Interfacial Coordination Induced Crystalline Metallacyclic Membrane for High-Performance Enantioseparation

Run-Hao Li , Yumei Wang , Yi Liu , Yue Sun

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70095

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70095 DOI: 10.1002/agt2.70095
RESEARCH ARTICLE

Interfacial Coordination Induced Crystalline Metallacyclic Membrane for High-Performance Enantioseparation

Author information +
History +
PDF

Abstract

Membranes offer an attractive route to efficient enantioseparation, especially compared with energy-intensive techniques like chromatography. However, tuning membrane structure and porosity to separate chiral molecules remains challenging. Here, we present a process for producing intrinsically chiral, ordered discrete metallacycycle 1 membranes on polyacrylonitrile supports through interfacial coordination-driven self-assembly using organic precursor 2 and metallic precursor 3. These chiral membranes, with their orientated architecture, exhibit ultra-high enantioselectivity (up to 100%) and permeation efficiency for racemic 1-phenylethanol, 1-phenylethylamine, and 2-phenylglycinol. Thermodynamic data and molecular simulations revealed the retarded transport mechanism of the membrane, resulting in highly efficient enantioseparation. Notably, when integrated into a circuit-controlled 3D-printed module, the aligned metallacyclic membrane retained its enantioselectivity for high-value pharmaceutical racemic salbutamol. This approach provides a feasible strategy for creating supramolecular metallacyclic channels in chiral membranes, demonstrating the potential for accurate enantioseparations.

Keywords

enantioseparation / membrane / metallacycle / supramolecular coordination complex

Cite this article

Download citation ▾
Run-Hao Li, Yumei Wang, Yi Liu, Yue Sun. Interfacial Coordination Induced Crystalline Metallacyclic Membrane for High-Performance Enantioseparation. Aggregate, 2025, 6(8): e70095 DOI:10.1002/agt2.70095

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Peluso and B. Chankvetadze, “Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers,” Chemical Reviews 122 (2022): 13235-13400.

[2]

K. Banerjee-Ghosh, O. Ben Dor, F. Tassinari, et al., “Separation of Enantiomers by Their Enantiospecific Interaction with Achiral Magnetic Substrates,” Science 360 (2018): 1331-1334.

[3]

G. Pacchioni, “A Chiral Supramolecular MOF for Enantiomer Separation,” Nature Reviews Materials 8 (2023): 363.

[4]

J. E. Carpenter and M. Grünwald, “Heterogeneous Interactions Promote Crystallization and Spontaneous Resolution of Chiral Molecules,” Journal of the American Chemical Society 142 (2020): 10755-10768.

[5]

F. Zhou, O. Shemchuk, M. D. Charpentier, et al., “Simultaneous Chiral Resolution of Two Racemic Compounds by Preferential Cocrystallization**,” Angewandte Chemie International Edition 60 (2021): 20264-20268.

[6]

C. Yuan, Z. Wang, W. Xiong, et al., “Cyclodextrin Incorporation Into Covalent Organic Frameworks Enables Extensive Liquid and Gas Chromatographic Enantioseparations,” Journal of the American Chemical Society 145 (2023): 18956-18967.

[7]

T. Ikai, M. Ito, K. Oki, N. Suzuki, and E. Yashima, “One-Handed Helical Polyacetylenes Bearing Axially-Chiral 2-Arylpyridyl- N -Oxide Units for Efficient Chromatographic Enantioseparation of Chiral Aromatic and Aliphatic Alcohols,” Angewandte Chemie International Edition 62 (2023): e202306252.

[8]

J. Sui, N. Wang, J. Wang, et al., “Strategies for Chiral Separation: From Racemate to Enantiomer,” Chemical Science 14 (2023): 11955-12003.

[9]

T. Huang, Z. Su, K. Hou, et al., “Advanced Stimuli-Responsive Membranes for Smart Separation,” Chemical Society Reviews 52 (2023): 4173-4207.

[10]

A. Knebel and J. Caro, “Metal-Organic Frameworks and Covalent Organic Frameworks as Disruptive Membrane Materials for Energy-Efficient Gas Separation,” Nature Nanotechnology 17 (2022): 911-923.

[11]

Z. Kang, H. Guo, L. Fan, et al., “Scalable Crystalline Porous Membranes: Current State and Perspectives,” Chemical Society Reviews 50 (2021): 1913-1944.

[12]

T. Huang, B. A. Moosa, P. Hoang, et al., “Molecularly-Porous Ultrathin Membranes for Highly Selective Organic Solvent Nanofiltration,” Nature Communications 11 (2020): 5882.

[13]

X. Li, W. Lin, V. Sharma, et al., “Polycage Membranes for Precise Molecular Separation and Catalysis,” Nature Communications 14 (2023): 3112.

[14]

S. Li, R. Dong, V.-E. Musteata, et al., “Hydrophobic Polyamide Nanofilms Provide Rapid Transport for Crude Oil Separation,” Science 377 (2022): 1555-1561.

[15]

A. He, Z. Jiang, Y. Wu, et al., “A Smart and Responsive Crystalline Porous Organic Cage Membrane with Switchable Pore Apertures for Graded Molecular Sieving,” Nature Materials 21 (2022): 463-470.

[16]

Q. Cheng, Q. Ma, H. Pei, et al., “Enantioseparation Membranes: Research Status, Challenges, and Trends,” Small 19 (2023): 2300376.

[17]

Q. Cheng, Q. Ma, H. Pei, and Z. Mo, “Chiral Membranes for Enantiomer Separation: A Comprehensive Review,” Separation and Purification Technology 292 (2022): 121034.

[18]

Y. Lu, H. Zhang, J. Y. Chan, et al., “Homochiral MOF-Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules,” Angewandte Chemie International Edition 58 (2019): 16928-16935.

[19]

C. Yuan, X. Wu, R. Gao, et al., “Nanochannels of Covalent Organic Frameworks for Chiral Selective Transmembrane Transport of Amino Acids,” Journal of the American Chemical Society 141 (2019): 20187-20197.

[20]

S. Das, S. Xu, T. Ben, and S. Qiu, “Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks,” Angewandte Chemie International Edition 57 (2018): 8629-8633.

[21]

Y. Lu, H. Zhang, Y. Zhu, P. J. Marriott, and H. Wang, “Emerging Homochiral Porous Materials for Enantiomer Separation,” Advanced Functional Materials 31 (2021): 2101335.

[22]

Q. Cheng, Q. Ma, H. Pei, et al., “Chiral Metal-Organic Frameworks Materials for Racemate Resolution,” Coordination Chemistry Reviews 484 (2023): 215120.

[23]

F. Wang, K. He, R. Wang, et al., “A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution,” Advanced Materials 36 (2024): 2400709.

[24]

Y. Huang, H. Zeng, L. Xie, et al., “Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation,” Journal of the American Chemical Society 144 (2022): 13794-13805.

[25]

T. Chen, H. Li, X. Shi, J. Imbrogno, and D. Zhao, “Robust Homochiral Polycrystalline Metal-Organic Framework Membranes for High-Performance Enantioselective Separation,” Journal of the American Chemical Society 146 (2024): 14433-14438.

[26]

M. N. Corella-Ochoa, J. B. Tapia, H. N. Rubin, et al., “Homochiral Metal-Organic Frameworks for Enantioselective Separations in Liquid Chromatography,” Journal of the American Chemical Society 141 (2019): 14306-14316.

[27]

B. Sun, Y. Kim, Y. Wang, et al., “Homochiral Porous Nanosheets for Enantiomer Sieving,” Nature Materials 17 (2018): 599-604.

[28]

S. Zhang, J. Zhou, and H. Li, “Chiral Covalent Organic Framework Packed Nanochannel Membrane for Enantioseparation,” Angewandte Chemie International Edition 61 (2022): e202204012.

[29]

Y. Cheng, Y. Ying, S. Japip, et al., “Advanced Porous Materials in Mixed Matrix Membranes,” Advanced Materials 30 (2018): 1802401.

[30]

M. Kalaj, K. C. Bentz, S. Ayala, J. M. Palomba, et al., “MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures,” Chemical Reviews 120 (2020): 8267-8302.

[31]

M. Yoshikawa, K. Tharpa, and Ş.-O. Dima, “Molecularly Imprinted Membranes: Past, Present, and Future,” Chemical Reviews 116 (2016): 11500-11528.

[32]

R. Chakrabarty, P. S. Mukherjee, and P. J. Stang, “Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles,” Chemical Reviews 111 (2011): 6810-6918.

[33]

T. R. Cook, V. Vajpayee, M. H. Lee, P. J. Stang, and K.-W. Chi, “Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages,” Accounts of Chemical Research 46 (2013): 2464-2474.

[34]

T. R. Cook and P. J. Stang, “Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination,” Chemical Reviews 115 (2015): 7001-7045.

[35]

T. R. Cook, Y.-R. Zheng, and P. J. Stang, “Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal-Organic Materials,” Chemical Reviews 113 (2013): 734-777.

[36]

E. G. Percástegui, T. K. Ronson, and J. R. Nitschke, “Design and Applications of Water-Soluble Coordination Cages,” Chemical Reviews 120 (2020): 13480-13544.

[37]

P. Howlader, S. Mondal, S. Ahmed, and P. S. Mukherjee, “Guest-Induced Enantioselective Self-Assembly of a Pd 6 Homochiral Octahedral Cage With a C3 -Symmetric Pyridyl Donor,” Journal of the American Chemical Society 142 (2020): 20968-20972.

[38]

L. Chen, C. Chen, Y. Sun, et al., “Luminescent Metallacycle-Cored Liquid Crystals Induced by Metal Coordination,” Angewandte Chemie International Edition 59 (2020): 10143-10150.

[39]

C. Zhu, H. Tang, K. Yang, et al., “Homochiral Dodecanuclear Lanthanide “Cage in Cage” for Enantioselective Separation,” Journal of the American Chemical Society 143 (2021): 12560-12566.

[40]

T. R. Schulte, J. J. Holstein, and G. H. Clever, “Chiral Self-Discrimination and Guest Recognition in Helicene-Based Coordination Cages,” Angewandte Chemie International Edition 58 (2019): 5562-5566.

[41]

Y. Li, J. Dong, W. Gong, et al., “Artificial Biomolecular Channels: Enantioselective Transmembrane Transport of Amino Acids Mediated by Homochiral Zirconium Metal-Organic Cages,” Journal of the American Chemical Society 143 (2021): 20939-20951.

[42]

J. Hu, W. G. Cochrane, A. X. Jones, D. G. Blackmond, and B. M. Paegel, “Chiral Lipid Bilayers are Enantioselectively Permeable,” Nature Chemistry 13 (2021): 786-791.

[43]

W. Xue, L. Pesce, A. Bellamkonda, et al., “Subtle Stereochemical Effects Influence Binding and Purification Abilities of an FeII4L4 Cage,” Journal of the American Chemical Society 145 (2023): 5570-5577.

[44]

J. Dong, C. Tan, K. Zhang, et al., “Chiral NH-Controlled Supramolecular Metallacycles,” Journal of the American Chemical Society 139 (2017): 1554-1564.

[45]

M.-L. Li, J.-B. Pan, and Q.-L. Zhou, “Enantioselective Synthesis of Amino Acids from Ammonia,” Nature Catalysis 5 (2022): 571-577.

[46]

S. J. Tao, “Positronium Annihilation in Molecular Substances,” Journal of Chemical Physics 56 (1972): 5499-5510.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/