Lung-Penetrating Biomimetic Extracellular Vesicle Spherical Nucleic Acids for Pulmonary Fibrosis Therapy Through ROS Scavenging and Anti-Inflammatory Effects

Saiyun Lou , Jiangpo Ma , Pan Fu , Lin Li , Jingyun Huang , Fangxue Jing , Yuhui Wang , Sihua Qian , Jianping Zheng , Jiang Li , Zhaoxing Dong , Kaizhe Wang

Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70086

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (9) : e70086 DOI: 10.1002/agt2.70086
RESEARCH ARTICLE

Lung-Penetrating Biomimetic Extracellular Vesicle Spherical Nucleic Acids for Pulmonary Fibrosis Therapy Through ROS Scavenging and Anti-Inflammatory Effects

Author information +
History +
PDF

Abstract

Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease characterized by persistent alveolar epithelial cell injury and extracellular matrix deposition. Early dual modulation of oxidative stress and inflammation may offer a promising therapeutic opportunity. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer therapeutic promise but face challenges in scalability and efficient lung delivery. Here, we developed a biomimetic extracellular vesicle-spherical nucleic acid (BEV-SNA) platform for IPF therapy. BEV-SNA were constructed by integrating mechanically extruded BEVs from primary MSCs with cholesterol-modified ssDNA through hydrophobic co-assembly. In stemness-maintained P0-P1 MSCs, the production of BEVs increased by 17.2-fold compared to natural EVs. Benefiting from a three-dimensionally dense and negatively charged DNA shell, BEV-SNA reduce airway adhesion, enabling deep pulmonary delivery and efficient cellular uptake. In IPF models, BEV-SNA demonstrated multiphase therapeutic effects, including protection of alveolar epithelial cells from ROS, anti-inflammatory activity, and late-stage anti-fibrotic action, effectively halting fibrosis progression and achieving a 50% survival rate in mice. This study presents a novel therapeutic platform combining the natural biomimicry of EVs with the functional adaptability of SNAs, proposing an innovative strategy for pulmonary drug delivery and the treatment of respiratory diseases.

Keywords

biomimetic extracellular vesicles / DNA nanomaterials / idiopathic pulmonary fibrosis / lung delivery / spherical nucleic acids

Cite this article

Download citation ▾
Saiyun Lou, Jiangpo Ma, Pan Fu, Lin Li, Jingyun Huang, Fangxue Jing, Yuhui Wang, Sihua Qian, Jianping Zheng, Jiang Li, Zhaoxing Dong, Kaizhe Wang. Lung-Penetrating Biomimetic Extracellular Vesicle Spherical Nucleic Acids for Pulmonary Fibrosis Therapy Through ROS Scavenging and Anti-Inflammatory Effects. Aggregate, 2025, 6(9): e70086 DOI:10.1002/agt2.70086

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Richeldi, H. R. Collard, and M. G. Jones, “Idiopathic Pulmonary Fibrosis,” The Lancet 389, no. 10082 (2017): 1941-1952.

[2]

M. Wijsenbeek and V. Cottin, “Spectrum of Fibrotic Lung Diseases,” Journal of Medicine 383, no. 10 (2020): 958-968.

[3]

J. A. Kropski and T. S. Blackwell, “Progress in Understanding and Treating Idiopathic Pulmonary Fibrosis,” Annual Review of Medicine 70 (2019): 211-224.

[4]

G. Sgalla, E. Cocconcelli, R. Tonelli, and L. Richeldi, “Novel Drug Targets for Idiopathic Pulmonary Fibrosis,” Expert Review of Respiratory Medicine 10, no. 4 (2016): 393-405.

[5]

T. E. King, A. Pardo, and M. Selman, “Idiopathic Pulmonary Fibrosis,” Lancet 378, no. 9807 (2011): 1949-1961.

[6]

R. Faner, M. Rojas, W. MacNee, and A. Agustí, “Abnormal Lung Aging in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis,” American Journal of Respiratory and Critical Care Medicine 186, no. 4 (2012): 306-313.

[7]

V. L. Kinnula and J. D. Crapo, “Superoxide Dismutases in the Lung and Human Lung Diseases,” American Journal of Respiratory and Critical Care Medicine 167, no. 12 (2003): 1600-1619.

[8]

P. Cheresh, S. J. Kim, S. Tulasiram, and D. W. Kamp, “Oxidative Stress and Pulmonary Fibrosis,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1832, no. 7 (2013): 1028-1040.

[9]

Y. S. Wang, X. P. Li, S. W. Pu, et al., “Ameliorative Effects of Arctigenin on Pulmonary Fibrosis Induced by Bleomycin via the Antioxidant Activity,” Oxidative Medicine and Cellular Longevity 2022 (2022): 3541731.

[10]

V. Anathy, K. G. Lahue, D. G. Chapman, et al., “Reducing Protein Oxidation Reverses Lung Fibrosis,” Nature Medicine 24, no. 8 (2018): 1128-1135.

[11]

R. Kalluri and V. S. LeBleu, “The Biology, Function, and Biomedical Applications of Exosomes,” Science 367, no. 6478 (2020): aau6977.

[12]

E. G. Zhang, X. Geng, S. Shan, et al., “Exosomes Derived From Bone Marrow Mesenchymal Stem Cells Reverse Epithelial-Mesenchymal Transition Potentially via Attenuating Wnt/Β-Catenin Signaling to Alleviate Silica-Induced Pulmonary Fibrosis,” Toxicology Mechanisms and Methods 31, no. 9 (2021): 655-666.

[13]

C. R. Harrell, V. Djonov, A. Volarevic, A. Arsenijevic, and V. Volarevic, “Molecular Mechanisms Responsible for the Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Lung Fibrosis,” International Journal of Molecular Sciences 25, no. 8 (2024): 4378.

[14]

Y. Li, Z. F. Shen, X. Jiang, et al., “Mouse Mesenchymal Stem Cell-Derived Exosomal miR-466f-3p Reverses EMT Process through Inhibiting AKT/GSK3β Pathway via c-MET in Radiation-Induced Lung Injury,” Journal of Experimental & Clinical Cancer Research 41 (2022): 128.

[15]

A. A. Danilushkina, C. C. Emene, N. A. Barlev, and M. O. Gomzikova, “Strategies for Engineering of Extracellular Vesicles,” International Journal of Molecular Sciences 24, no. 17 (2023): 13247.

[16]

S. C. Jang, O. Y. Kim, C. M. Yoon, et al., “Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors,” ACS Nano 7, no. 9 (2013): 7698-7710.

[17]

E. Willms, C. Cabañas, I. Mäger, M. J. A. Wood, and P. Vader, “Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression,” Frontiers in immunology 9 (2018): 00738.

[18]

G. Huang, G. G. Lin, Y. Zhu, W. Duan, and D. Y. Jin, “Emerging Technologies for Profiling Extracellular Vesicle Heterogeneity,” Lab on A Chip 20, no. 14 (2020): 2423-2437.

[19]

A. Hoshino, H. S. Kim, L. Bojmar, et al., “Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,” Cell 182, no. 4 (2020): 1044-1061.

[20]

J. Kowal, G. Arras, M. Colombo, et al., “Proteomic Comparison Defines Novel Markers to Characterize Heterogeneous Populations of Extracellular Vesicle Subtypes,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 8 (2016): e968-e977.

[21]

R. Pangeni, T. Meng, S. Poudel, et al., “Airway Mucus in Pulmonary Diseases: Muco-Adhesive and Muco-Penetrating Particles to Overcome the Airway Mucus Barriers,” International Journal of Pharmaceutics 634 (2023): 122661.

[22]

Y. Hu and C. M. Niemeyer, “From DNA Nanotechnology to Material Systems Engineering,” Advanced Materials 31, no. 26 (2019): 1806294.

[23]

N. Kihal, P. T. Nguyen, A. Nazemi, A. A. Greschner,; M. A. Gauthier, and S. Bourgault, “DNA Nanostructures Prevent the Formation of and Convert Toxic Amyloid Proteospecies Into Cytocompatible and Biodegradable Spherical Complexes,” Aggregate 5, no. 3 (2024): e502.

[24]

Y. Yang, H. Lu, D. Fang, et al., “DNA-Encoded Plasmonic Bubbles Aggregating Dual-MicroRNA SERS Signals for Cancer Diagnosis,” Aggregate 5, no. 6 (2024): e636.

[25]

M. H. Teplensky, M. Evangelopoulos, J. W. Dittmar, et al., “Multi-Antigen Spherical Nucleic Acid Cancer Vaccines,” Nature Biomedical Engineering 7, no. 7 (2023): 911-927.

[26]

M. Fan, H. Li, D. L. Shen, et al., “Decoy Exosomes Offer Protection Against Chemotherapy-Induced Toxicity,” Advanced Science 9, no. 32 (2022): 2203505.

[27]

H. Y. Wang, Y. F. Jiao, S. J. Ma, et al., “Nebulized Inhalation of Peptide-Modified DNA Origami to Alleviate Acute Lung Injury,” Nano Letters 24, no. 20 (2024): 6102-6111.

[28]

D. W. Jiang, Z. L. Ge, H. J. Im, et al., “DNA Origami Nanostructures Can Exhibit Preferential Renal Uptake and Alleviate Acute Kidney Injury,” Nature Biomedical Engineering 2, no. 11 (2018): 865-877.

[29]

Y. Y. Zhang, Y. Sun, H. Liao, and S. R. Shi, “Multifunctional DNA Nanomaterials: A New Frontier in Rheumatoid Arthritis Diagnosis and Treatment,” Nanoscale 17, no. 9 (2025): 4974-4999.

[30]

R. J. Banga, N. Chernyak, S. P. Narayan, S. T. Nguyen, and C. A. Mirkin, “Liposomal Spherical Nucleic Acids,” Journal of the American Chemical Society 136, no. 28 (2014): 9866-9869.

[31]

J. R. Ferrer, A. J. Sinegra, D. Ivancic, et al., “Structure-Dependent Biodistribution of Liposomal Spherical Nucleic Acids,” ACS Nano 14, no. 2 (2020): 1682-1693.

[32]

H. Chen, Q. J. Ding, L. Li, et al., “Extracellular Vesicle Spherical Nucleic Acids,” JACS Au 4, no. 6 (2024): 2381-2392.

[33]

Y. W. Choo, M. Kang, H. Y. Kim, et al., “M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors,” ACS Nano 12, no. 9 (2018): 8977-8993.

[34]

X. Y. Wang, S. Q. Hu, J. L. Li, et al., “Extruded Mesenchymal Stem Cell Nanovesicles Are Equally Potent to Natural Extracellular Vesicles in Cardiac Repair,” ACS Applied Materials & Interfaces 13, no. 47 (2021): 55767-55779.

[35]

J. H. Li, H. J. Zhou, C. Liu, et al., “Biomembrane-Inspired Design of Medical Micro/Nanorobots: From Cytomembrane Stealth Cloaks to Cellularized Trojan Horses,” Aggregate 4, no. 5 (2023): e359.

[36]

M. Y. Yang, Y. J. Lin, M. M. Han, et al., “Pathological Collagen Targeting and Penetrating Liposomes for Idiopathic Pulmonary Fibrosis Therapy,” Journal of Controlled Release 351 (2022): 623-637.

[37]

J. V. Fahy and B. F. Dickey, “Medical Progress Airway Mucus Function and Dysfunction,” Journal of Medicine 363, no. 23 (2010): 2233-2247.

[38]

L. M. Ensign, C. Schneider, J. S. Suk, R. Cone, and J. Hanes, “Mucus Penetrating Nanoparticles: Biophysical Tool and Method of Drug and Gene Delivery,” Advanced Materials 24, no. 28 (2012): 3887-3894.

[39]

M. Y. Yang, M. M. Han, L. Tang, et al., “Dual Barrier-Penetrating Inhaled Nanoparticles for Enhanced Idiopathic Pulmonary Fibrosis Therapy,” Advanced Functional Materials 34, no. 23 (2024): 2315128.

[40]

S. Y. Gao, X. H. Li, Q. Y. Jiang, et al., “PKM2 Promotes Pulmonary Fibrosis by Stabilizing TGF-β1 Receptor I and Enhancing TGF-β1 Signaling,” Science Advances 8, no. 38 (2022): abo0987.

[41]

R. A. Louzada, R. Corre, R. A. El Hassani, et al., “NADPH Oxidase DUOX1 Sustains TGF-β1 Signalling and Promotes Lung Fibrosis,” European Respiratory Journal 57, no. 1 (2021): 1901949.

[42]

M. R. Gorowiec, L. A. Borthwick, S. M. Parker, J. A. Kirby, G. C. Saretzki, and A. J. Fisher, “Free Radical Generation Induces Epithelial-to-Mesenchymal Transition in Lung Epithelium via a TGF-β1-Dependent Mechanism,” Free Radical Biology and Medicine 52, no. 6 (2012): 1024-1032.

[43]

S. Kletukhina, G. Mutallapova, A. Titova, and M. Gomzikova, “Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis,” International Journal of Molecular Sciences 23, no. 19 (2022): 11212.

[44]

A. L. Mora, M. Bueno, and M. Rojas, “Mitochondria in the Spotlight of Aging and Idiopathic Pulmonary Fibrosis,” Journal of Clinical Investigation 127, no. 2 (2017): 405-414.

[45]

N. Khalil, R. Oconnor, H. Unruh, P. Warren, A. Kemp, and A. Greenberg, “Enhanced Expression and Immunohistochemical Distribution of Transforming Growth Factor-β in Idiopathic Pulmonary Fibrosis,” Chest 99, no. 3 (1991): 65S-66S.

[46]

J. Xu, S. Lamouille, and R. Derynck, “TGF-β-Induced Epithelial to Mesenchymal Transition,” Cell Research 19, no. 2 (2009): 156-172.

[47]

F. S. Younesi, A. E. Miller, T. H. Barker, F. M. V. Rossi, and B. Hinz, “Fibroblast and Myofibroblast Activation in Normal Tissue Repair and Fibrosis,” Nature Reviews Molecular Cell Biology 25, no. 8 (2024): 617-638.

[48]

T. Tsukui, P. J. Wolters, and D. Sheppard, “Alveolar Fibroblast Lineage Orchestrates Lung Inflammation and Fibrosis,” Nature 631, no. 8021 (2024): 627-634.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/