A General Strategy to Fine-Tune Group 14 Rhodamines for Ultrahigh Signal-to-Noise Ratio Labeling In Vivo by Nano-Aggregation

Ning Wang , Ting Wang , Mengting Fan , Chen Li , Yue Tian , Xiaoyan Cui

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70077

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70077 DOI: 10.1002/agt2.70077
RESEARCH ARTICLE

A General Strategy to Fine-Tune Group 14 Rhodamines for Ultrahigh Signal-to-Noise Ratio Labeling In Vivo by Nano-Aggregation

Author information +
History +
PDF

Abstract

Ultrahigh signal-to-noise ratio (SNR) labeling enables precise visualization of biological structures in vivo. We boosted fluorogenicity in group-14-rhodamines by comprehensively manipulating their dynamics in physical (aggregate/monomer, KA/M) and chemical (closed/open spirolactone, KC/O) states. Fluorogenic rhodamines were designed by group 14 (C, Si, Ge) substituted bridging regions in xanthene with tuned dialkylation. We quantified the impact of alkylation with the hydrophobicity (logP) over a wide range and confirmed that SNR can be sharply improved, owing to the promoted nano-aggregation (KA/M) with high logP. Integrating KA/M with KC/O mechanisms, unparalleled fluorogenicity was observed in group-14-rhodamines: HaloTag probe with dipentylsilyl exhibits remarkable fluorogenicity (>2000) in vitro, enabling no-wash and multicolor super-resolution stimulated emission depletion imaging of high SNR (>300) in vivo. Overexpression of αvβ3 was sensitively tracked in vivo by RGDyK-based fluorogenic SiR probe through tuned KA/M. Our proposed strategy has significantly promoted the fluorogenicity of group 14 rhodamines as a general mechanism.

Keywords

fluorescence imaging / nano-aggregates / signal-to-noise ratio / substituted rhodamine / super-resolution microscopy

Cite this article

Download citation ▾
Ning Wang, Ting Wang, Mengting Fan, Chen Li, Yue Tian, Xiaoyan Cui. A General Strategy to Fine-Tune Group 14 Rhodamines for Ultrahigh Signal-to-Noise Ratio Labeling In Vivo by Nano-Aggregation. Aggregate, 2025, 6(8): e70077 DOI:10.1002/agt2.70077

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging,” Chemical Reviews 110 (2010): 2620-2640.

[2]

N. Wang, Y. Hao, X. Feng, et al., “Silicon-Substituted Rhodamines for Stimulated Emission Depletion Fluorescence Nanoscopy,” Chinese Chemical Letters 33 (2022): 133-140.

[3]

M. Fernandez-Suarez and A. Y. Ting, “Fluorescent Probes for Super-Resolution Imaging in Living Cells,” Nature Reviews Molecular Cell Biology 9 (2008): 929-943.

[4]

H. Shroff, I. Testa, F. Jug, and S. Manley, “Live-Cell Imaging Powered by Computation,” Nature Reviews Molecular Cell Biology 25 (2024): 443-463.

[5]

K. C. Gwosch, J. K. Pape, F. Balzarotti, et al., “MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells,” Nature Methods 17 (2020): 217-224.

[6]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM),” Nature Methods 3 (2006): 793-796.

[7]

M. G. Gustafsson, “Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging With Theoretically Unlimited Resolution,” Proceedings of the National Academy of Sciences 102 (2005): 13081-13086.

[8]

M. Remmel, L. Scheiderer, A. N. Butkevich, M. L. Bossi, and S. W. Hell, “Accelerated MINFLUX Nanoscopy, Through Spontaneously Fast-Blinking Fluorophores,” Small 19 (2023): 2206026.

[9]

L. D. Lavis, “Teaching Old Dyes New Tricks: Biological Probes Built From Fluoresceins and Rhodamines,” Annual Review of Biochemistry 86 (2017): 825-843.

[10]

P. Werther, K. Yserentant, F. Braun, et al., “Bio-Orthogonal Red and Far-Red Fluorogenic Probes for Wash-Free Live-Cell and Super-Resolution Microscopy,” ACS Central Science 7 (2021): 1561-1571.

[11]

S. Mizukami, S. Watanabe, Y. Hori, and K. Kikuchi, “Covalent Protein Labeling Based on Noncatalytic β-Lactamase and a Designed FRET Substrate,” Journal of the American Chemical Society 131 (2009): 5016-5017.

[12]

A. S. Walker, P. R. Rablen, and A. Schepartz, “Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH,” Journal of the American Chemical Society 138 (2016): 7143-7150.

[13]

K. Hanaoka, T. Ikeno, S. Iwaki, et al., “A General Fluorescence Off/On Strategy for Fluorogenic Probes: Steric Repulsion-Induced Twisted Intramolecular Charge Transfer (sr-TICT),” Science Advances 10 (2024): eadi8847.

[14]

K. Hanaoka, Y. Kagami, W. Piao, et al., “Synthesis of Unsymmetrical Si-Rhodamine Fluorophores and Application to a Far-Red to Near-Infrared Fluorescence Probe for Hypoxia,” Chemical Communications 54 (2018): 6939-6942.

[15]

Y. Hoshino, K. Hanaoka, K. Sakamoto, et al., “Molecular Design of Near-Infrared (NIR) Fluorescent Probes Targeting Exopeptidase and Application for Detection of Dipeptidyl Peptidase 4 (DPP-4) Activity,” RSC Chemical Biology 3 (2022): 859-867.

[16]

W. Zhou, X. Fang, Q. Qiao, W. Jiang, Y. Zhang, and Z. Xu, “Quantitative Assessment of Rhodamine Spectra,” Chinese Chemical Letters 32 (2021): 943-946.

[17]

Y. Xiao and X. Qian, “Substitution of Oxygen With Silicon: A Big Step Forward for Fluorescent Dyes in Life Science,” Coordination Chemistry Reviews 423 (2020): 213513.

[18]

W. E. Meador, E. Y. Lin, I. Lim, et al., “Silicon-RosIndolizine Fluorophores With Shortwave Infrared Absorption and Emission Profiles Enable In Vivo Fluorescence Imaging,” Nature Chemistry 16 (2024): 970-978.

[19]

G. Lukinavicius, K. Umezawa, N. Olivier, et al., “A Near-Infrared Fluorophore for Live-Cell Super-Resolution Microscopy of Cellular Proteins,” Nature Chemistry 5 (2013): 132-139.

[20]

G. Lukinavicius, L. Reymond, E. D'Este, et al., “Fluorogenic Probes for Live-Cell Imaging of the Cytoskeleton,” Nature Methods 11 (2014): 731-733.

[21]

G. Lukinavicius, L. Reymond, K. Umezawa, et al., “Fluorogenic Probes for Multicolor Imaging in Living Cells,” Journal of the American Chemical Society 138 (2016): 9365-9368.

[22]

M. Fan, H. An, C. Wang, et al., “STED Imaging the Dynamics of Lysosomes by Dually Fluorogenic Si-Rhodamine,” Chemistry: A European Journal 27 (2021): 9620-9626.

[23]

R. S. Erdmann, H. Takakura, A. D. Thompson, et al., “Super-Resolution Imaging of the Golgi in Live Cells With a Bioorthogonal Ceramide Probe,” Angewandte Chemie International Edition 53 (2014): 10242-10246.

[24]

G. Lukinavicius, C. Blaukopf, E. Pershagen, et al., “SiR-Hoechst Is a Far-Red DNA Stain for Live-Cell Nanoscopy,” Nature Communications 6 (2015): 8497.

[25]

S. Karch, J. Broichhagen, J. Schneider, et al., “A New Fluorogenic Small-Molecule Labeling Tool for Surface Diffusion Analysis and Advanced Fluorescence Imaging of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Based on Silicone Rhodamine: SiR-BACE1,” Journal of Medicinal Chemistry 61 (2018): 6121-6139.

[26]

A. D. Thompson, M. H. Omar, F. Rivera-Molina, et al., “Long-Term Live-Cell STED Nanoscopy of Primary and Cultured Cells With the Plasma Membrane HIDE Probe DiI-SiR,” Angewandte Chemie International Edition 56 (2017): 10408-10412.

[27]

R. Sato, J. Kozuka, M. Ueda, et al., “Intracellular Protein-Labeling Probes for Multicolor Single-Molecule Imaging of Immune Receptor-Adaptor Molecular Dynamics,” Journal of the American Chemical Society 139 (2017): 17397-17404.

[28]

J. Mo, J. Chen, Y. Shi, et al., “Third-Generation Covalent TMP-Tag for Fast Labeling and Multiplexed Imaging of Cellular Proteins,” Angewandte Chemie International Edition 61 (2022): e202207905.

[29]

D. A. Hinckley and P. G. Seybold, “A Spectroscopic/Thermodynamic Study of the Rhodamine B Lactone ⇌ Zwitterion Equilibrium,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 44 (1988): 1053-1059.

[30]

W. Chi, Q. Qi, R. Lee, Z. Xu, and X. Liu, “A Unified Push-Pull Model for Understanding the Ring-Opening Mechanism of Rhodamine Dyes,” Journal of Physical Chemistry C 124 (2020): 3793-3801.

[31]

L. G. Wang, A. R. Montaño, J. R. Combs, et al., “OregonFluor Enables Quantitative Intracellular Paired Agent Imaging to Assess Drug Target Availability in Live Cells and Tissues,” Nature Chemistry 15 (2023): 729-739.

[32]

J. B. Grimm, A. N. Tkachuk, L. Xie, et al., “A General Method to Optimize and Functionalize Red-Shifted Rhodamine Dyes,” Nature Methods 17 (2020): 815-821.

[33]

Q. Zheng, A. X. Ayala, I. Chung, et al., “Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging,” ACS Central Science 5 (2019): 1602-1613.

[34]

L. Wang, M. Tran, E. D'Este, et al., “A General Strategy to Develop Cell Permeable and Fluorogenic Probes for Multicolour Nanoscopy,” Nature Chemistry 12 (2020): 165-172.

[35]

N. Lardon, L. Wang, A. Tschanz, et al., “Systematic Tuning of Rhodamine Spirocyclization for Super-Resolution Microscopy,” Journal of the American Chemical Society 143 (2021): 14592-14600.

[36]

O. Valdes-Aguilera and D. C. Neckers, “Aggregation Phenomena in Xanthene Dyes,” Accounts of Chemical Research 22 (1989): 171-177.

[37]

F. Deng, Q. Qiao, J. Li, et al., “Multiple Factors Regulate the Spirocyclization Equilibrium of Si-Rhodamines,” Journal of Physical Chemistry B 124 (2020): 7467-7474.

[38]

A. N. Butkevich, G. Y. Mitronova, S. C. Sidenstein, et al., “Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells,” Angewandte Chemie International Edition 55 (2016): 3290-3294.

[39]

A. Aktalay, T. A. Khan, M. L. Bossi, V. N. Belov, and S. W. Hell, “Photoactivatable Carbo- and Silicon-Rhodamines and Their Application in MINFLUX Nanoscopy,” Angewandte Chemie International Edition 62 (2023): e202302781.

[40]

G. Lukinavicius, G. Y. Mitronova, S. Schnorrenberg, et al., “Fluorescent Dyes and Probes for Super-Resolution Microscopy of Microtubules and Tracheoles in Living Cells and Tissues,” Chemical Science 9 (2018): 3324-3334.

[41]

D. Hara, S. N. Uno, T. Motoki, et al., “Silinanyl Rhodamines and Silinanyl Fluoresceins for Super-Resolution Microscopy,” Journal of Physical Chemistry B 125 (2021): 8703-8711.

[42]

N. Li, T. Wang, N. Wang, M. Fan, and X. Cui, “A Substituted-Rhodamine-Based Reversible Fluorescent Probe for In Vivo Quantification of Glutathione,” Angewandte Chemie International Edition 62 (2023): e202217326.

[43]

X. Chai, J. Xiao, M. Li, et al., “Bridge-Caging Strategy in Phosphorus-Substituted Rhodamine for Modular Development of Near-Infrared Fluorescent Probes,” Chemistry—A European Journal 24 (2018): 14506-14512.

[44]

T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33 (2012): 580-592.

[45]

A. Martin and P. Rivera-Fuentes, “A General Strategy to Develop Fluorogenic Polymethine Dyes for Bioimaging,” Nature Chemistry 16 (2023): 28-35.

[46]

J. Zhang, H. Shi, C. Huang, et al., “De Novo Designed Self-Assembling Rhodamine Probe for Real-Time, Long-Term and Quantitative Live-Cell Nanoscopy,” ACS Nano 17 (2023): 3632-3644.

[47]

C. M. Jeffries, J. Ilavsky, A. Martel, et al., “Small-Angle X-Ray and Neutron Scattering,” Nature Reviews Methods Primers 1 (2021): 70.

[48]

W.-Q. Hua, C.-M. Yang, P. Zhou, et al., “Time-Resolved Ultra-Small-Angle X-Ray Scattering Beamline (BL10U1) at SSRF,” Nuclear Science and Techniques 35 (2024): 36.

[49]

M. J. Abraham, T. Murtola, R. Schulz, et al., “GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism From Laptops to Supercomputers,” SoftwareX 1-2 (2015): 19-25.

[50]

C. Liang and H.-Z. Lian, “Recent Advances in Lipophilicity Measurement by Reversed-Phase High-Performance Liquid Chromatography,” Trends in Analytical Chemistry 68 (2015): 28-36.

[51]

C. Liang, J.-Q. Qiao, and H.-Z. Lian, “Determination of Reversed-Phase High Performance Liquid Chromatography Based Octanol-Water Partition Coefficients for Neutral and Ionizable Compounds: Methodology Evaluation,” Journal of Chromatography A 1528 (2017): 25-34.

[52]

J. D. Krass, B. Jastorff, and H.-G. Genieser, “Determination of Lipophilicity by Gradient Elution High-Performance Liquid Chromatography,” Analytical Chemistry 69 (1997): 2575-2581.

[53]

G. V. Los, L. P. Encell, M. G. McDougall, et al., “HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis,” ACS Chemical Biology 3 (2008): 373-382.

[54]

A. G. Tebo, B. Moeyaert, M. Thauvin, et al., “Orthogonal Fluorescent Chemogenetic Reporters for Multicolor Imaging,” Nature Chemical Biology 17 (2021): 30-38.

[55]

A. N. Butkevich, H. Ta, M. Ratz, et al., “Two-Color 810 Nm STED Nanoscopy of Living Cells With Endogenous SNAP-Tagged Fusion Proteins,” ACS Chemical Biology 13 (2018): 475-480.

[56]

A. N. Butkevich, V. N. Belov, K. Kolmakov, et al., “Hydroxylated Fluorescent Dyes for Live-Cell Labeling: Synthesis, Spectra and Super-Resolution STED,” Chemistry—A European Journal 23 (2017): 12114-12119.

[57]

J. B. Grimm, A. J. Sung, W. R. Legant, et al., “Carbofluoresceins and Carborhodamines as Scaffolds for High-Contrast Fluorogenic Probes,” ACS Chemical Biology 8 (2013): 1303-1310.

[58]

A. N. Butkevich, G. Lukinavicius, E. D'Este, and S. W. Hell, “Cell-Permeant Large Stokes Shift Dyes for Transfection-Free Multicolor Nanoscopy,” Journal of the American Chemical Society 139 (2017): 12378-12381.

[59]

C. Li, T. Wang, M. Fan, et al., “Hydrogen Bond-Enhanced Nanoaggregation and Antisolvatochromic Fluorescence for Protein-Recognition by Si-Coumarins,” Nano Letters 22 (2022): 1954-1962.

[60]

A. Gautier, A. Juillerat, C. Heinis, et al., “An Engineered Protein Tag for Multiprotein Labeling in Living Cells,” Chemistry & Biology 15 (2008): 128-136.

[61]

M. Li, Y. Wang, M. Li, X. Wu, S. Setrerrahmane, and H. Xu, “Integrins as Attractive Targets for Cancer Therapeutics,” Acta Pharmaceutica Sinica B 11 (2021): 2726-2737.

[62]

M. Nieberler, U. Reuning, F. Reichart, et al., “Exploring the Role of RGD-Recognizing Integrins in Cancer,” Cancers 9 (2017): 116.

[63]

J. Xie, K. Chen, H.-Y. Lee, et al., “Ultrasmall c(RGDyK)-Coated Fe3O4 Nanoparticles and Their Specific Targeting to Integrin αvβ3-Rich Tumor Cells,” Journal of the American Chemical Society 130 (2008): 7542-7543.

[64]

W. Cai, D.-W. Shin, K. Chen, et al., “Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects,” Nano Letters 6 (2006): 669-676.

[65]

H. Shi, J. Liu, J. Geng, B. Z. Tang, and B. Liu, “Specific Detection of Integrin αvβ3 by Light-Up Bioprobe With Aggregation-Induced Emission Characteristics,” Journal of the American Chemical Society 134 (2012): 9569-9572.

[66]

L. Feni, S. Parente, C. Robert, et al., “Kiss and Run: Promoting Effective and Targeted Cellular Uptake of a Drug Delivery Vehicle Composed of an Integrin-Targeting Diketopiperazine Peptidomimetic and a Cell-Penetrating Peptide,” Bioconjugate Chemistry 30 (2019): 2011-2022.

[67]

Q. Cao, Z. B. Li, K. Chen, Z. Wu, L. He, N. Neamati, and X. Chen, “Evaluation of Biodistribution and Anti-Tumor Effect of a Dimeric RGD Peptide-Paclitaxel Conjugate in Mice With Breast Cancer,” European Journal of Nuclear Medicine and Molecular Imaging 35 (2008): 1489-1498.

[68]

C. Zhan, B. Gu, C. Xie, J. Li, Y. Liu, and W. Lu, “Cyclic RGD Conjugated Poly(Ethylene Glycol)-Co-Poly(Lactic Acid) Micelle Enhances Paclitaxel Anti-Glioblastoma Effect,” Journal of Controlled Release 143 (2010): 136-142.

[69]

M. H. Lee, J. Y. Kim, J. H. Han, et al., “Direct Fluorescence Monitoring of the Delivery and Cellular Uptake of a Cancer-Targeted RGD Peptide-Appended Naphthalimide Theragnostic Prodrug,” Journal of the American Chemical Society 134 (2012): 12668-12674.

[70]

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice,” Bioconjugate Chemistry 16 (2005): 1433-1441.

[71]

X. Chen, P. S. Conti, and R. A. Moats, “In Vivo Near-Infrared Fluorescence Imaging of Integrin αvβ3 in Brain Tumor Xenografts,” Cancer Research 64 (2004): 8009-8014.

[72]

X. Chen, R. Park, M. Tohme, A. H. Shahinian, J. R. Bading, and P. S. Conti, “MicroPET and Autoradiographic Imaging of Breast Cancer αv-Integrin Expression Using 18 F- and 64 Cu-Labeled RGD Peptide,” Bioconjugate Chemistry 15 (2004): 41-49.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/