Voltage-Induced Hysteretic Resistance in Nematic Order of SmFeAsO
Zhiyue Li , Wanshun Du , Lingzhe Liao , Ziqing Sun , Zhuorui Zhang , Tianyue Wen , Zhekai Zhang , Wei Tao , Tingyong Chen
Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70098
Voltage-Induced Hysteretic Resistance in Nematic Order of SmFeAsO
Point-contact spectroscopy has been utilized to study SmFeAsO, the parent compound of the “1111” iron superconductors. A bias voltage drives the point contact through antiferromagnetic and structural transitions via the ballistic Joule heating effect. Surprisingly, the bias voltage also induces a hysteretic conductance only in the temperature range of the nematic order, while there is no such behavior in the temperature-dependent resistance. The larger the maximum bias voltage, the bigger the conductance changes in the hysteresis, but always exclusively in the nematic order regime. The voltage-driven conductance hysteresis, which is not affected by a magnetic field of 5 T, suggests the nematic order in the SmFeAsO sample may be from an electronic origin and can be controlled by a voltage.
nematic order / point-contact spectroscopy / SmFeAsO
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |