Crown-Ether-Directed Assembly of One-Dimensional Silver(I) Coordination Polymers With Dramatically Enhanced Photoluminescence

Xiaojiao Yang , Xiao-Lin Ye , Shu-Han Bao , Dong-Nan Yu , Wenya Jiang , Bintao Wu , Shuaiqi Wang , Kangzhou Wang , Tang Yang , Guozong Yue , Samia Kahlal , Jean-Yves Saillard , Jean-François Halet , Jianyu Wei , Kuan-Guan Liu

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70092

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70092 DOI: 10.1002/agt2.70092
RESEARCH ARTICLE

Crown-Ether-Directed Assembly of One-Dimensional Silver(I) Coordination Polymers With Dramatically Enhanced Photoluminescence

Author information +
History +
PDF

Abstract

Two novel 18-crown-6-ether (18-C-6) directed one-dimensional silver(I) coordination polymers (1D Ag(I) CPs), formulated as {[(18-C-6)Ag(bpy)]·X} and {[(18-C-6)Ag(pyz)]·X} {bpy = 4,4′-bipyridine; pyz = pyrazine; X = BF4 (Ia, IIa), CF3SO3 (Ib, IIb)}, are prepared and structurally determined. The protection of the 18-C-6 macrocycle not only efficiently prevents intermolecular interactions within each 1D Ag(I) CP but also significantly enhances the rigidity of the chain structures, allowing these polymers to exhibit remarkable phosphorescence with intense green-light emission at room temperature. Moreover, IIa and IIb show enhanced photoluminescence quantum yields and aggregation-induced emission properties, which can be attributed to their close-packed structure modes in the crystalline states. Interestingly, upon mixing with commercial resin, IIa can serve as an efficient and stable luminescent ink for 3D printing. The resulting printed structures demonstrate exceptional irradiation stability, retaining their luminescence properties without any quenching over a three-month period. This work not only provides a facile strategy to prepare luminescent 1D Ag(I) CPs but also shows the promise of their utilization in optical devices.

Keywords

aggregations / crown-ether / one dimensional coordination polymer / photoluminescence / silver(I)

Cite this article

Download citation ▾
Xiaojiao Yang, Xiao-Lin Ye, Shu-Han Bao, Dong-Nan Yu, Wenya Jiang, Bintao Wu, Shuaiqi Wang, Kangzhou Wang, Tang Yang, Guozong Yue, Samia Kahlal, Jean-Yves Saillard, Jean-François Halet, Jianyu Wei, Kuan-Guan Liu. Crown-Ether-Directed Assembly of One-Dimensional Silver(I) Coordination Polymers With Dramatically Enhanced Photoluminescence. Aggregate, 2025, 6(8): e70092 DOI:10.1002/agt2.70092

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Shin, N. Kang, B. Kim, et al., “One-Dimensional Nanomaterials for Cancer Therapy And Diagnosis,” Chemical Society Reviews 52 (2023): 4488-4514.

[2]

D. Huo, M. J. Kim, Z. Lyu, Y. Shi, B. J. Wiley, and Y. Xia, “One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications,” Chemical Reviews 119 (2019): 8972-9073.

[3]

M. Wang, Y. Jin, W. Zhang, and Y. Zhao, “Single-Crystal Polymers (SCPs): From 1D to 3D Architectures,” Chemical Society Reviews 52 (2023): 8165-8193.

[4]

B. Xu, Y. Zhang, L. Li, Q. Shao, and X. Huang, “Recent Progress in Low-Dimensional Palladium-Based Nanostructures for Electrocatalysis And Beyond,” Coordination Chemistry Reviews 459 (2022): 214388.

[5]

S. Xie, A. Y. H. Wong, R. T. K. Kwok, et al., “Fluorogenic Ag+-Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining,” Angewandte Chemie International Edition 57 (2018): 5750-5753.

[6]

Y. Kataoka, N. Yano, M. Mikuriya, and M. Handa, “Coordination Polymers and Metal-Organic Frameworks Based on Paddlewheel-Type Dirhodium(II) Tetracarboxylates,” Coordination Chemistry Reviews 472 (2022): 214796.

[7]

J. Zhao, J. Yuan, Z. Fang, et al., “One-Dimensional Coordination Polymers Based on Metal-Nitrogen Linkages,” Coordination Chemistry Reviews 471 (2022): 214735.

[8]

P. Braunstein and A. A. Danopoulos, “Transition Metal Chain Complexes Supported by Soft Donor Assembling Ligands,” Chemical Reviews 121 (2021): 7346-7397.

[9]

G. Givaja, P. Amo-Ochoa, C. J. Gómez-García, and F. Zamora, “Electrical Conductive Coordination Polymers,” Chemical Society Reviews 41 (2012): 115-147.

[10]

R. Mas-Ballesté, J. Gómez-Herrero, and F. Zamora, “One-Dimensional Coordination Polymers on Surfaces: Towards Single Molecule Devices,” Chemical Society Reviews 39 (2010): 4220-4233.

[11]

Q. Zhang, C. Lu, R. Wang, et al., “Demystifying the Coordination Polymers Triggered Fluorescence Immunoassay: State of the Art and Future Perspectives,” Coordination Chemistry Reviews 488 (2023): 215188.

[12]

C. Sun, R. Xi, and H. Fei, “Organolead Halide-Based Coordination Polymers: Intrinsic Stability and Photophysical Applications,” Accounts of Chemical Research 56 (2023): 452-461.

[13]

K.-G. Liu, F. Rouhani, H. Moghanni-Bavil-Olyaei, et al., “A Conductive 1D High-Nucleus Silver Polymer as a Brilliant Non-Hybrid Supercapacitor Electrode,” Journal of Materials Chemistry A 8 (2020): 12975-12983.

[14]

J. Kim, J. H. Ryu, M. Jang, et al., “One-Dimensional π -d Conjugated Coordination Polymer Intercalated MXene Compound for High-Performance Supercapacitor Electrode,” Small Methods 7 (2023): 2201539.

[15]

J.-G. Jia, C.-C. Zhao, Y.-F. Wei, et al., “Macroscopic Helical Assembly of One-Dimensional Coordination Polymers: Helicity Inversion Triggered by Solvent Isomerism,” Journal of the American Chemical Society 145 (2023): 23948-23962.

[16]

R. Hamze, S. Shi, S. C. Kapper, et al., ““Quick-Silver” From a Systematic Study of Highly Luminescent, Two-Coordinate, d10 Coinage Metal Complexes,” Journal of the American Chemical Society 141 (2019): 8616-8626.

[17]

X.-T. Wang, S.-R. He, F.-W. Lv, et al., “Ln3+ Induced Thermally Activated Delayed Fluorescence of Chiral Heterometallic Clusters Ln2Ag28,” Angewandte Chemie International Edition 63 (2024): e202410414.

[18]

S. Yuan, G. Zhang, F. Chen, et al., “Thermally Activated Delayed Fluorescent Ag(I) Complexes for Highly Efficient Scintillation and High-Resolution X-Ray Imaging,” Advanced Functional Materials 34 (2024): 2400436.

[19]

A. Ying, N. Li, X. Chen, J. Xia, C. Yang, and S. Gong, “Ag(I) Emitters With Ultrafast Spin-Flip Dynamics for High-Efficiency Electroluminescence,” Chemical Science 16 (2025): 784-792.

[20]

A. N. Khlobystov, A. J. Blake, N. R. Champness, et al., “Supramolecular Design of One-Dimensional Coordination Polymers Based on Silver(I) Complexes of Aromatic Nitrogen-Donor Ligands,” Coordination Chemistry Reviews 222 (2001): 155-192.

[21]

V. W.-W. Yam, V. K. Au, and S. Y. Leung, “Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes,” Chemical Reviews 115 (2015): 7589-7728.

[22]

Q. Yao, M. Zhu, Z. Yang, et al., “Molecule-Like Synthesis of Ligand-Protected Metal Nanoclusters,” Nature Reviews Materials 10 (2025): 89-108.

[23]

H. Wu, X. He, B. Yang, C.-C. Li, and L. Zhao, “Assembly-Induced Strong Circularly Polarized Luminescence of Spirocyclic Chiral Silver(I) Clusters,” Angewandte Chemie International Edition 60 (2021): 1535-1539.

[24]

T. Chen, H. Lin, Y. Cao, Q. Yao, and J. Xie, “Interactions of Metal Nanoclusters With Light: Fundamentals and Applications,” Advanced Materials 34 (2022): 2103918.

[25]

W. Tian, C. Zhang, S. Paul, et al., “Lattice Modulation on Singlet-Triplet Splitting of Silver Cluster Boosting Near-Unity Photoluminescence Quantum Yield,” Angewandte Chemie International Edition 64 (2025): e202421656.

[26]

R.-W. Huang, Y.-S. Wei, X.-Y. Dong, et al., “Hypersensitive Dual-Function Luminescence Switching of a Silver-Chalcogenolate Cluster-Based Metal-Organic Framework,” Nature Chemistry 9 (2017): 689-697.

[27]

X.-Y. Dong, Y. Si, J.-S. Yang, et al., “Ligand Engineering to Achieve Enhanced Ratiometric Oxygen Sensing in a Silver Cluster-Based Metal-Organic Framework,” Nature Communications 11 (2020): 3678.

[28]

R.-W. Huang, X.-Y. Dong, B.-J. Yan, et al., “Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Cluster-Assembled Materials,” Angewandte Chemie International Edition 57 (2018): 8560-8566.

[29]

P. J. Steel and C. M. Fitchett, “Metallosupramolecular Silver(I) Assemblies Based on Pyrazine and Related Ligands,” Coordination Chemistry Reviews 252 (2008): 990-1006.

[30]

Z.-R. Yuan, Z. Wang, B.-L. Han, et al., “Ag22 Nanoclusters With Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers Through In-Situ Ligand Transesterification,” Angewandte Chemie International Edition 61 (2022): e202211628.

[31]

S. Biswas, S. Das, and Y. Negishi, “Progress and Prospects in the Design of Functional Atomically-Precise Ag(I)-Thiolate Nanoclusters and Their Assembly Approaches,” Coordination Chemistry Reviews 492 (2023): 215255.

[32]

S. Biswas, A. K. Das, and S. Mandal, “Surface Engineering of Atomically Precise M(I) Nanoclusters: From Structural Control to Room Temperature Photoluminescence Enhancement,” Accounts of Chemical Research 56 (2023): 1838-1849.

[33]

H. Yoshino, M. Saigo, K. Miyata, et al., “Unprecedented Highly Efficient Photoluminescence in a Phosphorescent Ag(i) Coordination Polymer,” Chemical Communications 59 (2023): 4616-4619.

[34]

C. Fang, C. Xu, W. Zhang, et al., “Dual-Quartet Phosphorescent Emission in the Open-Shell M1Ag13 (M = Pt, Pd) Nanoclusters,” Nature Communications 15 (2024): 5962.

[35]

T. Yoshida, K. Yamasaki, and S. Sawada, “An X-Ray Photoelectron Spectroscopic Study of 2-Mercaptobenzothiazole Metal Complexes,” Bulletin of the Chemical Society of Japan 52 (1979): 2908.

[36]

D. I. saleh, S. F. Mahmoud, and S. E. H. Etaiw, “Ultrasound-Assisted Synthesis and Biological Activity of Nanosized Supramolecular Coordination Polymers of Silver(I) With Chloride, Thiocyanate, and 4,4′-Bipyridine Ligands,” Journal of Molecular Structure 1261 (2022): 132940.

[37]

S. C. Citrak, D. Popple, K. Delgado-Cunningham, et al., “Extremely Rapid Uptake of Perchlorate With Release of an Environmentally Benign Anion: Silver Bipyridine Acetate,” Crystal Growth & Design 18 (2018): 1891-1895.

[38]

S. Li, X. Tan, W. Sun, et al., “Design Catalytic Space Engineering of Ag-Ag Bond-Based Metal Organic Framework For Carbon Dioxide Fixation Reactions,” Colloids and Surfaces A 609 (2021): 125529.

[39]

A. J. Blake, N. R. Champness, M. Crew, and S. Parsons, “Sawhorse Connections in a Ag(I)-Nitrite Coordination Network: {[Ag(pyrazine)]NO2}∞,” New Journal of Chemistry 23 (1999): 13-15.

[40]

T. Kuwahara, H. Ohtsu, and K. Tsuge, “Synthesis and Photophysical Properties of Emissive Silver(I) Halogenido Coordination Polymers Composed of {Ag2X2} Units Bridged by Pyrazine, Methylpyrazine, and Aminopyrazine,” Inorganic Chemistry 60 (2021): 1299-1304.

[41]

E. Soe, B. Ehlke, and S. R. J. Oliver, “A Cationic Silver Pyrazine Coordination Polymer With High Capacity Anion Uptake From Water,” Environmental Science & Technology 53 (2019): 7663-7672.

[42]

L. Carlucci, G. Ciani, D. M. Proserpio, and A. Sironi, “Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer-Like Structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of [Ag(pyz)3](SbF6),” Angewandte Chemie International Edition 34 (1995): 1895-1898.

[43]

L. Carlucci, G. Ciani, D. M. Proserpio, and A. Sironi, “1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 With Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets,” Journal of the American Chemical Society 117 (1995): 4562-4569.

[44]

W. Bi, D. Sun, R. Cao, and M. Hong, “Chain Structure of {[Ag(bpy)]NO3}n (bpy = 4,4′-bipyridine),” Acta Crystallographica Section E: Crystallographic Communications 58 (2002): m324-m325.

[45]

T. Li, X.-H. Huang, Y.-F. Zhao, H.-H. Li, S.-T. Wu, and C.-C. Huang, “An Unusual Double T5(2) Water Tape Trapped in Silver(i) Coordination Polymer Hosts: Influence of the Solvent on the Assembly of Ag(i)-4,4′-Bipyridine Chains With Trans-Cyclohexanedicarboxylate and Their Luminescent Properties,” Dalton Transactions 41 (2012): 12872-12881.

[46]

E. Aubert, M. Abboud, A. Doudouh, et al., “Silver(I) Coordination Polymers with 3,3′,5,5′-Tetrasubstituted 4,4′-Bipyridine Ligands: Towards New Porous Chiral Materials,” RSC Advances 7 (2017): 7358-7367.

[47]

H. Takeda, A. Kobayashi, and K. Tsuge, “Recent Developments of Photoactive Cu(I) and Ag(I) Complexes With Diphosphine and Related Ligands,” Coordination Chemistry Reviews 470 (2022): 214700.

[48]

Crystal data for Ia, C22H32BF4N2O6Ag, a = 19.0413(10), b = 13.4115(8), c = 12.8772(6) Å, α = γ = 90, β = 124.1220(10), V = 2722.4(3) Å3, Monoclinic, space group Cc, Z = 4, T = 100 K, 27645 reflections measured, 5389 unique (Rint = 0.0235), final R1 = 0.0424, wR2 = 0.1241 for 5389 observed reflections [I > 2σ(I)]. Crystal data for Ib, C69H96F9N6O27S3Ag3, a = 18.5941(16), b = 41.418(4), c = 13.6853(14) Å, α = γ = 90, β = 124.616(3), Monoclinic, space group Cc, Z = 4, T = 100 K, 54118 reflections measured, 17624 unique (Rint =0.0523), final R1 = 0.0620, wR2 = 0.1670 for 17624 observed reflections [I > 2σ(I)]. Crystal data for IIa, C16H30BF4N2O7Ag, a = 7.34220(10), b = 10.8416(2), c = 28.5534(6) Å, α = γ = 90, β = 90.197(2), V = 2272.87(7) Å3, Monoclinic, space group P21/c, Z = 4, T = 100 K, 24285 reflections measured, 4546 unique (Rint = 0.0520), final R1 = 0.0411, wR2 = 0.0959 for 4546 observed reflections [I > 2σ(I)]. Crystal data for IIb, C51H84F9N6O27S3Ag3, a = 52.069(2), b = 10.9851(4), c = 29.7064(13) Å, α = γ = 90, β = 122.0950(10), Monoclinic, space group C2/c, Z = 8, T = 117 K, 158113 reflections measured, 19361 unique (Rint = 0.0413), final R1 = 0.0567, wR2 = 0.1078 for 19361 observed reflections [I > 2σ(I)]. CCDC-2419774 (Ia), CCDC-2419775 (Ib), CCDC-2419776 (IIa) and CCDC-2419777 (IIb) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[49]

N. Amiri, F. Ben Taheur, S. Chevreux, et al., “Syntheses, Crystal Structures, Photo-Physical Properties, Antioxidant and Antifungal Activities of Mg(II) 4,4′-Bipyridine and Mg(II) Pyrazine Complexes of the 5,10,15,20 tetrakis(4-bromophenyl)porphyrin,” Inorganica Chimica Acta 525 (2021): 120466.

[50]

R. Soury, M. Jabli, T. A. Saleh, et al., “Tetrakis(ethyl-4(4-butyryl)Oxyphenyl)Porphyrinato Zinc Complexes With 4,4′-bpyridin: Synthesis, Characterization, and Its Catalytic Degradation of Calmagite,” RSC Advances 8 (2018): 20143-20156.

[51]

J. Palion-Gazda, K. Choroba, B. Machura, et al., “Influence of the Pyrazine Substituent on the Structure and Magnetic Properties of Dicyanamide-Bridged Cobalt(ii) Complexes,” Dalton Transactions 48 (2019): 17266-17280.

[52]

S. G. Mohammed Hussain, R. Kumar, M. Mohamed Naseer Ali, and V. Kannappan, “Structural Effect on the Strength of Non-Covalent Interactions in Binary Mixtures of Benzyl Amine and Certain Ethers Through Ultrasonic, FT-IR Spectral and DFT Studies at 303.15 K,” Journal of Molecular Liquids 277 (2019): 865-875.

[53]

Q.-M. Wang and T. C. W. Mak, “Crown Ethers as Ancillary Ligands in the Assembly of Silver(I) Aggregates Containing Embedded Acetylenediide,” Chemistry - A European Journal 9 (2003): 43-50.

[54]

J. W. Steed, K. Johnson, C. Legido, and P. C. Junk, “Influence of Hydrogen Bonding on ‘Soft’ Coordination Geometries: Further Examples,” Polyhedron 22 (2003): 769-774.

[55]

T. S. Cameron, A. Decken, I. Krossing, et al., “Reactions of a Cyclodimethylsiloxane (Me2SiO)6 With Silver Salts of Weakly Coordinating Anions; Crystal Structures of [Ag(Me2SiO)6][Al] ([Al] = [FAl{OC(CF3)3}3], [Al{OC(CF3)3}4]) and Their Comparison With [Ag(18-Crown-6)]2[SbF6]2,” Inorganic Chemistry 52 (2013): 3113-3126.

[56]

M. Harada and E. Katagiri, “Mechanism of Silver Particle Formation During Photoreduction Using In Situ Time-Resolved SAXS Analysis,” Langmuir 26 (2010): 17896-17905.

[57]

J. A. Maner, D. T. Mauney, and M. A. Duncan, “Imaging Charge Transfer in a Cation−π System: Velocity-Map Imaging of Ag+(benzene) Photodissociation,” Journal of Physical Chemistry Letters 6 (2015): 4493-4498.

[58]

H.-H. Wang, J. Wei, and F. Bigdeli, et al., “Monocarboxylate-Protected Two-Electron Superatomic Silver Nanoclusters With High Photothermal Conversion Performance,” Nanoscale 15 (2023): 8245-8254.

[59]

C. Zhu, J. Jin, Z. Wang, et al., “Supramolecular Assembly of Blue and Green Halide Perovskites With Near-Unity Photoluminescence,” Science 383 (2024): 86-93.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/