Pathway Complexity in Supramolecular Polymerization of Porphyrin Dyads for Kinetic Control of Helicity

Hosoowi Lee , Yongho Lee , Minhyeong Lee , Dae Eun Kang , Jiwon Kim , Dong Ha Kim , Woo-Dong Jang

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70090

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70090 DOI: 10.1002/agt2.70090
RESEARCH ARTICLE

Pathway Complexity in Supramolecular Polymerization of Porphyrin Dyads for Kinetic Control of Helicity

Author information +
History +
PDF

Abstract

The supramolecular polymerization of porphyrin dyad (PD) shows the pathway complexity leading to the formation of kinetically metastable nanoparticles (PDParticle) through rapid cooling and thermodynamically stable fibrous supramolecular polymers (PDFiber) through slow cooling. The kinetically metastable PDParticle is gradually transformed to the thermodynamically stable PDFiber. Due to the inherent achirality of PD, AFM images exhibited a random distribution of both M and P helices. Introducing chiral alkyl chains achieved a predominant helicity in PDFiber, with (S)-PD favoring M helices and (R)-PD favoring P helices. The addition of chiral 2-methyl pyrrolidine (MePy) further influences this transformation by retarding the transition from PDParticle to PDFiber through axial coordination with the zinc porphyrin units, affecting the helicity of the resulting supramolecular polymer. By manipulating the cooling rates and environmental conditions, we demonstrate the reversible control over circular dichroism (CD) and circularly polarized luminescence (CPL), providing insight into the relationship between structural chirality and optical activity.

Keywords

circular dichroism / circularly polarized luminescence / pathway complexity / porphyrins / supramolecular polymers

Cite this article

Download citation ▾
Hosoowi Lee, Yongho Lee, Minhyeong Lee, Dae Eun Kang, Jiwon Kim, Dong Ha Kim, Woo-Dong Jang. Pathway Complexity in Supramolecular Polymerization of Porphyrin Dyads for Kinetic Control of Helicity. Aggregate, 2025, 6(8): e70090 DOI:10.1002/agt2.70090

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Brunsveld, B. J. Folmer, E. W. Meijer, and R. P. Sijbesma, “Supramolecular Polymers,” Chemical Reviews 101 (2001): 4071-4098.

[2]

B. Qin, Z. Yin, X. Tang, et al., “Supramolecular Polymer Chemistry: From Structural Control to Functional Assembly,” Progress in Polymer Science 100 (2020): 101167.

[3]

L. Yang, X. Tan, Z. Wang, and X. Zhang, “Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions,” Chemical Reviews 115 (2015): 7196-7239.

[4]

T. Aida, E. Meijer, and S. Stupp, “Functional Supramolecular Polymers,” Science 335 (2012): 813-817.

[5]

R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, and J. Shen, “Functional Supramolecular Polymers for Biomedical Applications,” Advanced Materials 27 (2015): 498-526.

[6]

H. Wang, X. Ji, Z. Li, and F. Huang, “Fluorescent Supramolecular Polymeric Materials,” Advanced Materials 29 (2017): 1606117.

[7]

M. M. Smulders, A. P. Schenning, and E. Meijer, “Insight Into the Mechanisms of Cooperative Self-Assembly: The “Sergeants-and-Soldiers” Principle of Chiral and Achiral C3-Symmetrical Discotic Triamides,” Journal of the American Chemical Society 130 (2008): 606-611.

[8]

J. van Gestel, A. R. Palmans, B. Titulaer, J. A. Vekemans, and E. Meijer, “Majority-Rules″ Operative in Chiral Columnar Stacks of C3-Symmetrical Molecules” Journal of the American Chemical Society 127 (2005): 5490-5494.

[9]

P. Xing and Y. Zhao, “Controlling Supramolecular Chirality in Multicomponent Self-Assembled Systems,” Accounts of Chemical Research 51 (2018): 2324-2334.

[10]

A. Das, S. Ghosh, and S. J. George, “Chiroptical Amplification of Induced Circularly Polarized Luminescence in Nucleotide-Templated Supramolecular Polymer,” Angewandte Chemie 135 (2023): e202308281.

[11]

L. López-Gandul, C. Naranjo, C. Sánchez, et al., “Stereomutation and Chiroptical Bias in the Kinetically Controlled Supramolecular Polymerization of Cyano-Luminogens,” Chemical Science 13 (2022): 11577-11584.

[12]

S. Sarkar, A. Sarkar, and S. J. George, “Stereoselective Seed-Induced Living Supramolecular Polymerization,” Angewandte Chemie International Edition 59 (2020): 19841-19845.

[13]

S. Patra, S. Dhiman, and S. J. George, “Precision Synthesis of Circularly Polarized Luminescence Active Organic Assemblies in Aqueous Media via Efficient Living Supramolecular Polymerization,” Chemistry of Materials 36 (2024): 9460-9468.

[14]

T. Fukui, S. Kawai, S. Fujinuma, et al., “Control Over Differentiation of a Metastable Supramolecular Assembly in One and Two Dimensions,” Nature Chemistry 9 (2017): 493-499.

[15]

P. A. Korevaar, S. J. George, A. J. Markvoort, et al., “Pathway Complexity in Supramolecular Polymerization,” Nature 481 (2012): 492-496.

[16]

S. Ogi, V. Stepanenko, J. Thein, and F. Würthner, “Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization,” Journal of the American Chemical Society 138 (2016): 670-678.

[17]

M. Wehner, M. I. S. Röhr, V. Stepanenko, and F. Würthner, “Control of Self-Assembly Pathways Toward Conglomerate and Racemic Supramolecular Polymers,” Nature Communications 11 (2020): 5460.

[18]

M. Wehner and F. Würthner, “Supramolecular Polymerization Through Kinetic Pathway Control and Living Chain Growth,” Nature Reviews Chemistry 4 (2020): 38-53.

[19]

H. Lee, M. Lee, J. H. Hwang, I. Kim, E. Lee, and W.-D. Jang, “Recognition of Atomic-Level Difference in Porphyrin Dyads for Self-Sorted Supramolecular Polymer Growth,” Nanoscale 15 (2023): 18224-18232.

[20]

C. A. Hunter, J. K. Sanders, and A. J. Stone, “Exciton Coupling in Porphyrin Dimers,” Chemical Physics 133 (1989): 395-404.

[21]

L. T. Bergendahl and M. J. Paterson, “Excited States of Porphyrin and Porphycene Aggregates: Computational Insights,” Computational and Theoretical Chemistry 1040 (2014): 274-286.

[22]

K. Kinjo, T. Hirao, S. I. Kihara, Y. Katsumoto, and T. Haino, “Supramolecular Porphyrin Copolymer Assembled Through Host-Guest Interactions and Metal-Ligand Coordination,” Angewandte Chemie 127 (2015): 15043-15047.

[23]

T. Kojima, T. Nakanishi, T. Honda, R. Harada, M. Shiro, and S. Fukuzumi, “Impact of Distortion of Porphyrins on Axial Coordination in (Porphyrinato)Zinc(II) Complexes With Aminopyridines as Axial Ligands,” European Journal of Inorganic Chemistry 2009 (2009): 727-734.

[24]

H. Lee, H. Park, D. Y. Ryu, and W.-D. Jang, “Porphyrin-Based Supramolecular Polymers,” Chemical Society Reviews 52 (2023): 1947-1974.

[25]

C. O. Obondi, G. N. Lim, Y. Jang, et al., “Charge Stabilization in High-Potential Zinc Porphyrin-Fullerene via Axial Ligation of Tetrathiafulvalene,” Journal of Physical Chemistry C 122 (2018): 13636-13647.

[26]

H. Lee, D. Lee, I. Kim, E. Lee, and W.-D. Jang, “Formation of Supramolecular Polymers From Porphyrin Tripods,” Macromolecules 53 (2020): 8060-8067.

[27]

D. Yim, J. Sung, S. Kim, et al., “Guest-Induced Modulation of the Energy Transfer Process in Porphyrin-Based Artificial Light Harvesting Dendrimers,” Journal of the American Chemical Society 139 (2017): 993-1002.

[28]

G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, and S. Abbate, “Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects,” Chirality 28 (2016): 696-707.

[29]

Y. Sang, J. Han, T. Zhao, P. Duan, and M. Liu, “Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application,” Advanced Materials 32 (2020): 1900110.

[30]

H. Isla, M. Srebro-Hooper, M. Jean, et al., “Conformational Changes and Chiroptical Switching of Enantiopure Bis-Helicenic Terpyridine Upon Zn 2+ Binding,” Chemical Communications 52 (2016): 5932-5935.

[31]

S. Ito, K. Ikeda, S. Nakanishi, Y. Imai, and M. Asami, “Concentration-Dependent Circularly Polarized Luminescence (CPL) of Chiral N,N′-Dipyrenyldiamines: Sign-Inverted CPL Switching Between Monomer and Excimer Regions Under Retention of the Monomer Emission for Photoluminescence,” Chemical Communications 53 (2017): 6323-6326.

[32]

K. Nakabayashi, T. Amako, N. Tajima, M. Fujiki, and Y. Imai, “Nonclassical Dual Control of Circularly Polarized Luminescence Modes of Binaphthyl-Pyrene Organic Fluorophores in Fluidic and Glassy Media,” Chemical Communications 50 (2014): 13228-13230.

[33]

N. Saleh, B. Moore, M. Srebro, et al., “Acid/Base-Triggered Switching of Circularly Polarized Luminescence and Electronic Circular Dichroism in Organic and Organometallic Helicenes,” Chemistry: A European Journal 21 (2015): 1673-1681.

[34]

K. Takaishi, M. Yasui, and T. Ema, “Binaphthyl-Bipyridyl Cyclic Dyads as a Chiroptical Switch,” Journal of the American Chemical Society 140 (2018): 5334-5338.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/