PDF
Abstract
More than a century ago, it was known that the accumulation of ordered protein aggregates, amyloid fibrils, accompanies several serious and still largely incurable pathologies, including Alzheimer's and Parkinson's diseases. The striking gap between decades of research identifying amyloids as one of the key drivers of neurodegeneration and the persistent lack of effective anti-amyloid therapies reveals a perplexing contradiction, which we define as the “amyloid paradox.” To address this paradox, here we summarize and analyze current perspectives on the unique properties and pathogenic mechanisms of amyloids, highlighting the variability and complexity of their biological consequences and uncovering the risks and limitations encountered in combating these aggregates. We conceptualize amyloid fibril pathogenicity as a complex cascade extending well beyond direct cytotoxicity, such as that arising from disruption of membranes and other cellular organelles. This review encompasses amyloids' disruptive effects on cellular processes and ability to trigger inflammatory responses, their resistance to degradation, capacity to regenerate after apparent destruction, tendency to propagate throughout the organism, propensity to cytotoxicity-increasing transformation, and ability to sequester and pathologically modify essential biomolecules. This integrated analysis reveals why single-target therapeutic approaches often fail and suggests that effective anti-amyloid strategies must address multiple aspects of amyloid pathogenicity simultaneously. The conceptual reframing of the threats of amyloid fibrils helps explain the origins of the amyloid paradox, enhances our understanding of these complex pathogenic agents, and provides a foundation for developing more effective and safe therapeutic strategies for neurodegenerative diseases. These strategies should address the complex and interconnected nature of amyloid pathogenicity rather than its targeting isolated aspects.
Keywords
anti-amyloid therapy
/
cell death
/
amyloidosis
/
cytotoxicity mechanisms
/
neurodegenerative disease
/
pathological amyloid aggregates
Cite this article
Download citation ▾
Maksim I. Sulatsky, Olesya V. Stepanenko, Olga V. Stepanenko, Anna I. Sulatskaya.
Solving the Amyloid Paradox: Unveiling the Complex Pathogenicity of Amyloid Fibrils.
Aggregate, 2025, 6(7): e70078 DOI:10.1002/agt2.70078
| [1] |
T. P. Knowles, A. W. Fitzpatrick, S. Meehan, et al., “Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils,” Science 318 (2007): 1900-1903.
|
| [2] |
D. Eisenberg and M. Jucker, “The Amyloid State of Proteins in Human Diseases,” Cell 148 (2012): 1188-1203.
|
| [3] |
G.-f. Chen, T.-h. Xu, Y. Yan, et al., “Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development,” Acta Pharmacologica Sinica 38 (2017): 1205-1235.
|
| [4] |
M. Sunde and C. C. Blake, “From the Globular to the Fibrous State: Protein Structure and Structural Conversion in Amyloid Formation,” Quarterly Reviews of Biophysics 31 (1998): 1-39.
|
| [5] |
E. D. Eanes and G. G. Glenner, “X-Ray Diffraction Studies on Amyloid Filaments,” Journal of Histochemistry and Cytochemistry 16 (1968): 673-677.
|
| [6] |
V. D'Aguanno, M. Ralli, M. Artico, et al., “Systemic Amyloidosis: A Contemporary Overview,” Clinical Reviews in Allergy & Immunology 59 (2020): 304-322.
|
| [7] |
T. P. Knowles, M. Vendruscolo, and C. M. Dobson, “The Amyloid State and Its Association With Protein Misfolding Diseases,” Nature Reviews Molecular Cell Biology 15 (2014): 384-396.
|
| [8] |
A. Alzheimer, R. A. Stelzmann, H. N. Schnitzlein, and F. R. Murtagh, “An English Translation of Alzheimer's 1907 Paper, "Uber eine eigenartige Erkankung der Hirnrinde",”Clinical Anatomy 8 (1995): 429-431.
|
| [9] |
D. J. Selkoe, “Resolving Controversies on the Path to Alzheimer's Therapeutics,” Nature Medicine 17 (2011): 1060-1065.
|
| [10] |
O. S. Levin and E. E. Vasenina, “Twenty-Five Years of the Amyloid Hypothesis of Alzheimer Disease: Advances, Failures and New Perspectives,” Zhurnal Nevrologii I Psikhiatrii Imeni S.S. Korsakova 116 (2016): 3.
|
| [11] |
G. G. Glenner and C. W. Wong, “Alzheimer's Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein,” Biochemical and Biophysical Research Communications 120 (1984): 885-890.
|
| [12] |
J. A. Hardy and G. A. Higgins, “Alzheimer's Disease: The Amyloid Cascade Hypothesis,” Science 256 (1992): 184-185.
|
| [13] |
M. Mirza Agha, E. Tavili, and B. Dabirmanesh, “Functional Amyloids,” Progress in Molecular Biology and Translational Science ed. B. Dabirmanesh and V. N. Uversky (Elsevier, 2024), 389-434.
|
| [14] |
S. A. Levkovich, E. Gazit, and D. L. Bar-Yosef, “Two Decades of Studying Functional Amyloids in Microorganisms,” Trends in Microbiology 29 (2021): 251-265.
|
| [15] |
A. I. Sulatskaya, A. O. Kosolapova, A. G. Bobylev, et al., “β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis,” International Journal of Molecular Sciences 2021 (2021): 22.
|
| [16] |
A. Brown and M. Torok, “Functional Amyloids in the Human Body,” Bioorganic & Medicinal Chemistry Letters 40 (2021): 127914.
|
| [17] |
L. Fioriti, C. Myers, Y. Y. Huang, et al., “The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-Like Protein CPEB3,” Neuron 86 (2015): 1433-1448.
|
| [18] |
J. Zhang, Y. Zhang, J. Wang, Y. Xia, J. Zhang, and L. Chen, “Recent Advances in Alzheimer's Disease: Mechanisms, Clinical Trials and New Drug Development Strategies,” Signal Transduction and Targeted Therapy 9 (2024): 211.
|
| [19] |
S. J. Lee, E. Nam, H. J. Lee, M. G. Savelieff, and M. H. Lim, “Towards an Understanding of Amyloid-β Oligomers: Characterization, Toxicity Mechanisms, and Inhibitors,” Chemical Society Reviews 46 (2017): 310-323.
|
| [20] |
R. Kayed and C. A. Lasagna-Reeves, “Molecular Mechanisms of Amyloid Oligomers Toxicity,” Journal of Alzheimer's Disease 33 (2013): S67-S78.
|
| [21] |
P. Westermark, M. D. Benson, J. N. Buxbaum, et al., “Amyloid: Toward Terminology Clarification Report from the Nomenclature Committee of the International Society of Amyloidosis,” Amyloid 12 (2005): 1-4.
|
| [22] |
A. Trovato, F. Chiti, A. Maritan, and F. Seno, “Insight Into the Structure of Amyloid Fibrils From the Analysis of Globular Proteins,” PLoS Computational Biology 2 (2006): e170.
|
| [23] |
GBD 2019 Dementia Forecasting Collaborators, “Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019,” Lancet Public Health 7 (2022): e105-e125.
|
| [24] |
World Health Organization. (n.d.). Dementia [Fact sheet]. Retrieved (April 10, 2025), https://www.who.int/news-room/fact-sheets/detail/dementia.
|
| [25] |
World Health Organization. (2021, September 2). World Failing to Address Dementia Challenge. WHO News. (April 10, 2025), https://www.who.int/news/item/02-09-2021-world-failing-to-address-dementia-challenge.
|
| [26] |
S. E. Vollset, H. S. Ababneh, Y. H. Abate, et al., “Burden of Disease Scenarios for 204 Countries and Territories, 2022-2050: A Forecasting Analysis for the Global Burden of Disease Study 2021,” Lancet 403 (2024): 2204-2256.
|
| [27] |
F. Helliwell, R. Layard, J. D. Sachs, et al., “World Happiness Report,” University of Oxford: Wellbeing Research Centre (2024).
|
| [28] |
E. R. Dorsey, T. Sherer, M. S. Okun, and B. R. Bloem, “The Emerging Evidence of the Parkinson Pandemic,” Journal of Parkinson's Disease 8 (2018): S3-S8.
|
| [29] |
G. P. Bates, R. Dorsey, J. F. Gusella, et al., “Huntington Disease,” Nature Reviews Disease Primers 1 (2015): 15005.
|
| [30] |
A. Jiang, R. R. Handley, K. Lehnert, and R. G. Snell, “From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research,” International Journal of Molecular Sciences 24 (2023): 13021.
|
| [31] |
B. H. Kim, S. Kim, Y. Nam, Y. H. Park, S. M. Shin, and M. Moon, “Second-Generation Anti-Amyloid Monoclonal Antibodies for Alzheimer's Disease: Current Landscape and Future Perspectives,” Translational Neurodegeneration 14 (2025): 6.
|
| [32] |
G. Pagano, K. I. Taylor, J. A. Cabrera, et al., “Prasinezumab Slows Motor Progression in Rapidly Progressing Early-Stage Parkinson's Disease,” Nature Medicine 30 (2024): 1096-1103.
|
| [33] |
K. J. Wolfe and D. M. Cyr, “Amyloid in Neurodegenerative Diseases: Friend or Foe?,” Seminars in Cell & Developmental Biology 22 (2011): 476-481.
|
| [34] |
J. L. Cummings, A. M. L. Osse, and J. W. Kinney, “Alzheimer's Disease: Novel Targets and Investigational Drugs for Disease Modification,” Drugs 83 (2023): 1387-1408.
|
| [35] |
J. D. Grill and J. L. Cummings, “Current Therapeutic Targets for the Treatment of Alzheimer's Disease,” Expert Review of Neurotherapeutics 10 (2010): 711-728.
|
| [36] |
B. A. Hijaz and L. A. Volpicelli-Daley, “Initiation and Propagation of α-Synuclein Aggregation in the Nervous System,” Molecular Neurodegeneration 15 (2020): 19.
|
| [37] |
A. Revilla-Garcia, C. Fernandez, M. Moreno-Del Alamo, V. de Los Rios, I. M. Vorberg, and R. Giraldo, “Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells,” mBio 11 (2020): e02937-19.
|
| [38] |
A. L. Mahul-Mellier, F. Vercruysse, B. Maco, et al., “Fibril Growth and Seeding Capacity Play Key Roles in α-Synuclein-Mediated Apoptotic Cell Death,” Cell Death and Differentiation 22 (2015): 2107-2122.
|
| [39] |
G. S. Gibbons, V. M. Y. Lee, and J. Q. Trojanowski, “Mechanisms of Cell-to-Cell Transmission of Pathological Tau,” JAMA Neurology 76 (2019): 101.
|
| [40] |
K. M. Donnelly, C. M. Coleman, M. L. Fuller, et al., “Hunting for the Cause: Evidence for Prion-Like Mechanisms in Huntington's Disease,” Frontiers in Neuroscience 16 (2022): 946822.
|
| [41] |
N. Kfoury, B. B. Holmes, H. Jiang, D. M. Holtzman, and M. I. Diamond, “Trans-Cellular Propagation of Tau Aggregation by Fibrillar Species,” Journal of Biological Chemistry 287 (2012): 19440-19451.
|
| [42] |
J. N. Buxbaum, A. Dispenzieri, D. S. Eisenberg, et al., “Amyloid Nomenclature 2022: Update, Novel Proteins, and Recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee,” Amyloid 29 (2022): 213-219.
|
| [43] |
S. Wegmann, I. D. Medalsy, E. Mandelkow, and D. J. Muller, “The Fuzzy Coat of Pathological Human Tau Fibrils is a Two-Layered Polyelectrolyte Brush,” Proceedings of the National Academy of Sciences of the United States of America 110 (2013): E313-E321.
|
| [44] |
Z. F. Brotzakis, T. Lohr, S. Truong, S. Hoff, M. Bonomi, and M. Vendruscolo, “Determination of the Structure and Dynamics of the Fuzzy Coat of an Amyloid Fibril of IAPP Using Cryo-Electron Microscopy,” Biochemistry 62 (2023): 2407-2416.
|
| [45] |
L. Milanesi, T. Sheynis, W. F. Xue, et al., “Direct Three-Dimensional Visualization of Membrane Disruption by Amyloid Fibrils,” Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 20455-20460.
|
| [46] |
M. Bucciantini, D. Nosi, M. Forzan, et al., “Toxic Effects of Amyloid Fibrils on Cell Membranes: The Importance of Ganglioside GM1,” Faseb Journal 26 (2012): 818-831.
|
| [47] |
S. Han, M. Kollmer, D. Markx, S. Claus, P. Walther, and M. Fandrich, “Amyloid Plaque Structure and Cell Surface Interactions of β-Amyloid Fibrils Revealed by Electron Tomography,” Scientific Reports 7 (2017): 43577.
|
| [48] |
E. Hellstrand, A. Nowacka, D. Topgaard, S. Linse, and E. Sparr, “Membrane Lipid Co-Aggregation With α-Synuclein Fibrils,” PLoS One 8 (2013): e77235.
|
| [49] |
W. F. Xue, A. L. Hellewell, W. S. Gosal, S. W. Homans, E. W. Hewitt, and S. E. Radford, “Fibril Fragmentation Enhances Amyloid Cytotoxicity,” Journal of Biological Chemistry 284 (2009): 34272-34282.
|
| [50] |
E. Bystrenova, Z. Bednarikova, M. Barbalinardo, C. Albonetti, F. Valle, and Z. Gazova, “Amyloid Fragments and Their Toxicity on Neural Cells,” Regenerative Biomaterials 6 (2019): 121-127.
|
| [51] |
A. L. Mahul-Mellier, J. Burtscher, N. Maharjan, et al., “The Process of Lewy Body Formation, Rather Than Simply α-Synuclein Fibrillization, is One of the Major Drivers of Neurodegeneration,” Proceedings of the National Academy of Sciences of the United States of America 117 (2020): 4971-4982.
|
| [52] |
N. P. Reynolds, A. Soragni, M. Rabe, et al., “Mechanism of Membrane Interaction and Disruption by α-Synuclein,” Journal of the American Chemical Society 133 (2011): 19366-19375.
|
| [53] |
K. V. Kuchibhotla, S. T. Goldman, C. R. Lattarulo, H. Y. Wu, B. T. Hyman, and B. J. Bacskai, “Aβ Plaques Lead to Aberrant Regulation of Calcium Homeostasis In Vivo Resulting in Structural and Functional Disruption of Neuronal Networks,” Neuron 59 (2008): 214-225.
|
| [54] |
I. C. Martins, I. Kuperstein, H. Wilkinson, et al., “Lipids Revert Inert Aβ Amyloid Fibrils to Neurotoxic Protofibrils That Affect Learning in Mice,” Embo Journal 27 (2008): 224-233.
|
| [55] |
R. Cascella, S. W. Chen, A. Bigi, et al., “The Release of Toxic Oligomers From α-Synuclein Fibrils Induces Dysfunction in Neuronal Cells,” Nature Communications 12 (2021): 1814.
|
| [56] |
N. Cremades, S. I. Cohen, E. Deas, et al., “Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein,” Cell 149 (2012): 1048-1059.
|
| [57] |
M. F. Sciacca, J. R. Brender, D. K. Lee, and A. Ramamoorthy, “Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation,” Biochemistry 51 (2012): 7676-7684.
|
| [58] |
B. Cheng, H. Gong, H. Xiao, R. B. Petersen, L. Zheng, and K. Huang, “Inhibiting Toxic Aggregation of Amyloidogenic Proteins: A Therapeutic Strategy for Protein Misfolding Diseases,” Biochimica Et Biophysica Acta 1830 (2013): 4860-4871.
|
| [59] |
M. F. Engel, L. Khemtemourian, C. C. Kleijer, et al., “Membrane Damage by Human Islet Amyloid Polypeptide Through Fibril Growth at the Membrane,” Proceedings of the National Academy of Sciences of the United States of America 105 (2008): 6033-6038.
|
| [60] |
D. H. Lopes, A. Meister, A. Gohlke, A. Hauser, A. Blume, and R. Winter, “Mechanism of Islet Amyloid Polypeptide Fibrillation at Lipid Interfaces Studied by Infrared Reflection Absorption Spectroscopy,” Biophysical Journal 93 (2007): 3132-3141.
|
| [61] |
A. Khondker, R. J. Alsop, and M. C. Rheinstadter, “Membrane-Accelerated Amyloid-β Aggregation and Formation of Cross-β Sheets,” Membranes 7 (2017): 49.
|
| [62] |
E. Emmanouilidou, K. Melachroinou, T. Roumeliotis, et al., “Cell-Produced α-Synuclein Is Secreted in a Calcium-Dependent Manner by Exosomes and Impacts Neuronal Survival,” Journal of Neuroscience 30 (2010): 6838-6851.
|
| [63] |
G. S. Victoria, A. Arkhipenko, S. Zhu, S. Syan, and C. Zurzolo, “Astrocyte-to-Neuron Intercellular Prion Transfer is Mediated by Cell-Cell Contact,” Scientific Reports 6 (2016): 20762.
|
| [64] |
S. Abounit, L. Bousset, F. Loria, et al., “Tunneling Nanotubes Spread Fibrillar α-Synuclein by Intercellular Trafficking of Lysosomes,” Embo Journal 35 (2016): 2120-2138.
|
| [65] |
M. Tardivel, S. Begard, L. Bousset, et al., “Tunneling Nanotube (TNT)-Mediated Neuron-to Neuron Transfer of Pathological Tau Protein Assemblies,” Acta Neuropathologica Communications 4 (2016): 117.
|
| [66] |
M. Costanzo, S. Abounit, L. Marzo, et al., “Transfer of Polyglutamine Aggregates in Neuronal Cells Occurs in Tunneling Nanotubes,” Journal of Cell Science 126 (2013): 3678-3685.
|
| [67] |
R. H. Swerdlow, “The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview,” Journal of Alzheimer's Disease 92 (2023): 751-768.
|
| [68] |
Y. Kravenska, H. Nieznanska, K. Nieznanski, E. Lukyanetz, A. Szewczyk, and P. Koprowski, “The Monomers, Oligomers, and Fibrils of Amyloid-β Inhibit the Activity of mitoBKCa Channels by a Membrane-Mediated Mechanism,” Biochimica et Biophysica Acta (BBA) - Biomembranes 1862 (2020): 183337.
|
| [69] |
R. Zadali, E. R. Ghareghozloo, M. Ramezani, et al., “Interactions With and Membrane Permeabilization of Brain Mitochondria by Amyloid Fibrils,” Journal of Visualized Experiments 151 (2019): 59883.
|
| [70] |
B. Katebi, M. Mahdavimehr, A. A. Meratan, A. Ghasemi, and M. Nemat-Gorgani, “Protective Effects of Silibinin on Insulin Amyloid Fibrillation, Cytotoxicity and Mitochondrial Membrane Damage,” Archives of Biochemistry and Biophysics 659 (2018): 22-32.
|
| [71] |
L. Q. Wang, Y. Ma, H. Y. Yuan, et al., “Cryo-EM Structure of an Amyloid Fibril Formed by Full-Length Human SOD1 Reveals Its Conformational Conversion,” Nature Communications 13 (2022): 3491.
|
| [72] |
M. Zysk, C. Beretta, L. Naia, et al., “Amyloid-β Accumulation in Human Astrocytes Induces Mitochondrial Disruption and Changed Energy Metabolism,” Journal of Neuroinflammation 20 (2023): 43.
|
| [73] |
X. Wang, K. Becker, N. Levine, et al., “Pathogenic Alpha-Synuclein Aggregates Preferentially Bind to Mitochondria and Affect Cellular Respiration,” Acta Neuropathologica Communications 7 (2019): 41.
|
| [74] |
K. Zhaliazka and D. Kurouski, “Elucidation of Molecular Mechanisms by Which Amyloid β1-42 Fibrils Exert Cell Toxicity,” Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1869 (2024): 159510.
|
| [75] |
M. Matveyenka, S. Rizevsky, and D. Kurouski, “Amyloid Aggregates Exert Cell Toxicity Causing Irreversible Damages in the Endoplasmic Reticulum,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1868 (2022): 166485.
|
| [76] |
Y. Tang, X. Zhou, T. Cao, et al., “Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases,” DNA and Cell Biology 41 (2022): 924-934.
|
| [77] |
A. C. Woerner, F. Frottin, D. Hornburg, et al., “Cytoplasmic Protein Aggregates Interfere With Nucleocytoplasmic Transport of Protein and RNA,” Science 351 (2016): 173-176.
|
| [78] |
S. Finkbeiner, “The Autophagy Lysosomal Pathway and Neurodegeneration,” Cold Spring Harbor Perspectives in Biology 12 (2020): a033993.
|
| [79] |
I. Riera-Tur, T. Schafer, D. Hornburg, et al., “Amyloid-Like Aggregating Proteins Cause Lysosomal Defects in Neurons via Gain-of-Function Toxicity,” Life Science Alliance 5 (2022): e202101185.
|
| [80] |
Q. Guo, C. Lehmer, A. Martinez-Sanchez, et al., “In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment,” Cell 172 (2018): 696-705.e12.
|
| [81] |
M. de la Cueva, D. Antequera, L. Ordonez-Gutierrez, et al., “Amyloid-β Impairs Mitochondrial Dynamics and Autophagy in Alzheimer's Disease Experimental Models,” Scientific Reports 12 (2022): 10092.
|
| [82] |
G. Cenini, C. Cecchi, A. Pensalfini, et al., “Generation of Reactive Oxygen Species by Beta Amyloid Fibrils and Oligomers Involves Different Intra/Extracellular Pathways,” Amino Acids 38 (2010): 1107-1107.
|
| [83] |
J. Mayes, C. Tinker-Mill, O. Kolosov, H. Zhang, B. J. Tabner, and D. Allsop, “β-Amyloid Fibrils in Alzheimer Disease Are Not Inert When Bound to Copper Ions but Can Degrade Hydrogen Peroxide and Generate Reactive Oxygen Species,” Journal of Biological Chemistry 289 (2014): 12052-12062.
|
| [84] |
M. Calvo-Rodriguez, E. K. Kharitonova, A. C. Snyder, et al., “Real-Time Imaging of Mitochondrial Redox Reveals Increased Mitochondrial Oxidative Stress Associated With Amyloid β Aggregates In Vivo in a Mouse Model of Alzheimer's Disease,” Molecular Neurodegeneration 19 (2024): 6.
|
| [85] |
J. Dolai, A. Maity, B. Mukherjee, R. Ray, and N. R. Jana, “Piezoelectric Amyloid Fibril for Energy Harvesting, Reactive Oxygen Species Generation, and Wireless Cell Therapy,” ACS Applied Materials & Interfaces 16 (2024): 217-227.
|
| [86] |
P. Gamba, E. Staurenghi, G. Testa, S. Giannelli, B. Sottero, and G. Leonarduzzi, “A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer's Disease,” Frontiers in Neuroscience 13 (2019): 556.
|
| [87] |
P. Bharadwaj, T. Solomon, C. J. Malajczuk, et al., “Role of the Cell Membrane Interface in Modulating Production and Uptake of Alzheimer's Beta Amyloid Protein,” Biochimica et Biophysica Acta (BBA) - Biomembranes 1860 (2018): 1639-1651.
|
| [88] |
D. A. Butterfield, A. Castegna, C. M. Lauderback, and J. Drake, “Evidence That Amyloid Beta-Peptide-Induced Lipid Peroxidation and Its Sequelae in Alzheimer's Disease Brain Contribute to Neuronal Death1,” Neurobiology of Aging 23 (2002): 655-664.
|
| [89] |
B. Uttara, A. V. Singh, P. Zamboni, and R. T. Mahajan, “Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options,” Current Neuropharmacology 7 (2009): 65-74.
|
| [90] |
G. Testa, E. Staurenghi, C. Zerbinati, et al., “Changes in Brain Oxysterols at Different Stages of Alzheimer's Disease: Their Involvement in Neuroinflammation,” Redox Biology 10 (2016): 24-33.
|
| [91] |
T. Koudelka, F. C. Dehle, I. F. Musgrave, P. Hoffmann, and J. A. Carver, “Methionine Oxidation Enhances κ-Casein Amyloid Fibril Formation,” Journal of Agricultural and Food Chemistry 60 (2012): 4144-4155.
|
| [92] |
S. Maity, N. Sepay, S. Pal, et al., “Modulation of Amyloid Fibrillation of Bovine β-Lactoglobulin by Selective Methionine Oxidation,” RSC Advances 11 (2021): 11192-11203.
|
| [93] |
W. C. Xu, J. Z. Liang, C. Li, et al., “Pathological Hydrogen Peroxide Triggers the Fibrillization of Wild-Type SOD1 via Sulfenic Acid Modification of Cys-111,” Cell Death & Disease 9 (2018): 67.
|
| [94] |
Y. K. Al-Hilaly, L. Biasetti, B. J. Blakeman, et al., “The Involvement of Dityrosine Crosslinking in α-Synuclein Assembly and Deposition in Lewy Bodies in Parkinson's Disease,” Scientific Reports 6 (2016): 39171.
|
| [95] |
M. M. Wordehoff, H. Shaykhalishahi, L. Gross, et al., “Opposed Effects of Dityrosine Formation in Soluble and Aggregated α-Synuclein on Fibril Growth,” Journal of Molecular Biology 429 (2017): 3018-3030.
|
| [96] |
M. Gu, D. C. Bode, and J. H. Viles, “Copper Redox Cycling Inhibits Aβ Fibre Formation and Promotes Fibre Fragmentation, While Generating a Dityrosine Aβ Dimer,” Scientific Reports 8 (2018): 16190.
|
| [97] |
M. Gu and J. H. Viles, “Methionine Oxidation Reduces Lag-Times for Amyloid-β(1-40) Fiber Formation but Generates Highly Fragmented Fibers,” Biochimica Et Biophysica Acta 1864 (2016): 1260-1269.
|
| [98] |
L. Zhao, J. N. Buxbaum, and N. Reixach, “Age-Related Oxidative Modifications of Transthyretin Modulate Its Amyloidogenicity,” Biochemistry 52 (2013): 1913-1926.
|
| [99] |
T. I. Williams, B. C. Lynn, W. R. Markesbery, and M. A. Lovell, “Increased Levels of 4-Hydroxynonenal and Acrolein, Neurotoxic Markers of Lipid Peroxidation, in the Brain in Mild Cognitive Impairment and Early Alzheimer's Disease,” Neurobiology of Aging 27 (2006): 1094-1099.
|
| [100] |
H. Esterbauer, R. J. Schaur, and H. Zollner, “Chemistry and Biochemistry of 4-Hydroxynonenal, Malonaldehyde and Related Aldehydes,” Free Radical Biology and Medicine 11 (1991): 81-128.
|
| [101] |
Q. Zhang, E. T. Powers, J. Nieva, et al., “Metabolite-Initiated Protein Misfolding May Trigger Alzheimer's Disease,” Proceedings of the National Academy of Sciences of the United States of America 101 (2004): 4752-4757.
|
| [102] |
W. J. Huang, X. Zhang, and W. W. Chen, “Role of Oxidative Stress in Alzheimer's Disease,” Biomedical Reports 4 (2016): 519-522.
|
| [103] |
V. V. Kunjathoor, A. A. Tseng, L. A. Medeiros, T. Khan, and K. J. Moore, “β-Amyloid Promotes Accumulation of Lipid Peroxides by Inhibiting CD36-Mediated Clearance of Oxidized Lipoproteins,” Journal of Neuroinflammation 1 (2004): 23.
|
| [104] |
A. Moghe, S. Ghare, B. Lamoreau, et al., “Molecular Mechanisms of Acrolein Toxicity: Relevance to Human Disease,” Toxicological Sciences 143 (2015): 242-255.
|
| [105] |
M. R. Sanotra, S. H. Kao, C. K. Lee, et al., “Acrolein Adducts and Responding Autoantibodies Correlate With Metabolic Disturbance in Alzheimer's Disease,” Alzheimer's Research & Therapy 15 (2023): 115.
|
| [106] |
T. Alqahtani, S. L. Deore, A. A. Kide, et al., “Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease, and Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis -An Updated Review,” Mitochondrion 71 (2023): 83-92.
|
| [107] |
S. K. Biswas, “Does the Interdependence Between Oxidative Stress and Inflammation Explain the Antioxidant Paradox?,” Oxidative Medicine and Cellular Longevity 2016 (2016): 5698931.
|
| [108] |
A. S. Ferecsko, M. J. Smallwood, A. Moore, et al., “STING-Triggered CNS Inflammation in Human Neurodegenerative Diseases,” Biomedicines 11 (2023): 1375.
|
| [109] |
S. Chung, J. H. Jeong, J. C. Park, et al., “Blockade of STING Activation Alleviates Microglial Dysfunction and a Broad Spectrum of Alzheimer's Disease Pathologies,” Experimental & Molecular Medicine 56 (2024): 1936-1951.
|
| [110] |
J. C. Udeochu, S. Amin, Y. Huang, et al., “Tau Activation of Microglial cGAS-IFN Reduces MEF2C-Mediated Cognitive Resilience,” Nature Neuroscience 26 (2023): 737-750.
|
| [111] |
J. T. Hinkle, J. Patel, N. Panicker, et al., “STING Mediates Neurodegeneration and Neuroinflammation in Nigrostriatal α-Synucleinopathy,” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): e2118819119.
|
| [112] |
X. Guo, L. Yang, J. Wang, et al., “The cytosolic DNA-Sensing cGAS—STING Pathway in Neurodegenerative Diseases,” CNS Neuroscience & Therapeutics 30 (2024): e14671.
|
| [113] |
K. P. Hopfner and V. Hornung, “Molecular Mechanisms and Cellular Functions of cGAS-STING Signalling,” Nature Reviews Molecular Cell Biology 21 (2020): 501-521.
|
| [114] |
L. Andreeva, B. Hiller, D. Kostrewa, et al., “cGAS Senses Long and HMGB/TFAM-Bound U-Turn DNA by Forming Protein-DNA Ladders,” Nature 549 (2017): 394-398.
|
| [115] |
D. A. Sliter, J. Martinez, L. Hao, et al., “Parkin and PINK1 Mitigate STING-Induced Inflammation,” Nature 561 (2018): 258-262.
|
| [116] |
A. Decout, J. D. Katz, S. Venkatraman, and A. Ablasser, “The cGAS-STING Pathway as a Therapeutic Target in Inflammatory Diseases,” Nature Reviews Immunology 21 (2021): 548-569.
|
| [117] |
A. Ablasser and Z. J. Chen, “cGAS in Action: Expanding Roles in Immunity and Inflammation,” Science 363 (2019): eaat8657.
|
| [118] |
Y. Huang, B. Liu, S. C. Sinha, S. Amin, and L. Gan, “Mechanism and Therapeutic Potential of Targeting cGAS-STING Signaling in Neurological Disorders,” Molecular Neurodegeneration 18 (2023): 79.
|
| [119] |
X. Xie, G. Ma, X. Li, J. Zhao, Z. Zhao, and J. Zeng, “Activation of Innate Immune cGAS-STING Pathway Contributes to Alzheimer's Pathogenesis in 5×FAD Mice,” Nature Aging 3 (2023): 202-212.
|
| [120] |
V. Mathur, R. Burai, R. T. Vest, et al., “Activation of the STING-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation,” Neuron 96 (2017): 1290-1302.e6.
|
| [121] |
D. G. Standaert and G. M. Childers, “Alpha-Synuclein-Mediated DNA Damage, STING Activation, and Neuroinflammation in Parkinson's Disease,” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): e2204058119.
|
| [122] |
C. H. Yu, S. Davidson, C. R. Harapas, et al., “TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS,” Cell 183 (2020): 636-649.e18.
|
| [123] |
M. Sharma, S. Rajendrarao, N. Shahani, U. N. Ramirez-Jarquin, and S. Subramaniam, “Cyclic GMP-AMP Synthase Promotes the Inflammatory and Autophagy Responses in Huntington Disease,” Proceedings of the National Academy of Sciences of the United States of America 117 (2020): 15989-15999.
|
| [124] |
M. Jin, H. Shiwaku, H. Tanaka, et al., “Tau Activates Microglia via the PQBP1-cGAS-STING Pathway to Promote Brain Inflammation,” Nature Communications 12 (2021): 6565.
|
| [125] |
M. T. Heneka, D. T. Golenbock, and E. Latz, “Innate Immunity in Alzheimer's Disease,” Nature Immunology 16 (2015): 229-236.
|
| [126] |
A. Halle, V. Hornung, G. C. Petzold, et al., “The NALP3 Inflammasome is Involved in the Innate Immune Response to Amyloid-β,” Nature Immunology 9 (2008): 857-865.
|
| [127] |
N. S. Leibold and F. Despa, “Neuroinflammation Induced by Amyloid-Forming Pancreatic Amylin: Rationale for a Mechanistic Hypothesis,” Biophysical Chemistry 310 (2024): 107252.
|
| [128] |
Y. H. Wang and Y. G. Zhang, “Amyloid and Immune Homeostasis,” Immunobiology 223 (2018): 288-293.
|
| [129] |
S. L. Masters and L. A. O'Neill, “Disease-Associated Amyloid and Misfolded Protein Aggregates Activate the Inflammasome,” Trends in Molecular Medicine 17 (2011): 276-282.
|
| [130] |
S. Thakur, R. Dhapola, P. Sarma, B. Medhi, and D. H. Reddy, “Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics,” Inflammation 46 (2023): 1-17.
|
| [131] |
S. S. Bohlson and A. J. Tenner, “Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation,” Annual Review of Immunology 41 (2023): 431-452.
|
| [132] |
E. C. Lavelle, C. Murphy, L. A. O'Neill, and E. M. Creagh, “The role of TLRs, NLRs, and RLRs in Mucosal Innate Immunity and Homeostasis,” Mucosal Immunology 3 (2010): 17-28.
|
| [133] |
M. T. Heneka, M. J. Carson, J. El Khoury, et al., “Neuroinflammation in Alzheimer's Disease,” Lancet Neurology 14 (2015): 388-405.
|
| [134] |
D. T. Weldon, S. D. Rogers, J. R. Ghilardi, et al., “Fibrillar β-Amyloid Induces Microglial Phagocytosis, Expression of Inducible Nitric Oxide Synthase, and Loss of a Select Population of Neurons in the Rat CNS In Vivo,” Journal of Neuroscience 18 (1998): 2161-2173.
|
| [135] |
H. Chung, M. I. Brazil, T. T. Soe, and F. R. Maxfield, “Uptake, Degradation, and Release of Fibrillar and Soluble Forms of Alzheimer's Amyloid β-Peptide by Microglial Cells,” Journal of Biological Chemistry 274 (1999): 32301-32308.
|
| [136] |
M. Britschgi, C. E. Olin, H. T. Johns, et al., “Neuroprotective Natural Antibodies to Assemblies of Amyloidogenic Peptides Decrease With Normal Aging and Advancing Alzheimer's Disease,” Proceedings of the National Academy of Sciences of the United States of America 106 (2009): 12145-12150.
|
| [137] |
A. Kellner, J. Matschke, C. Bernreuther, H. Moch, I. Ferrer, and M. Glatzel, “Autoantibodies Against β-Amyloid are Common in Alzheimer's Disease and Help Control Plaque Burden,” Annals of Neurology 65 (2009): 24-31.
|
| [138] |
J. Koenigsknecht-Talboo and G. E. Landreth, “Microglial Phagocytosis Induced by Fibrillar β-Amyloid and IgGs Are Differentially Regulated by Proinflammatory Cytokines,” Journal of Neuroscience 25 (2005): 8240-8249.
|
| [139] |
S. Mruthinti, J. J. Buccafusco, W. D. Hill, et al., “Autoimmunity in Alzheimer's Disease: Increased Levels of Circulating IgGs Binding Aβ and RAGE Peptides,” Neurobiology of Aging 25 (2004): 1023-1032.
|
| [140] |
C. Chen and P. Xu, “Activation and Pharmacological Regulation of Inflammasomes,” Biomolecules 12 (2022): 1005.
|
| [141] |
Y. Rajesh and T. D. Kanneganti, “Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease,” Cells 11 (2022): 1885.
|
| [142] |
F. Leng and P. Edison, “Neuroinflammation and Microglial Activation in Alzheimer Disease: Where do we go From Here?,” Nature Reviews Neurology 17 (2021): 157-172.
|
| [143] |
E. Chatani, K. Yuzu, Y. Ohhashi, and Y. Goto, “Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils,” International Journal of Molecular Sciences 22 (2021): 4349.
|
| [144] |
M. I. Sulatsky, O. V. Stepanenko, O. V. Stepanenko, et al., “Broken But Not Beaten: Challenge of Reducing the Amyloids Pathogenicity by Degradation,” Journal of Advanced Research 70 (2025): 45-62.
|
| [145] |
P. Yan, X. Hu, H. Song, et al., “Matrix Metalloproteinase-9 Degrades Amyloid-β Fibrils In Vitro and Compact Plaques In Situ,” Journal of Biological Chemistry 281 (2006): 24566-24574.
|
| [146] |
M. C. Liao and W. E. Van Nostrand, “Degradation of Soluble and Fibrillar Amyloid β-Protein by Matrix Metalloproteinase (MT1-MMP) In Vitro,” Biochemistry 49 (2010): 1127-1136.
|
| [147] |
N. N. Nalivaeva, L. R. Fisk, N. D. Belyaev, and A. J. Turner, “Amyloid-Degrading Enzymes as Therapeutic Targets in Alzheimers Disease,” Current Alzheimer Research 5 (2008): 212-224.
|
| [148] |
D. T. Meier, L. H. Tu, S. Zraika, et al., “Matrix Metalloproteinase-9 Protects Islets From Amyloid-Induced Toxicity,” Journal of Biological Chemistry 290 (2015): 30475-30485.
|
| [149] |
O. V. Stepanenko, M. I. Sulatsky, E. V. Mikhailova, O. V. Stepanenko, and A. I. Sulatskaya, “Degradation of Pathogenic Amyloids Induced by Matrix Metalloproteinase-9,” International Journal of Biological Macromolecules 281 (2024): 136362.
|
| [150] |
E. Jongsma, A. Goyala, J. M. Mateos, and C. Y. Ewald, “Removal of Extracellular Human Amyloid Beta Aggregates by Extracellular Proteases in C. elegans,” Elife 12 (2023): e83465.
|
| [151] |
M. I. Sulatsky, O. V. Stepanenko, O. V. Stepanenko, et al., “Amyloid Fibrils Degradation: The Pathway to Recovery or Aggravation of the Disease?,” Frontiers in Molecular Biosciences 10 (2023): 1208059.
|
| [152] |
O. V. Stepanenko, M. I. Sulatsky, E. V. Mikhailova, et al., “Trypsin Induced Degradation of Amyloid Fibrils,” International Journal of Molecular Sciences 22 (2021): 4828.
|
| [153] |
H. Chander, A. Chauhan, J. Wegiel, M. Malik, A. Sheikh, and V. Chauhan, “Binding of Trypsin to Fibrillar Amyloid Beta-Protein,” Brain Research 1082 (2006): 173-181.
|
| [154] |
S. Poepsel, A. Sprengel, B. Sacca, et al., “Determinants of Amyloid Fibril Degradation by the PDZ Protease HTRA1,” Nature Chemical Biology 11 (2015): 862-869.
|
| [155] |
S. Bohne, K. Sletten, R. Menard, et al., “Cleavage of AL Amyloid Proteins and AL Amyloid Deposits by Cathepsins B, K, and L,” Journal of Pathology 203 (2004): 528-537.
|
| [156] |
S. Mueller-Steiner, Y. Zhou, H. Arai, et al., “Antiamyloidogenic and Neuroprotective Functions of Cathepsin B: Implications for Alzheimer's Disease,” Neuron 51 (2006): 703-714.
|
| [157] |
J. Jones-Tabah, K. He, N. Karpilovsky, et al., “The Parkinson's Disease Risk Gene Cathepsin B Promotes Fibrillar Alpha-Synuclein Clearance, Lysosomal Function and Glucocerebrosidase Activity in Dopaminergic Neurons,” Mol Neurodegeneration 19 (2024): 88.
|
| [158] |
C. Rocken, B. Stix, D. Bromme, S. Ansorge, A. Roessner, and F. Buhling, “A Putative Role for Cathepsin K in Degradation of AA and AL Amyloidosis,” American Journal of Pathology 158 (2001): 1029-1038.
|
| [159] |
A. Aufschnaiter, V. Kohler, and S. Büttner, “Taking out the Garbage Cathepsin D and Calcineurin in Neurodegeneration,” Neural Regeneration Research 12 (2017): 1776-1779.
|
| [160] |
S. Prieto Huarcaya, A. Drobny, A. R. A. Marques, et al., “Recombinant Pro-CTSD (Cathepsin D) Enhances SNCA/α-Synuclein Degradation in α-Synucleinopathy Models,” Autophagy 18 (2022): 1127-1151.
|
| [161] |
M. I. Sulatsky, O. V. Stepanenko, O. V. Stepanenko, E. V. Mikhailova, and A. I. Sulatskaya, “From Protective Enzyme to Facilitator of Amyloid Propagation: Cathepsin D-Mediated Amyloid Fibril Fragmentation,” International Journal of Biological Macromolecules 304 (2025): 140971.
|
| [162] |
M. I. Sulatsky, O. V. Stepanenko, O. V. Stepanenko, E. V. Mikhailova, and A. I. Sulatskaya, “Cathepsin B Prevents Cell Death by Fragmentation and Destruction of Pathological Amyloid Fibrils,” Cell Death Discovery 11 (2025): 61.
|
| [163] |
E. R. Stadtman, “Protein Oxidation and Aging,” Free Radical Research 40 (2006): 1250-1258.
|
| [164] |
R. Sultana and D. A. Butterfield, “Protein Oxidation in Aging and Alzheimer's Disease Brain,” Antioxidants 13 (2024): 574.
|
| [165] |
L. Hou, H. G. Lee, F. Han, et al., “Modification of Amyloid-β1-42 Fibril Structure by Methionine-35 Oxidation,” Journal of Alzheimer's Disease 37 (2013): 9-18.
|
| [166] |
K. J. Binger, M. D. Griffin, and G. J. Howlett, “Methionine Oxidation Inhibits Assembly and Promotes Disassembly of Apolipoprotein C-II Amyloid Fibrils,” Biochemistry 47 (2008): 10208-10217.
|
| [167] |
J. Zheng, H. Jang, B. Ma, C. J. Tsai, and R. Nussinov, “Modeling the Alzheimer Aβ17-42 Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated Cavities,” Biophysical Journal 93 (2007): 3046-3057.
|
| [168] |
G. A. de Oliveira, M. A. Marques, C. Cruzeiro-Silva, et al., “Structural Basis for the Dissociation of α-Synuclein Fibrils Triggered by Pressure Perturbation of the Hydrophobic Core,” Scientific Reports 6 (2016): 37990.
|
| [169] |
D. El Moustaine, V. Perrier, I. Acquatella-Tran Van Ba, et al., “Amyloid Features and Neuronal Toxicity of Mature Prion Fibrils Are Highly Sensitive to High Pressure,” Journal of Biological Chemistry 286 (2011): 13448-13459.
|
| [170] |
A. D. Ferrao-Gonzales, L. Palmieri, M. Valory, et al., “Hydration and Packing are Crucial to Amyloidogenesis as Revealed by Pressure Studies on Transthyretin Variants That Either Protect or Worsen Amyloid Disease,” Journal of Molecular Biology 328 (2003): 963-974.
|
| [171] |
D. Foguel, M. C. Suarez, A. D. Ferrao-Gonzales, et al., “Dissociation of Amyloid Fibrils of α-Synuclein and Transthyretin by Pressure Reveals Their Reversible Nature and the Formation of Water-Excluded Cavities,” Proceedings of the National Academy of Sciences of the United States of America 100 (2003): 9831-9836.
|
| [172] |
J. Torrent, D. Martin, A. Igel-Egalon, V. Beringue, and H. Rezaei, “High-Pressure Response of Amyloid Folds,” Viruses 11 (2019): 202.
|
| [173] |
O. V. Bocharova, N. Makarava, L. Breydo, M. Anderson, V. V. Salnikov, and I. V. Baskakov, “Annealing Prion Protein Amyloid Fibrils at High Temperature Results in Extension of a Proteinase K-Resistant Core,” Journal of Biological Chemistry 281 (2006): 2373-2379.
|
| [174] |
H. X. Zhang, L. Liu, J. Wang, C. Bortolini, and M. Dong, “Thermal Effect on the Degradation of hIAPP20-29 Fibrils,” Journal of Colloid & Interface Science 513 (2018): 126-132.
|
| [175] |
J. Kardos, A. Micsonai, H. Pal-Gabor, et al., “Reversible Heat-Induced Dissociation of β 2 -Microglobulin Amyloid Fibrils,” Biochemistry 50 (2011): 3211-3220.
|
| [176] |
T. Ikenoue, Y. H. Lee, J. Kardos, et al., “Cold Denaturation of α-Synuclein Amyloid Fibrils,” Angewandte Chemie International Edition 53 (2014): 7799-7804.
|
| [177] |
W. Surmacz-Chwedoruk, I. Malka, L. Bozycki, H. Nieznanska, and W. Dzwolak, “On the Heat Stability of Amyloid-Based Biological Activity: Insights From Thermal Degradation of Insulin Fibrils,” PLoS One 9 (2014): e86320.
|
| [178] |
P. Brown, P. P. Liberski, A. Wolff, and D. C. Gajdusek, “Resistance of Scrapie Infectivity to Steam Autoclaving After Formaldehyde Fixation and Limited Survival After Ashing at 360 C: Practical and Theoretical Implications,” Journal of Infectious Diseases 161 (1990): 467-472.
|
| [179] |
H. Y. Kim, M. K. Cho, D. Riedel, C. O. Fernandez, and M. Zweckstetter, “Dissociation of Amyloid Fibrils of α-Synuclein in Supercooled Water,” Angewandte Chemie International Edition 47 (2008): 5046-5048.
|
| [180] |
E. Chatani, Y. H. Lee, H. Yagi, Y. Yoshimura, H. Naiki, and Y. Goto, “Ultrasonication-Dependent Production and Breakdown Lead to Minimum-Sized Amyloid Fibrils,” Proceedings of the National Academy of Sciences of the United States of America 106 (2009): 11119-11124.
|
| [181] |
H. Yagi, A. Mizuno, M. So, et al., “Ultrasonication-Dependent Formation and Degradation of α-Synuclein Amyloid Fibrils,” Biochimica Et Biophysica Acta 1854 (2015): 209-217.
|
| [182] |
H. Yagi, K. Hasegawa, Y. Yoshimura, and Y. Goto, “Acceleration of the Depolymerization of Amyloid β Fibrils by Ultrasonication,” Biochimica Et Biophysica Acta 1834 (2013): 2480-2485.
|
| [183] |
B. C. Jung, Y. J. Lim, E. J. Bae, et al., “Amplification of Distinct α-Synuclein Fibril Conformers Through Protein Misfolding Cyclic Amplification,” Experimental & Molecular Medicine 49 (2017): e314.
|
| [184] |
S. Sanami, T. J. Purton, D. P. Smith, M. F. Tuite, and W. F. Xue, “Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils,” Biomolecules 12 (2022): 630.
|
| [185] |
M. I. Sulatsky, A. I. Sulatskaya, O. V. Stepanenko, O. I. Povarova, I. M. Kuznetsova, and K. K. Turoverov, “Denaturant Effect on Amyloid Fibrils: Declasterization, Depolymerization, Denaturation and Reassembly,” International Journal of Biological Macromolecules 150 (2020): 681-694.
|
| [186] |
B. A. Vernaglia, J. Huang, and E. D. Clark, “Guanidine Hydrochloride Can Induce Amyloid Fibril Formation From Hen Egg-White Lysozyme,” Biomacromolecules 5 (2004): 1362-1370.
|
| [187] |
T. Narimoto, K. Sakurai, A. Okamoto, et al., “Conformational Stability of Amyloid Fibrils of β 2 -Microglobulin Probed by Guanidine-Hydrochloride-Induced Unfolding,” FEBS Letters 576 (2004): 313-319.
|
| [188] |
O. V. Stepanenko, M. I. Sulatsky, E. V. Mikhailova, et al., “Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity,” International Journal of Molecular Sciences 21 (2020): 7659.
|
| [189] |
A. I. Sulatskaya, G. N. Rychkov, M. I. Sulatsky, et al., “New Evidence on a Distinction Between Aβ40 and Aβ42 Amyloids: Thioflavin T Binding Modes, Clustering Tendency, Degradation Resistance, and Cross-Seeding,” International Journal of Molecular Sciences 23 (2022): 5513.
|
| [190] |
T. R. Serio, A. G. Cashikar, A. S. Kowal, et al., “Nucleated Conformational Conversion and the Replication of Conformational Information by a Prion Determinant,” Science 289 (2000): 1317-1321.
|
| [191] |
N. Hirota-Nakaoka, K. Hasegawa, H. Naiki, and Y. Goto, “Dissolution of 2-Microglobulin Amyloid Fibrils by Dimethylsulfoxide,” Journal of Biochemistry 134 (2003): 159-164.
|
| [192] |
C. E. MacPhee and C. M. Dobson, “Chemical Dissection and Reassembly of Amyloid Fibrils Formed by a Peptide Fragment of Transthyretin,” Journal of Molecular Biology 297 (2000): 1203-1215.
|
| [193] |
H. Wille and S. B. Prusiner, “Ultrastructural Studies on Scrapie Prion Protein Crystals Obtained From Reverse Micellar Solutions,” Biophysical Journal 76 (1999): 1048-1062.
|
| [194] |
J. H. Ippel, A. Olofsson, J. Schleucher, E. Lundgren, and S. S. Wijmenga, “Probing Solvent Accessibility of Amyloid Fibrils by SOLUTION NMR spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America 99 (2002): 8648-8653.
|
| [195] |
C. C. Quarta, M. Fontana, T. Damy, et al., “Changing Paradigm in the Treatment of Amyloidosis: From Disease-Modifying Drugs to Anti-Fibril Therapy,” Frontiers in Cardiovascular Medicine 9 (2022): 1073503.
|
| [196] |
A. Rekas, L. Jankova, D. C. Thorn, R. Cappai, and J. A. Carver, “Monitoring the Prevention of Amyloid Fibril Formation by α-Crystallin,” FEBS Journal 274 (2007): 6290-6304.
|
| [197] |
J. J. Wiltzius, M. Landau, R. Nelson, et al., “Molecular Mechanisms for Protein-Encoded Inheritance,” Nature Structural & Molecular Biology 16 (2009): 973-978.
|
| [198] |
L. Nicoud, S. Lazzari, D. Balderas Barragan, and M. Morbidelli, “Fragmentation of Amyloid Fibrils Occurs in Preferential Positions Depending on the Environmental Conditions,” Journal of Physical Chemistry B 119 (2015): 4644-4652.
|
| [199] |
W. F. Xue, A. L. Hellewell, E. W. Hewitt, and S. E. Radford, “Fibril Fragmentation in Amyloid Assembly and Cytotoxicity,” Prion 4 (2010): 20-25.
|
| [200] |
G. P. Saborio, B. Permanne, and C. Soto, “Sensitive Detection of Pathological Prion Protein by Cyclic Amplification of Protein Misfolding,” Nature 411 (2001): 810-813.
|
| [201] |
V. Meyer, P. D. Dinkel, E. R. Hager, and M. Margittai, “Amplification of Tau Fibrils From Minute Quantities of Seeds,” Biochemistry 53 (2014): 5804-5809.
|
| [202] |
K. Kakuda, K. Ikenaka, K. Araki, et al., “Ultrasonication-Based Rapid Amplification of α-Synuclein Aggregates in Cerebrospinal Fluid,” Scientific Reports 9 (2019): 6001.
|
| [203] |
M. Jucker and L. C. Walker, “Self-Propagation of Pathogenic Protein Aggregates in Neurodegenerative Diseases,” Nature 501 (2013): 45-51.
|
| [204] |
R. Frankel, M. Tornquist, G. Meisl, et al., “Autocatalytic Amplification of Alzheimer-Associated Aβ42 Peptide Aggregation in Human Cerebrospinal Fluid,” Communications Biology 2 (2019): 365.
|
| [205] |
J. L. Guo and V. M. Lee, “Seeding of Normal Tau by Pathological Tau Conformers Drives Pathogenesis of Alzheimer-Like Tangles,” Journal of Biological Chemistry 286 (2011): 15317-15331.
|
| [206] |
Z. Jaunmuktane, S. Mead, M. Ellis, et al., “Evidence for Human Transmission of Amyloid-β Pathology and Cerebral Amyloid Angiopathy,” Nature 525 (2015): 247-250.
|
| [207] |
U. Jensen-Kondering, K. Hess, C. Fluh, G. Kuhlenbaumer, and N. G. Margraf, “A Rare Case of Iatrogenic Prion-like Pathogenesis of Cerebral Amyloid Angiopathy,” Deutsches Arzteblatt international 121 (2024): 68-69.
|
| [208] |
M. Yamada, T. Hamaguchi, and K. Sakai, “Acquired Cerebral Amyloid Angiopathy: An Emerging Concept,” Progress in Molecular Biology and Translational Science 168 (2019): 85-95.
|
| [209] |
J. Y. Han, K. J. Park, H. C. Park, et al., “Autoclave Treatment Fails to Completely Inactivate DLB Alpha-Synuclein Seeding Activity,” Biochem Biophys Rep 34 (2023): 101446.
|
| [210] |
X. Fan, X. Zhang, J. Yan, et al., “Computational Investigation of Coaggregation and Cross-Seeding Between Aβ and hIAPP Underpinning the Cross-Talk in Alzheimer's Disease and Type 2 Diabetes,” Journal of Chemical Information and Modeling 64 (2024): 5303-5316.
|
| [211] |
J. Horsager, K. B. Andersen, K. Knudsen, et al., “Brain-first Versus Body-First Parkinson's Disease: A Multimodal Imaging Case-Control Study,” Brain 143 (2020): 3077-3088.
|
| [212] |
P. Borghammer, “The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson's Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline,” Journal of Parkinson's Disease 11 (2021): 455-474.
|
| [213] |
S. Holmqvist, O. Chutna, L. Bousset, et al., “Direct Evidence of Parkinson Pathology Spread From the Gastrointestinal Tract to the Brain in Rats,” Acta Neuropathologica 128 (2014): 805-820.
|
| [214] |
J. S. Kim, I. S. Park, H. E. Park, et al., “α-Synuclein in the Colon and Premotor Markers of Parkinson Disease in Neurologically Normal Subjects,” Neurological Sciences 38 (2017): 171-179.
|
| [215] |
M. G. Stokholm, E. H. Danielsen, S. J. Hamilton-Dutoit, and P. Borghammer, “Pathological α-Synuclein in Gastrointestinal Tissues From Prodromal P arkinson Disease Patients,” Annals of Neurology 79 (2016): 940-949.
|
| [216] |
M. L. Arotcarena, S. Dovero, A. Prigent, et al., “Bidirectional gut-to-Brain and Brain-to-gut Propagation of Synucleinopathy in Non-Human Primates,” Brain 143 (2020): 1462-1475.
|
| [217] |
P. Wittung-Stafshede, “Gut Power: Modulation of Human Amyloid Formation by Amyloidogenic Proteins in the Gastrointestinal Tract,” Current Opinion in Structural Biology 72 (2022): 33-38.
|
| [218] |
R. Savica, J. M. Carlin, B. R. Grossardt, et al., “Medical Records Documentation of Constipation Preceding Parkinson Disease,” Neurology 73 (2009): 1752-1758.
|
| [219] |
A. H. V. Schapira, K. R. Chaudhuri, and P. Jenner, “Non-Motor Features of Parkinson Disease,” Nature Reviews Neuroscience 18 (2017): 435-450.
|
| [220] |
A. Iranzo, E. Tolosa, E. Gelpi, et al., “Neurodegenerative Disease Status and Post-Mortem Pathology in Idiopathic Rapid-Eye-Movement Sleep Behaviour Disorder: An Observational Cohort Study,” Lancet Neurology 12 (2013): 443-453.
|
| [221] |
P. Borghammer and N. Van Den Berge, “Brain-First Versus Gut-First Parkinson's Disease: A Hypothesis,” Journal of Parkinsons Disease 9 (2019): S281-S295.
|
| [222] |
Y. S. Eisele, U. Obermuller, G. Heilbronner, et al., “Peripherally Applied Aβ-Containing Inoculates Induce Cerebral β-Amyloidosis,” Science 330 (2010): 980-982.
|
| [223] |
X. L. Bu, Y. Xiang, W. S. Jin, et al., “Blood-Derived Amyloid-β Protein Induces Alzheimer's Disease Pathologies,” Molecular Psychiatry 23 (2018): 1948-1956.
|
| [224] |
J. Wang, B. J. Gu, C. L. Masters, and Y. J. Wang, “A systemic View of Alzheimer Disease — Insights From Amyloid-β mEtabolism Beyond the Brain,” Nature Reviews Neurology 13 (2017): 612-623.
|
| [225] |
S. Craft, “The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia,” Archives of Neurology 66 (2009): 300-305.
|
| [226] |
S. M. Fereshtehnejad, Y. Zeighami, A. Dagher, and R. B. Postuma, “Clinical Criteria for Subtyping Parkinson's Disease: Biomarkers and Longitudinal Progression,” Brain 140 (2017): 1959-1976.
|
| [227] |
B. B. Holmes, S. L. DeVos, N. Kfoury, et al., “Heparan Sulfate Proteoglycans Mediate Internalization and Propagation of Specific Proteopathic Seeds,” Proceedings of the National Academy of Sciences of the United States of America 110 (2013): E3138-3147.
|
| [228] |
X. Mao, M. T. Ou, S. S. Karuppagounder, et al., “Pathological α-Synuclein Transmission Initiated by Binding Lymphocyte-Activation Gene 3,” Science 353 (2016): aah3374.
|
| [229] |
I. S. Coraci, J. Husemann, J. W. Berman, et al., “CD36, a Class B Scavenger Receptor, Is Expressed on Microglia in Alzheimer's Disease Brains and Can Mediate Production of Reactive Oxygen Species in Response to β-Amyloid Fibrils,” American Journal of Pathology 160 (2002): 101-112.
|
| [230] |
C. R. Stewart, L. M. Stuart, K. Wilkinson, et al., “CD36 Ligands Promote Sterile Inflammation Through Assembly of a Toll-Like Receptor 4 and 6 Heterodimer,” Nature Immunology 11 (2010): 155-161.
|
| [231] |
D. Freeman, R. Cedillos, S. Choyke, et al., “Alpha-Synuclein Induces Lysosomal Rupture and Cathepsin Dependent Reactive Oxygen Species Following Endocytosis,” PLoS One 8 (2013): e62143.
|
| [232] |
W. P. Flavin, L. Bousset, Z. C. Green, et al., “Endocytic Vesicle Rupture is a Conserved Mechanism of Cellular Invasion by Amyloid Proteins,” Acta Neuropathologica 134 (2017): 629-653.
|
| [233] |
K. Gousset, E. Schiff, C. Langevin, et al., “Prions Hijack Tunnelling Nanotubes for Intercellular Spread,” Nature Cell Biology 11 (2009): 328-336.
|
| [234] |
C. Zurzolo, “Tunneling Nanotubes: Reshaping Connectivity,” Current Opinion in Cell Biology 71 (2021): 139-147.
|
| [235] |
Y. Wang, J. Cui, X. Sun, and Y. Zhang, “Tunneling-Nanotube Development in Astrocytes Depends on p53 Activation,” Cell Death and Differentiation 18 (2011): 732-742.
|
| [236] |
S. Abounit and C. Zurzolo, “Wiring Through Tunneling Nanotubes—From Electrical Signals to Organelle Transfer,” Journal of Cell Science 125 (2012): 1089-1098.
|
| [237] |
M. Shahar, A. Szalat, and H. Rosen, “Pathogenic Stress Induces Human Monocyte to Express an Extracellular Web of Tunneling Nanotubes,” Frontiers in Immunology 12 (2021): 620734.
|
| [238] |
K. C. Luk, V. Kehm, J. Carroll, et al., “Pathological α-Synuclein Transmission Initiates Parkinson-Like Neurodegeneration in Nontransgenic Mice,” Science 338 (2012): 949-953.
|
| [239] |
W. Peelaerts, L. Bousset, A. Van der Perren, et al., “α-Synuclein Strains Cause Distinct Synucleinopathies After Local and Systemic Administration,” Nature 522 (2015): 340-344.
|
| [240] |
D. S. Eisenberg and M. R. Sawaya, “Structural Studies of Amyloid Proteins at the Molecular Level,” Annual Review of Biochemistry 86 (2017): 69-95.
|
| [241] |
D. Jeremic, J. D. Navarro-Lopez, and L. Jimenez-Diaz, “Clinical Benefits and Risks of Antiamyloid Antibodies in Sporadic Alzheimer Disease: Systematic Review and Network Meta-Analysis With a Web Application,” Journal of Medical Internet Research 27 (2025): e68454.
|
| [242] |
E. Fertan, J. Y. L. Lam, G. Albertini, et al., “Lecanemab Preferentially Binds to Smaller Aggregates Present at Early Alzheimer's Disease,” Alzheimer's & Dementia 21 (2025): e70086.
|
| [243] |
G. Chen and J. Johansson, “Potential of Molecular Chaperones for Treating Alzheimer's Disease,” Neural Regeneration Research 19 (2024): 2343-2344.
|
| [244] |
Y. Zhang, H. Chen, R. Li, K. Sterling, and W. Song, “Amyloid β-Based Therapy for Alzheimer's Disease: Challenges, Successes and Future,” Signal Transduction and Targeted Therapy 8 (2023): 248.
|
| [245] |
N. N. Lasheen, S. Allam, A. Elgarawany, D. W. Aswa, R. Mansour, and Z. Farouk, “Limitations and Potential Strategies of Immune Checkpoint Blockade in age-related Neurodegenerative Disorders,” Journal of Physiological Sciences 74 (2024): 46.
|
| [246] |
A. Torres, L. Camargo, and N. Lopez, “Aducanumab: Una Mirada dos años Después de su Aprobación,” Biomedica 44 (2024): 42-46.
|
| [247] |
K. Yamaguchi, K. Hasuo, M. So, K. Ikenaka, H. Mochizuki, and Y. Goto, “Strong Acids Induce Amyloid Fibril Formation of β2-Microglobulin via an Anion-Binding Mechanism,” Journal of Biological Chemistry 297 (2021): 101286.
|
| [248] |
E. Y. Darussalam, O. Peterfi, T. Deckert-Gaudig, L. Roussille, and V. Deckert, “pH-dependent Disintegration of Insulin Amyloid Fibrils Monitored With Atomic Force Microscopy and Surface-Enhanced Raman Spectroscopy,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 256 (2021): 119672.
|
| [249] |
M. F. Mossuto, A. Dhulesia, G. Devlin, et al., “The Non-Core Regions of Human Lysozyme Amyloid Fibrils Influence Cytotoxicity,” Journal of Molecular Biology 402 (2010): 783-796.
|
| [250] |
M. Kaur, J. Healy, M. Vasudevamurthy, et al., “Stability and Cytotoxicity of Crystallin Amyloid Nanofibrils,” Nanoscale 6 (2014): 13169-13178.
|
| [251] |
N. Becker, B. Frieg, L. Gremer, et al., “Atomic Resolution Insights Into pH Shift Induced Deprotonation Events in LS-Shaped Aβ(1-42) Amyloid Fibrils,” Journal of the American Chemical Society 145 (2023): 2161-2169.
|
| [252] |
J. Safar, P. P. Roller, and D. C. Gajdusek, “Thermal Stability and Conformational Transitions of Scrapie amyLOid (Prion) Protein Correlate With Infectivity,” Protein Science 2 (1993): 2206-2216.
|
| [253] |
J. P. Wei, W. Wen, Y. Dai, et al., “Drinking Water Temperature Affects Cognitive Function and Progression of Alzheimer's Disease in a Mouse Model,” Acta Pharmacologica Sinica 42 (2021): 45-54.
|
| [254] |
J. Dong, C. S. Atwood, V. E. Anderson, et al., “Metal Binding and Oxidation of Amyloid-β Within Isolated Senile Plaque Cores: Raman Microscopic Evidence,” Biochemistry 42 (2003): 2768-2773.
|
| [255] |
S. L. Cotman, W. Halfter, and G. J. Cole, “Agrin Binds to β-Amyloid (Aβ), Accelerates Aβ Fibril Formation, and Is Localized to Aβ Deposits in Alzheimer's Disease Brain,” Molecular and Cellular Neuroscience 15 (2000): 183-198.
|
| [256] |
X. Gao, M. Carroni, C. Nussbaum-Krammer, et al., “Human Hsp70 Disaggregase Reverses Parkinson's-Linked α-Synuclein Amyloid Fibrils,” Molecular Cell 59 (2015): 781-793.
|
| [257] |
E. Sparr and S. Linse, “Lipid-Protein Interactions in Amyloid Formation,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1867 (2019): 455-457.
|
| [258] |
G. P. Gellermann, T. R. Appel, A. Tannert, et al., “Raft Lipids as Common Components of Human Extracellular Amyloid Fibrils,” Proceedings of the National Academy of Sciences of the United States of America 102 (2005): 6297-6302.
|
| [259] |
W. Michno, P. M. Wehrli, H. Zetterberg, K. Blennow, and J. Hanrieder, “GM1 Locates to Mature Amyloid Structures Implicating a Prominent Role for Glycolipid-Protein Interactions in Alzheimer Pathology,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1867 (2019): 458-467.
|
| [260] |
M. Calamai, J. R. Kumita, J. Mifsud, et al., “Nature and Significance of the Interactions Between Amyloid Fibrils and Biological Polyelectrolytes,” Biochemistry 45 (2006): 12806-12815.
|
| [261] |
Y. Li, C. Yang, S. Wang, et al., “Copper and Iron Ions Accelerate the Prion-Like Propagation of α-Synuclein: A Vicious Cycle in Parkinson's Disease,” International Journal of Biological Macromolecules 163 (2020): 562-573.
|
| [262] |
E. P. Azevedo, A. B. Guimaraes-Costa, G. S. Torezani, et al., “Amyloid Fibrils Trigger the Release of Neutrophil Extracellular Traps (NETs), Causing Fibril Fragmentation by NET-Associated Elastase,” Journal of Biological Chemistry 287 (2012): 37206-37218.
|
| [263] |
R. Gaspar, G. Meisl, A. K. Buell, et al., “Secondary Nucleation of Monomers on Fibril Surface Dominates α -Synuclein Aggregation and Provides Autocatalytic Amyloid Amplification,” Quarterly Reviews of Biophysics 50 (2017): e6.
|
| [264] |
A. Skeens, C. Siriwardhana, S. E. Massinople, et al., “The Polyglutamine Domain is the Primary Driver of Seeding in Huntingtin aggRegation,” PLoS One 19 (2024): e0298323.
|
| [265] |
M. Tornquist, T. C. T. Michaels, K. Sanagavarapu, et al., “Secondary Nucleation in Amyloid Formation,” Chemical Communications 54 (2018): 8667-8684.
|
| [266] |
V. Fodera, F. Librizzi, M. Groenning, M. van de Weert, and M. Leone, “Secondary Nucleation and Accessible Surface in Insulin Amyloid Fibril Formation,” Journal of Physical Chemistry B 112 (2008): 3853-3858.
|
| [267] |
S. I. Cohen, S. Linse, L. M. Luheshi, et al., “Proliferation of Amyloid-β42 Aggregates Occurs Through a Secondary Nucleation Mechanism,” Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 9758-9763.
|
| [268] |
L. A. Volpicelli-Daley, K. C. Luk, T. P. Patel, et al., “Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death,” Neuron 72 (2011): 57-71.
|
| [269] |
S. Subedi, S. Sasidharan, N. Nag, P. Saudagar, and T. Tripathi, “Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition,” Molecules 27 (2022): 1776.
|
| [270] |
B. K. Chu, Y. S. Lin, H. C. Shen, and R. P. Chen, “Cross-Seeding Assay in the Investigation of the Amyloid Core of Prion Fibrils,” Methods in Molecular Biology 2551 (2023): 633-647.
|
| [271] |
J. Vaneyck, I. Segers-Nolten, K. Broersen, and M. Claessens, “Cross-Seeding of Alpha-Synuclein Aggregation by Amyloid Fibrils of Food Proteins,” Journal of Biological Chemistry 296 (2021): 100358.
|
| [272] |
K. Konstantoulea, N. Louros, F. Rousseau, and J. Schymkowitz, “Heterotypic Interactions in Amyloid Function and Disease,” FEBS Journal 289 (2022): 2025-2046.
|
| [273] |
M. M. Rahman and C. Lendel, “Extracellular Protein Components of Amyloid Plaques and Their Roles in Alzheimer's Disease Pathology,” Molecular Neurodegeneration 16 (2021): 59.
|
| [274] |
P. L. McGeer, A. Klegeris, D. G. Walker, O. Yasuhara, and E. G. McGeer, “Pathological Proteins in Senile Plaques,” Tohoku Journal of Experimental Medicine 174 (1994): 269-277.
|
| [275] |
Y. Namba, M. Tomonaga, H. Kawasaki, E. Otomo, and K. Ikeda, “Apolipoprotein E immunoreactivity in Cerebral Amyloid Deposits and Neurofibrillary Tangles in Alzheimer's Disease and Kuru Plaque Amyloid in Creutzfeldt-Jakob Disease,” Brain Research 541 (1991): 163-166.
|
| [276] |
Z. Xia, E. E. Prescott, A. Urbanek, et al., “Co-aggregation With Apolipoprotein E Modulates the Function of Amyloid-β in Alzheimer's Disease,” Nature Communications 15 (2024): 4695.
|
| [277] |
P. P. Desai, M. D. Ikonomovic, E. E. Abrahamson, et al., “Apolipoprotein D is a Component of Compact but not Diffuse Amyloid-Beta Plaques in Alzheimer's Disease Temporal Cortex,” Neurobiology of Disease 20 (2005): 574-582.
|
| [278] |
E. Drummond, S. Nayak, A. Faustin, et al., “Proteomic Differences in Amyloid Plaques in Rapidly Progressive and Sporadic Alzheimer's Disease,” Acta Neuropathologica 133 (2017): 933-954.
|
| [279] |
F. Xiong, W. Ge, and C. Ma, “Quantitative Proteomics Reveals Distinct Composition of Amyloid Plaques in Alzheimer's Disease,” Alzheimer's & Dementia 15 (2019): 429-440.
|
| [280] |
T. Ishii and S. Haga, “Identification of Components of Immunoglobulins in Senile Plaques by Means of Fluorescent Antibody Technique,” Acta Neuropathologica 32 (1975): 157-162.
|
| [281] |
P. Eikelenboom and F. C. Stam, “Immunoglobulins and Complement Factors in Senile Plaques,” Acta Neuropathologica 57 (1982): 239-242.
|
| [282] |
T. Ariga, T. Miyatake, and R. K. Yu, “Role of Proteoglycans and Glycosaminoglycans in the Pathogenesis of Alzheimer's Disease and Related Disorders: Amyloidogenesis and Therapeutic Strategies—A Review,” Journal of Neuroscience Research 88 (2010): 2303-2315.
|
| [283] |
A. D. Snow, H. Mar, D. Nochlin, et al., “The Presence of Heparan Sulfate Proteoglycans in the Neuritic Plaques and Congophilic Angiopathy in Alzheimer's Disease,” American Journal of Pathology 133 (1988): 456-463.
|
| [284] |
C. R. Liao, M. Rak, J. Lund, et al., “Synchrotron FTIR Reveals Lipid Around and Within Amyloid Plaques in Transgenic Mice and Alzheimer's Disease Brain,” Analyst 138 (2013): 3991.
|
| [285] |
J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J. Y. Li, and A. Enejder, “Plaque-Associated Lipids in Alzheimer's Diseased Brain Tissue Visualized by Nonlinear Microscopy,” Scientific Reports 5 (2015): 13489.
|
| [286] |
B. Frieg, M. Han, K. Giller, et al., “Cryo-EM Structures of Lipidic Fibrils of Amyloid-β (1-40),” Nature Communications 15 (2024): 1297.
|
| [287] |
S. H. Han, J. C. Park, and I. Mook-Jung, “Amyloid β-Interacting Partners in Alzheimer's Disease: From Accomplices to Possible Therapeutic Targets,” Progress in Neurobiology 137 (2016): 17-38.
|
| [288] |
C. Hureau and P. Faller, “Aβ-mediated ROS Production by Cu Ions: Structural Insights, Mechanisms and Relevance to Alzheimer's Disease,” Biochimie 91 (2009): 1212-1217.
|
| [289] |
A. S. Pithadia and M. H. Lim, “Metal-Associated Amyloid-β Species in Alzheimer's Disease,” Current Opinion in Chemical Biology 16 (2012): 67-73.
|
| [290] |
V. A. Mitkevich, E. P. Barykin, S. Eremina, et al., “Zn-Dependent β-Amyloid Aggregation and its Reversal by the Tetrapeptide HAEE,” Aging and Disease 14 (2023): 309-318.
|
| [291] |
G. Walke, R. Kumar, and P. Wittung-Stafshede, “Copper Ion Incorporation in α-Synuclein Amyloids,” Protein Science 33 (2024): e4956.
|
| [292] |
M. Meli, M. Gasset, and G. Colombo, “Are Amyloid Fibrils RNA-Traps? A Molecular Dynamics Perspective,” Frontiers in Molecular Biosciences 5 (2018): 53.
|
| [293] |
J. Rupert, M. Monti, E. Zacco, and G. G. Tartaglia, “RNA Sequestration Driven by Amyloid Formation: The Alpha Synuclein Case,” Nucleic Acids Research 51 (2023): 11466-11478.
|
| [294] |
C. Morelli, L. Faltova, U. Capasso Palmiero, et al., “RNA Modulates hnRNPA1A Amyloid Formation Mediated by Biomolecular Condensates,” Nature Chemistry 16 (2024): 1052-1061.
|
| [295] |
M. M. Rahman, G. T. Westermark, H. Zetterberg, T. Hard, and M. Sandgren, “Protofibrillar and Fibrillar Amyloid-β Binding Proteins in Cerebrospinal Fluid,” Journal of Alzheimer's Disease 66 (2018): 1053-1064.
|
| [296] |
C. C. Liu, N. Zhao, Y. Yamaguchi, et al., “Neuronal Heparan Sulfates Promote Amyloid Pathology by Modulating Brain Amyloid-Beta Clearance and Aggregation,” Science Translational Medicine 8 (2016): 332ra344.
|
| [297] |
E. Sandwall, P. O'Callaghan, X. Zhang, U. Lindahl, L. Lannfelt, and J. P. Li, “Heparan Sulfate Mediates Amyloid-Beta Internalization and Cytotoxicity,” Glycobiology 20 (2010): 533-541.
|
| [298] |
K. L. Stewart and S. E. Radford, “Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation,” Biophysical Reviews 9 (2017): 405-419.
|
| [299] |
T. R. Rudd, M. A. Skidmore, S. E. Guimond, et al., “Site-Specific Interactions of Copper(II) ions With Heparin Revealed With Complementary (SRCD, NMR, FTIR and EPR) Spectroscopic Techniques,” Carbohydrate Research 343 (2008): 2184-2193.
|
| [300] |
H. Chaudhary, S. W. Meister, H. Zetterberg, J. Lofblom, and C. Lendel, “Dissecting the Structural Organization of Multiprotein Amyloid Aggregates Using a Bottom-Up Approach,” ACS Chemical Neuroscience 11 (2020): 1447-1457.
|
| [301] |
Y. Verdier, I. Foldi, N. Sergeant, et al., “Characterization of the Interaction Between Aβ 1-42 and Glyceraldehyde Phosphodehydrogenase,” Journal of Peptide Science 14 (2008): 755-762.
|
| [302] |
K. C. Hadley, R. Rakhit, H. Guo, et al., “Determining Composition of Micron-Scale Protein Deposits in Neurodegenerative Disease by Spatially Targeted Optical Microproteomics,” Elife 4 (2015): e09579.
|
| [303] |
C. W. Wu, P. C. Liao, L. Yu, et al., “Hemoglobin Promotes A? Oligomer Formation and Localizes in Neurons and Amyloid Deposits,” Neurobiology of Disease 17 (2004): 367-377.
|
| [304] |
N. D. Telling, J. Everett, J. F. Collingwood, et al., “Iron Biochemistry is Correlated With Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease,” Cell Chemical Biology 24 (2017): 1205-1215.e3.
|
| [305] |
C. Exley, “Aluminium and Iron, but Neither Copper nor Zinc, are key to the Precipitation of β-Sheets of Aβ42 in Senile Plaque Cores in Alzheimer's Disease,” Journal of Alzheimer's Disease 10 (2006): 173-177.
|
| [306] |
V. Lopes de Andrade, A. P. Marreilha Dos Santos, and M. Aschner, “Neurotoxicity of Metal Mixtures,” Advances in Neurotoxicology 5 (2021): 329-364.
|
| [307] |
Y. Shibayama, K. Joseph, Y. Nakazawa, B. Ghebreihiwet, E. I. Peerschke, and A. P. Kaplan, “Zinc-Dependent Activation of the Plasma Kinin-Forming Cascade by Aggregated β Amyloid Protein,” Clinical Immunology 90 (1999): 89-99.
|
| [308] |
D. Zamolodchikov, T. Renne, and S. Strickland, “The Alzheimer's Disease Peptide β-Amyloid Promotes Thrombin Generation Through Activation of Coagulation Factor XII,” Journal of Thrombosis and Haemostasis 14 (2016): 995-1007.
|
| [309] |
D. V. Hansen, J. E. Hanson, and M. Sheng, “Microglia in Alzheimer's Disease,” Journal of Cell Biology 217 (2018): 459-472.
|
| [310] |
D. Singh, “Astrocytic and Microglial Cells as the Modulators of Neuroinflammation in Alzheimer's Disease,” Journal of Neuroinflammation 19 (2022): 206.
|
| [311] |
M. I. Sulatsky, O. V. Stepanenko, O. V. Stepanenko, and A. I. Sulatskaya, “Amyloid Degradation Mechanisms and Potential Synergistic Effects,” Neural Regeneration Research 21 (2026), https://doi.org/10.4103/NRR.NRR-D-24-01534.
|
| [312] |
C. Zhang, X. Wan, X. Zheng, et al., “Dual-functional Nanoparticles Targeting Amyloid Plaques in the Brains of Alzheimer's Disease Mice,” Biomaterials 35 (2014): 456-465.
|
| [313] |
X. Zheng, C. Zhang, Q. Guo, et al., “Dual-functional Nanoparticles for Precise Drug Delivery to Alzheimer's Disease Lesions: Targeting Mechanisms, Pharmacodynamics and Safety,” International Journal of Pharmaceutics 525 (2017): 237-248.
|
| [314] |
O. Ozceylan and Z. Sezgin-Bayindir, “Current Overview on the Use of Nanosized Drug Delivery Systems in the Treatment of Neurodegenerative Diseases,” ACS Omega 9 (2024): 35223-35242.
|
| [315] |
L. Liu, H. He, B. Du, and Y. He, “Nanoscale drug formulations for the treatment of Alzheimer's disease progression,” RSC Advances 15 (2025): 4031-4078.
|
| [316] |
A. R. Rezai, P. F. D'Haese, V. Finomore, et al., “Ultrasound Blood-Brain Barrier Opening and Aducanumab in Alzheimer's Disease,” New England Journal of Medicine 390 (2024): 55-62.
|
| [317] |
G. Tondo, F. De Marchi, F. Bonardi, et al., “Novel Therapeutic Strategies in Alzheimer's Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond,” Journal of Clinical Medicine 13 (2024): 3098.
|
| [318] |
D. M. Rentz, P. S. Aisen, A. Atri, et al., “Benefits and Risks of FDA-Approved Amyloid-Targeting Antibodies for Treatment of Early Alzheimer's disease: Navigating Clinician-Patient Engagement,” Alzheimer's & Dementia 20 (2024): 8162-8171.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.