Elucidating the Fe(III) Directed 15-Step Domino Inter- and Intramolecular Progressive Coordinative Oligomerization of a Heterocycle Aggregate

Kai-Bin Chen , Ting-Ting Wang , Zhi-Wei Xu , Ning Tian , Jin Cai , Wen-Yu Qiu , Bin Zhang , Zheng Yin , Bin Liu , Ming-Hua Zeng

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70094

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70094 DOI: 10.1002/agt2.70094
RESEARCH ARTICLE

Elucidating the Fe(III) Directed 15-Step Domino Inter- and Intramolecular Progressive Coordinative Oligomerization of a Heterocycle Aggregate

Author information +
History +
PDF

Abstract

Benzo[d]thiazol-2-ylmethanol undergoes progressive oligomerization under solvothermal conditions in the presence of FeCl3·6H2O, yielding a heterocyclic aggregate, namely 1,2,3-tris(benzo[d]thiazol-2-yl)-2,9-dihydrobenzo[b]cyclopenta[e][1,4]thiazine. Single-crystal X-ray diffraction analysis was conducted on four distinct compounds isolated during the reaction, and electrospray ionization mass spectrometry (ESI-MS) of both solid products and intermediate reaction solutions enabled the identification of 15 consecutive reaction steps, where Fe(III) was directly involved in eight steps. These transformations comprise nine intermolecular C─C coupling events and six intramolecular ring expansion processes. The heteroatoms (N, O, and S) play distinct mechanistic roles according to their positions within the heterocyclic framework: (1) nitrogen and oxygen coordinate with Fe(III), facilitating activation of the reaction site; (2) homolytic cleavage of the C─O bond promotes C─C coupling reactions; and (3) C─S migration induces intramolecular ring expansion. Notably, theoretical calculations indicate a decrease in Gibbs free energy along the intramolecular reaction pathways, substantiating the proposed mechanism and activation mode, which underscores the essential role of Fe(III) in enabling the reaction progression. Furthermore, an investigation of the photophysical properties revealed that the resulting heterocyclic aggregates exhibit strong luminescence within the 535–610 nm wavelength range, approaching the near-infrared region. These findings highlight the significance of this reaction pathway in the controlled synthesis of functional oligomers and polymers from monomeric precursors, particularly through catalysis by cost-effective metal ions.

Keywords

domino reaction / progressive coordinative oligomerization / inter- and intramolecular transformation / heterocyclic aggregates / elucidating reaction mechanism

Cite this article

Download citation ▾
Kai-Bin Chen, Ting-Ting Wang, Zhi-Wei Xu, Ning Tian, Jin Cai, Wen-Yu Qiu, Bin Zhang, Zheng Yin, Bin Liu, Ming-Hua Zeng. Elucidating the Fe(III) Directed 15-Step Domino Inter- and Intramolecular Progressive Coordinative Oligomerization of a Heterocycle Aggregate. Aggregate, 2025, 6(8): e70094 DOI:10.1002/agt2.70094

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Kennedy and C. Norman, “What Don't We Know?,” Science 309 (2005): 75-102.

[2]

a) J. F. Hartwig, “Catalyst-Controlled Site-Selective Bond Activation,” Accounts of Chemical Research 50 (2017): 549-555. b) Z. X. Huang and G. B. Dong, “Site-Selectivity Control in Organic Reactions: A Quest To Differentiate Reactivity Among the Same Kind of Functional Groups,” Accounts of Chemical Research 50 (2017): 465-471.

[3]

a) L. F. Tietze and U. Beifuss, “Sequential Transformations in Organic Chemistry: A Synthetic Strategy With a Future,” Angewandte Chemie International Edition 32 (1993): 131-163. b) L. F. Tietze, “Domino Reactions in Organic Synthesis,” Chemical Reviews 96 (1996): 115-136.

[4]

a) L. Y. Bai, J. Y. Li, and X. F. Jiang, “Total Synthesis of (+)-asperazine A: A Stereoselective Domino Dimerization,” Chem 9 (2023): 483-496. b) K. C. Nicolaou, D. J. Edmonds, and P. G. Bulger, “Cascade Reactions in Total Synthesis,” Angewandte Chemie International Edition 45 (2006): 7134-7186. c) W. Schrader, P. P. Handayani, J. Zhou, and B. List, “Characterization of Key Intermediates in a Complex Organocatalytic Cascade Reaction Using Mass Spectrometry,” Angewandte Chemie International Edition 48 (2009): 1463-1466. d) M. W. Alachraf, P. P. Handayani, M. R. M. Huttl, C. Grondal, D. Endersb, and W. Schrader, “Electrospray Mass Spectrometry for Detailed Mechanistic Studies of a Complex Organocatalyzed Triple Cascade Reaction,” Organic & Biomolecular Chemistry 9 (2011): 1047-1053.

[5]

a) S. L. Pan, F. F. Mulks, P. Wu, K. Rissanen, and C. Bolm, “Mechanochemical Iron-Catalyzed Nitrene Transfer Reactions: Direct Synthesis of N-Acyl Sulfonimidamides from Sulfinamides and Dioxazolones,” Angewandte Chemie International Edition 63 (2024): e202316702. b) Y. Zheng, W. Y. Zhang, Q. Gu, C. Zheng, and S. L. You, “Cobalt(III)-Catalyzed Asymmetric Ring-Opening of 7-Oxabenzonorbornadienes via Indole C–H Functionalization,” Nature Communications 14 (2023): 1094-1103. c) C. Ding, Y. Y. Ren, and G. Y. Yin, “Ligand-Modulated Nickel-Catalyzed Regioselective Silylalkylation of Alkenes,” Nature Communications 14 (2023): 7670-7679. d) C. H. Lu, Y. P. Lin, M. Y. Wang, et al., “Nickel-Catalyzed Ring-Opening of Benzofurans for the Divergent Synthesis of Ortho -Functionalized Phenol Derivatives,” ACS Catalysis 13 (2023): 2432-2442. e) C. Zhu, R. Kuniyil, and L. Ackermann, “Manganese(I)-Catalyzed C−H Activation/Diels–Alder/Retro-Diels–Alder Domino Alkyne Annulation Featuring Transformable Pyridines,” Angewandte Chemie International Edition 58 (2019): 5338-5342.

[6]

a) Y. Y. Li, Y. Q. Li, H. J. Shi, et al., “Modular Access to Substituted Cyclohexanes With Kinetic Stereocontrol,” Science 376 (2022): 749-753. b) P. Milbeo, J. Martinez, M. Amblard, M. Calmès, and B. Legrand, “1-Aminobicyclo[2.2.2]Octane-2-Carboxylic Acid and Derivatives as Chiral Constrained Bridged Scaffolds for Foldamers and Chiral Catalysts,” Accounts of Chemical Research 54 (2021): 685-696.

[7]

a) L. F. Tietze, Domino Reactions (Weinheim: Wiley-VCH, 2014). b) L. F. Tietze, B. Waldecker, D. Ganapathy, et al., “Four- and Sixfold Tandem-Domino Reactions Leading to Dimeric Tetrasubstituted Alkenes Suitable as Molecular Switches,” Angewandte Chemie International Edition 54 (2015): 10317-10321.

[8]

a) T. Pukala and C. V. Robinson, “Introduction: Mass Spectrometry Applications in Structural Biology,” Chemical Reviews 122 (2022): 7267-7268. b) K. L. Vikse, Z. Ahmadi, and J. S. McIndoe, “The Application of Electrospray Ionization Mass Spectrometry to Homogeneous Catalysis,” Coordination Chemistry Reviews 279 (2014): 96-114. c) F. Bachle, J. Duschmale, C. Ebner, A. Pfaltz, and H. Wennemers, “Organocatalytic Asymmetric Conjugate Addition of Aldehydes to Nitroolefins: Identification of Catalytic Intermediates and the Stereoselectivity-Determining Step by ESI-MS,” Angewandte Chemie International Edition 52 (2013): 12619-12623. d) D. Schröder, “Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research,” Accounts of Chemical Research 45 (2012): 1521-1532. e) P. A. Wender and B. L. Miller, “Synthesis at the Molecular Frontier,” Nature 460 (2009): 197-201.

[9]

a) C. X. Liu, P. P. Xie, F. Zhao, et al., “Explicit Mechanism of Rh(I)-Catalyzed Asymmetric C-H Arylation and Facile Synthesis of Planar Chiral Ferrocenophanes,” Journal of the American Chemical Society 145 (2023): 4765-4773. b) C. Zhu, R. Kuniyil, B. B. Jei, and L. Ackermann, “Domino C–H Activation/Directing Group Migration/Alkyne Annulation: Unique Selectivity by D 6 -Cobalt(III) Catalysts,” ACS Catalysis 10 (2020): 4444-4450.

[10]

a) Y. Y. Zhang, D. S. Zhang, T. Li, M. Kurmoo, and M. H. Zeng, “In Situ Metal-Assisted Ligand Modification Induces Mn 4 Cluster-to-Cluster Transformation: A Crystallography, Mass Spectrometry, and DFT Study,” Chemistry - A European Journal 26 (2020): 721-728. b) J. Wang, Y. F. Wu, M. Kurmoo, and M. H. Zeng, “Difference in the Formation of Two Structural Types of V-Shaped M II3 Clusters: Diffraction, Mass Spectrometry, and Magnetism,” Inorganic Chemistry 58 (2019): 7472-7479. c) H. L. Zheng, X. L. Chen, T. Li, et al., “Manipulating Clusters by Use of Competing N,O-Chelating Ligands: A Combined Crystallographic, Mass Spectrometric, and DFT Study,” Chemistry European Journal 24 (2018): 7906-7912. d) J. P. Zhong, B. Liu, T. Yang, et al., “Tracking the Progress and Mechanism Study of a Solvothermal in Situ Domino N-Alkylation Reaction of Triethylamine and Ammonia Assisted by Ferrous Sulfate,” Inorganic Chemistry 56 (2017): 10123-10126.

[11]

a) T. Li, Y. F Wang, Z. Yin, J. Li, X Peng, and M. H. Zeng, “The Sequential Structural Transformation of a Heptanuclear Zinc Cluster towards Hierarchical Porous Carbon for Supercapacitor Applications,” Chemical Science 13 (2022): 10786-10791. b) B. X Pan, X. Peng, Y. F. Wang, et al., “Tracking the Pyrolysis Process of a 3-MeOsalophen-Ligand Based Co2 Complex for Promoted Oxygen Evolution Reaction,” Chemical Science 10 (2019): 4560-4566. c) B. Huang, J. Y. Zhang, R. K. Huang, et al., “Spin-reorientation-induced Magnetodielectric Coupling Effects in Two Layered Perovskite Magnets,” Chemical Science 9 (2018): 7413-7418. d) M. Zhang, T. Yang, Z. X. Wang, et al., “Chemical Reaction Within a Compact Non-Porous Crystal Containing Molecular Clusters Without the Loss of Crystallinity,” Chemical Science 8 (2017): 5356-5361.

[12]

a) J. Cai, B. Zhao, Q. Zhang, et al., “Mn(II) Promoted Divergent-Convergent Domino Reaction Giving Dinuclear Tetrasubstituted Pyrrole Complex,” Chemistry - A European Journal 30 (2024): e202303553. b) S. Q. Li, S. H. Lv, Y. Y. Yang, P. Y. Zhu, D. B. Zhao, and M. H. Zeng, “Mechanistic Insights Into an NH 4 OAc-promoted Imine Dance in Rh-Catalysed Multicomponent Double C–H Annulations Through an N-Retention/Exchange Dual Channel,” Chemical Science 14 (2023): 13446-13452. c) R. R. Xie, Y. Xiao, Y. W. Wang, et al., “Hydrazine–Halogen Exchange Strategy toward N=N-Containing Compounds and Process Tracking for Mechanistic Insight,” Organic Letters 25 (2023): 2415-2419. d) Y. Wang, M. L. Luo, J. Cai, et al., “Tracking the Process of Domino Ring-Opening and Coupling of Fused Imidazole and Direct Observation of Peroxide Intermediates,” Chinese Journal of Chemistry 41 (2023): 2089-2094. e) M. T. Zeng, Y. Xue, Y. N. Qin, F. Peng, Q. Li, and M. H. Zeng, “CuBr-Promoted Domino Biginelli Reaction for the Diastereoselective Synthesis of Bridged Polyheterocycles: Mechanism Studies and in Vitro Anti-Tumor Activities,” Chinese Chemical Letters 33 (2022): 4891-4895. f) J. M. Chen, L. Peng, F. F. Zhou, et al., “A Domino Fusion of an Organic Ligand Depended on Metal-Induced and Oxygen Insertion, Unraveled by Crystallography, Mass Spectrometry, and DFT Calculations,” Chemistry - A European Journal 27 (2021): 2875-2881.

[13]

Y. Q. Hu, M. H. Zeng, K. Zhang, S. Hu, F. F. Zhou, and M. Kurmoo, “Tracking the Formation of a Polynuclear Co 16 Complex and Its Elimination and Substitution Reactions by Mass Spectroscopy and Crystallography,” Journal of the American Chemical Society 135 (2013): 7901-7908.

[14]

M. H. Zeng, Z. Yin, Z. H. Liu, et al., “Assembly of a Highly Stable Luminescent Zn 5 Cluster and Application to Bio-Imaging,” Angewandte Chemie International Edition 55 (2016): 11407-11411.

[15]

B. Liu, F. Yu, M. Tu, et al., “Tracking the Process of a Solvothermal Domino Reaction Leading to a Stable Triheteroarylmethyl Radical: A Combined Crystallographic and Mass-Spectrometric Study,” Angewandte Chemie International Edition 58 (2019): 3748-3753.

[16]

J. T. Moolayil, M. George, R. Srinivas, D. Giblin, A. Russell, and M. L. Gross, “Protonated Nitro Group as a Gas-Phase Electrophile: Experimental and Theoretical Study of the Cyclization of o-nitrodiphenyl Ethers, Amines, and Sulfides,” Journal of the American Society Spectrometry 18 (2007): 2204-2217.

[17]

V. P. Srivastava, R. Patel, and L. D. S. Yadav, “Lewis Acid-Catalyzed Oxidative Allylation: A New Approach for the Synthesis of Homoallylic Alcohols and Amines Directly From Alcohols,” Advanced Synthesis & Catalysis 353 (2011): 695-700.

[18]

a) W. Y. Lyu, Y. Liu, J. Y. Zhou, et al., “Modulating the Reaction Configuration by Breaking the Structural Symmetry of Active Sites for Efficient Photocatalytic Reduction of Low-Concentration CO2,” Angewandte Chemie International Edition 62 (2023): e202310733. b) J. Wang, Y. X. Feng, M. Zhang, et al., “β-Cyclodextrin Decorated CdS Nanocrystals Boosting the Photocatalytic Conversion of Alcohols,” CCS Chemistry 2 (2020): 81-88. c) J. J. Zhong, W. P. Tu, Y. G. Liu, W. Lu, and C. M. Che, “Efficient Acceptorless Photo-dehydrogenation of Alcohols and N -heterocycles With Binuclear Platinum(II) Diphosphite Complexes,” Chemical Science 10 (2019): 4883-4889.

[19]

a) K. P. McClelland and E. A. Weiss, “Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde or C─C Coupled Products by Visible-Light-Absorbing Quantum Dots,” ACS Applied Energy Materials 2 (2019): 92-96. b) F. Coelho and M. N. Eberlin, “The Bridge Connecting Gas-Phase and Solution Chemistries,” Angewandte Chemie International Edition 50 (2011): 5261-5263.

[20]

N. C. Luo, T. T. Hou, S. Y. Liu, et al., “Photocatalytic Coproduction of Deoxybenzoin and H2 Through Tandem Redox Reactions,” ACS Catalysis 10 (2020): 762-769.

[21]

R. Arias-Ugarte, F. S. Wekesa, and M. Findlater, “Selective Aldol Condensation or Cyclotrimerization Reactions Catalyzed by FeCl3,” Tetrahedron Letters 56 (2015): 2406-2411.

[22]

Y. M. Chen, L. Li, Z. Chen, et al., “Metal-Mediated Controllable Creation of Secondary, Tertiary, and Quaternary Carbon Centers: A Powerful Strategy for the Synthesis of Iron, Cobalt, and Copper Complexes With in Situ Generated Substituted 1-Pyridineimidazo[1,5-a]Pyridine Ligands,” Inorganic Chemistry 51 (2012): 9705-9713.

[23]

a) M. Kannan, P. B. De, S. Pradhan, and T. Punniyamurthy, “Chiral Fe-Dendrimer-Catalyzed Domino Michael and Aldol Reactions of Chalcones With 1,4-Dithiane-2,5-Diol,” ChemistrySelect 3 (2018): 859-863. b) J. W. Qiu, B. L. Hu, X. G. Zhang, R. Y. Tang, P. Zhong, and J. H. Li, “Copper-catalyzed Ring Expansion of 2-aminobenzothiazoles With Alkynyl Carboxylic Acids to 1,4-benzothiazines,” Organic & Biomolecular Chemistry 13 (2015): 3122-3127.

[24]

a) M. Adib, E. Sheibani, L. G Zhu, and H. R. Bijanzadeh, “A Novel Reaction Between Benzothiazoles and Diaroylacetylenes in the Presence of Meldrum's Acid: Ring Expansion of Benzothiazoles to Functionalized 1,4-benzothiazines,” Tetrahedron Letters 50 (2009): 4420-4422. b) S. Florio, V. Capriati, and G. Colli, “On the Reaction of Chloroalkylbenzothiazoles With Alkoxides,” Tetrahedron 53 (1997): 5839-5846.

[25]

S. Florio, L. Troisi, and V. Capriati, “Ring Expansion of 2-chloromethylbenzothiazole: Synthesis of Heteroarylalkylidene 1,4-Benzothiazines,” Tetrahedron Letters 36 (1995): 1913-1916.

[26]

K. Namba, K. Kobayashi, Y. Murata, et al., “Mugineic Acid Derivatives as Molecular Probes for the Mechanistic Elucidation of Iron Acquisition in Barley,” Angewandte Chemie International Edition 49 (2010): 9956-9959.

[27]

S. Preet and D. S. Cannoo, “Base Induced Synthesis of 4H-1,4-benzothiazines and Their Computational Studies,” RSC Advances 5 (2015): 79232-79238.

[28]

D. D. Burns, K. L. Teppang, R. W. Lee, M. E. Lokensgard, and B. W. Purse, “Fluorescence Turn-On Sensing of DNA Duplex Formation by a Tricyclic Cytidine Analogue,” Journal of the American Chemical Society 139 (2017): 1372-1375.

[29]

J. Y. Zhang; J. Y. Chen; C. H. Gao, S. F. Ni, W. Tan, and F. Shi, “Asymmetric (4+n) Cycloadditions of Indolyldimethanols for the Synthesis of Enantioenriched Indole-Fused Rings,” Angewandte Chemie International Edition 62 (2023): e202305450.

[30]

a) L. Wang; Z. P. Xiong; J. Z. Sun, F. H. Huang, H. K. Zhang, and B. Z. Tang, “How the Length of through-Space Conjugation Influences the Clusteroluminescence of Oligo(Phenylene Methylene)s,” Angewandte Chemie International Edition 63 (2024): e202318245. b) Z. J. Zhao, B. R. He, and B. Z. Tang, “Aggregation-Induced Emission of Siloles,” Chemical Science 6 (2015): 5347-5365.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/