Fe1−xCox)2as2 Single Crystals,” Physical Review Letter 104 (2010): 057006.

[38]

A. Dusza, A. Lucarelli, F. Pfuner, J. Chu, I. R. Fisher, and L. Degiorgi, “Anisotropic Charge Dynamics in Detwinned Ba(Fe1−xCox)2As2,” Europhysics Letters 93 (2011): 37002.

[39]

M. Nakajima, T. Liang, S. Ishida, et al., “Unprecedented Anisotropic Metallic state in Undoped Iron Arsenide BaFe2As2 Revealed by Optical Spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 12238-12242.

[40]

A. Patz, T. Li, S. Ran, et al., “Ultrafast Observation of Critical Nematic Fluctuations and Giant Magnetoelastic Coupling in Iron Pnictides,” Nature Communications 5 (2014): 3229.

[41]

S. Jiang, H. S. Jeevan, J. Dong, and P. Gegenwart, “Thermopower as a Sensitive Probe of Electronic Nematicity in Iron Pnictides,” Physical Review Letter 110 (2013): 067001.

[42]

S. Kasahara, H. J. Shi, K. Hashimoto, et al., “Electronic Nematicity Above the Structural and Superconducting Transition in BaFe2(As1−xPx)2,” Nature 486 (2012): 382-385.

[43]

X. Xu, W. H. Jiao, N. Zhou, et al., “Electronic Nematicity Revealed by Torque Magnetometry in EuFe2(As1−xPx)2,” Physical Review B 89 (2014): 104517.

[44]

H. Li, W. Tian, J. Yan, et al., “Phase Transitions and Iron-Ordered Moment Form Factor in LaFeAsO,” Physical Review B 82 (2010): 064409.

[45]

Q. Zhang, W. Wang, J. Kim, et al., “Magnetoelastic Coupling and Charge Correlation Lengths in a Twin Domain of Ba(Fe1−xCox)2As2 (x = 0.047): A High-Resolution X-Ray Diffraction Study,” Physical Review B 87 (2013): 094510.

[46]

Y. K. Kim, W. S. Jung, G. R. Han, et al., “Existence of Orbital Order and Its Fluctuation in Superconducting Ba(Fe1−xCox)2As2 Single Crystals Revealed by X-Ray Absorption Spectroscopy,” Physical Review Letter 111 (2014): 217001.

[47]

Q. Zhang, R. M. Fernandes, J. Lamsal, et al., “Neutron-Scattering Measurements of Spin Excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a Sharp Enhancement of Spin Fluctuations by Nematic Order,” Physical Review Letter 114 (2015): 057001.

[48]

M. Yi, D. Lu, J. H. Chu, et al., “Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1−xCox)2As2 Above the Spin Density Wave Transition,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 6878-6883.

[49]

Y. Zhang, C. He, Z. R. Ye, et al., “Symmetry Breaking via Orbital-Dependent Reconstruction of Electronic Structure in Detwinned NaFeAs,” Physical Review B 85 (2012): 085121.

[50]

M. Yi, D. H. Lu, R. G. Moore, et al., “Electronic Reconstruction Through the Structural and Magnetic Transitions in Detwinned NaFeAs,” New Journal of Physics 14 (2012): 073019.

[51]

T. Shimojima, T. Sonobe, W. Malaeb, et al., “Pseudogap Formation Above the Superconducting Dome in Iron Pnictides,” Physical Review B 89 (2014): 045101.

[52]

E. P. Rosenthal, E. F. Andrade, C. J. Arguello, et al., “Visualization of Electron Nematicity and Unidirectional Antiferroic Fluctuations at High Temperatures in NaFeAs,” Nature Physics 10 (2014): 225-232.

[53]

Y. Gallais, R. M. Fernandes, I. Paul, et al., “Observation of Incipient Charge Nematicity in Ba(Fe1−XCoX)2As2,” Physical Review Letter 111 (2013): 267001.

[54]

L. Ma, G. F. Chen, D. Yao, et al., “23Na and 75as NMR Study of Antiferromagnetism and Spin Fluctuations in NaFeAs Single Crystals,” Physical Review B 83 (2011): 132501.

[55]

M. Fu, D. A. Torchetti, T. Imai, F. L. Ning, J. Yan, and A. S. Sefat, “NMR Search for the Spin Nematic State in a LaFeAsO Single Crystal,” Physical Review Letter 109 (2012): 247001.

[56]

Y. Song, L. Regnault, C. Zhang, et al., “In-Plane Spin Excitation Anisotropy in the Paramagnetic state of NaFeAs,” Physical Review B 88 (2013): 134512.

[57]

H. Luo, M. Wang, C. Zhang, et al., “Spin Excitation Anisotropy as a Probe of Orbital Ordering in the Paramagnetic Tetragonal Phase of Superconducting BaFe1.904Ni0.096As2,” Physical Review Letter 111 (2013): 107006.

[58]

A. Dioguardi, T. Kissikov, C. Lin, et al., “NMR Evidence for Inhomogeneous Nematic Fluctuations in BaFe2(As1−xPx)2,” Physical Review Letter 116 (2016): 107202.

[59]

M. Tanatar, A. Böhmer, E. Timmons, et al., “Origin of the Resistivity Anisotropy in the Nematic Phase of FeSe,” Physical Review Letter 117 (2016): 127001.

[60]

Q. Zhang, W. Tian, S. G. Peterson, K. W. Dennis, and D. Vaknin, “Spin Reorientation and Ce-Mn Coupling in Antiferromagnetic Oxypnictide CeMnAsO,” Physical Review B 91 (2015): 064418.

[61]

Y. Song, H. Man, R. Zhang, et al., “Spin Anisotropy Due to Spin-Orbit Coupling in Optimally Hole-Doped Ba0.67K0.33Fe2As2,” Physical Review B 94 (2016): 214516.

[62]

T. Kissikov, A. P. Dioguardi, E. I. Timmons, et al., “NMR Study of Nematic Spin Fluctuations in a Detwinned Single Crystal of Underdoped Ba(Fe1−xCox)2As2,” Physical Review B 94 (2016): 165123.

[63]

G. Lang, L. Veyrat, U. Gräfe, et al., “Spatial Competition of the Ground States in 1111 Iron Pnictides,” Physical Review B 94 (2016): 014514.

[64]

L. Holleis, C. L. Patterson, Y. Zhang, et al., “Nematicity and Orbital Depairing in Superconducting Bernal Bilayer Graphene,” Nature Physics 21 (2025): 444-450.

[65]

K. Hwangbo, E. Rosenberg, J. Cenker, et al., “Strain Tuning of Vestigial Three-State Potts Nematicity in a Correlated Antiferromagnet,” Nature Physics 20 (2024): 1888-1895.

[66]

P. Mellado and M. Sturla, “Quantum Fluctuations in the van der Waals Material NiPS3,” Physical Review B 110 (2024): 134438.

[67]

J. Sheng, J. W. Mei, L. Wang, et al., “Bose-Einstein Condensation of a Two-Magnon Bound State in a Spin-1 Triangular Lattice,” Nature Materials 24 (2025): 551-554.

[68]

P. K. Nag, K. Scott, V. S. de Carvalho, et al., “Highly Anisotropic Superconducting Gap Near the Nematic Quantum Critical Point of FeSe1−xSx,” Nature Physics 21 (2025): 89-96.

[69]

T. Asaba, A. Onishi, Y. Kageyama, et al., “Evidence for an Odd-Parity Nematic Phase Above the Charge-Density-Wave Transition in a Kagome Metal,” Nature Physics 20 (2024): 40-46.

[70]

P. Nikolić, “Topological Order in Spin Nematics From the Quantum Melting of a Disclination Lattice,” Physical Review B 111 (2025): 035114.

[71]

R. Liu, W. Zhang, Y. Wei, et al., “Nematic Spin Correlations Pervading the Phase Diagram of FeSe1−xSx,” Physical Review Letters 132 (2024): 016501.

[72]

J. N. Ansari, K. L. Sauer, and I. I. Mazin, “Slow Tail of Nematic Spin Fluctuations in Ba(Fe1−xCox)2As2: Insight From Nuclear Magnetic Resonance,” Physical Review B 108 (2023): 064516.

[73]

Y. G. Naidyuk and I. K. Yanson, “Point-Contact Spectroscopy of Heavy-Fermion Systems,” Journal of Physics-Condensed Matter 10 (1998): 8905.

[74]

T. Y. Chen, Y. Ji, C. L. Chien, and M. D. Stiles, “Current-Driven Switching in a Single Exchange-Biased Ferromagnetic Layer,” Physical Review Letter 93 (2004): 026601.

[75]

J. A. Gifford, G. J. Zhao, B. C. Li, J. Zhang, D. R. Kim, and T. Y. Chen, “Zero Bias Anomaly in Andreev Reflection Spectroscopy,” Journal of Applied Physics 120 (2016): 163901.

[76]

T. Y. Chen, S. X. Huang, and C. L. Chien, “Pronounced Effects of Additional Resistance in Andreev Reflection Spectroscopy,” Physical Review B 81 (2010): 214444.

[77]

D. Daghero, M. Tortello, G. A. Ummarino, and R. S. Gonnelli, “Directional Point-Contact Andreev-Reflection Spectroscopy of Fe-Based Superconductors: Fermi Surface Topology, Gap Symmetry, and Electron-Boson Interaction,” Reports on Progress in Physics 74 (2011): 124509.

[78]

H. Z. Arham, C. R. Hunt, W. K. Park, et al., “Detection of Orbital Fluctuations Above the Structural Transition Temperature in the Iron Pnictides and Chalcogenides,” Physical Review B 85 (2012): 214515.

[79]

T. Y. Chen, C. L. Chien, M. Manno, L. Wang, and C. Leighton, “Ballistic Heat Transport in Nanocontacts,” Physical Review B: Rapid Communications 81 (2010): 020301.

[80]

M. Tsoi, A. G. M. Jansen, J. Bass, W. Chiang, V. Tsoi, and P. Wyder, “Generation and Detection of Phase-Coherent Current-Driven Magnons in Magnetic Multilayers,” Nature 406 (2000): 46-48.

[81]

C. de la Cruz, Q. Huang, J. W. Lynn, et al., “Magnetic Order Close to Superconductivity in the Iron-Based Layered LaO1−xFX FeAs Systems,” Nature 453 (2008): 899-902.

[82]

J. J. Wu, J. Lin, X. C. Wang, et al., “Pressure-Decoupled Magnetic and Structural Transitions of the Parent Compound of Iron-Based 122 Superconductors BaFe2As2,” Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 17263-17266.

[83]

K. Nakayama, Y. Miyata, G. N. Phan, et al., “Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor,” Physical Review Letter 113 (2014): 237001.

[84]

J. Chu, J. G. Analytis, D. Press, et al., “In-Plane Electronic Anisotropy in Underdoped Ba(Fe1−xCox)2As2 Revealed by Partial Detwinning in a Magnetic Field,” Physical Review B 81 (2010): 214502.

[85]

R. Liu, J. Li, K. Liu, and N. Martyushev, “Distinct Impacts of Metal and Non-Metal Doping on Equilibrium and Nonequilibrium Electronic Transport of New-Type 2D Iodine-Based Devices,” Materials Today Chemistry 43 (2025): 102522.

[86]

K. Liu, Y. Li, Q. Liu, et al., “Superior Electron Transport of Ultra-Thin SiC Nanowires With One Impending Tensile Monatomic Chain,” Vacuum 199 (2022): 110950.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/