A Smart Ru-Locked Chemiluminescence Probe via Bioorthogonal Activation for Highly Selective, Real-Time and Noninvasive In Vivo Imaging of Thiol Dysregulation

Dongnan Guo , Dan Xu , Xiaofeng Wei , Chunying Fan , Bobo Wang , Laifu Li , Haixia Song , Wenguang Yang , Yujie Wang , Zhaojia Wang , Xiaofang Hou , Sicen Wang

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70076

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70076 DOI: 10.1002/agt2.70076
RESEARCH ARTICLE

A Smart Ru-Locked Chemiluminescence Probe via Bioorthogonal Activation for Highly Selective, Real-Time and Noninvasive In Vivo Imaging of Thiol Dysregulation

Author information +
History +
PDF

Abstract

Bioorthogonal cleavage chemistry (BCC) has been extensively applied to fluorescence-based imaging in cancer diagnostics. Its potential in chemiluminescence imaging is to be explored. In this study, a smart ruthenium (Ru)-catalyzed bioorthogonal activation chemiluminescence (BAC) probe is developed by integrating BCC with a phenoxy-adamantyl-1,2-dioxetane (PAD) for real-time in vivo imaging of thiol-containing metabolites, particularly hydrogen sulfide (H2S), associated with thiol dysregulation in the tumor microenvironment. The BAC probe overcomes many limitations that existed in other chemiluminescence probes via a highly selective “Ru-locked” mechanism to achieve light-independent, thiol-triggered activation in the complex tumor microenvironment. This mechanism enables rapid activation (1 min), high sensitivity (LOD = 0.243 µM), and stable luminescence with a half-life of 18.5 h, as determined in vitro, across a broad emission range (400–800 nm). The probe also demonstrates enhanced selectivity for thiol-containing metabolites, particularly H2S, and exhibits low toxicity both in vitro and in vivo. In a breast cancer mouse model, the probe successfully visualizes endogenous H2S with high spatial precision, supporting its utility in tumor localization and image-guided surgery. In addition, the PAD scaffolds are developed via an efficient synthetic route, significantly lowering production costs (300- to 400-fold) and increasing yields from 40% to 95%. Furthermore, our BAC probe holds a broad potential for noninvasive diagnosis and real-time monitoring of thiol dysregulation and pathophysiological processes.

Keywords

bioorthogonal chemistry / chemiluminescence / dioxetanes / in vivo imaging / ruthenium catalyst

Cite this article

Download citation ▾
Dongnan Guo, Dan Xu, Xiaofeng Wei, Chunying Fan, Bobo Wang, Laifu Li, Haixia Song, Wenguang Yang, Yujie Wang, Zhaojia Wang, Xiaofang Hou, Sicen Wang. A Smart Ru-Locked Chemiluminescence Probe via Bioorthogonal Activation for Highly Selective, Real-Time and Noninvasive In Vivo Imaging of Thiol Dysregulation. Aggregate, 2025, 6(8): e70076 DOI:10.1002/agt2.70076

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

(a) “Breast Cancer,” World Health Organization, Vol. 2024 (World Health Organization, 2024), https://www.who.int/news-room/fact-sheets/detail/breast-cancer. (b) Y. Li, S. Zhang, C. Liu, et al., “Thermophoretic Glycan Profiling of Extracellular Vesicles for Triple-Negative Breast Cancer Management,” Nature Communications 15 (2024): 2292.

[2]

(a) W. A. Berg, Z. Zhang, D. Lehrer, et al., “Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk,” JAMA 307 (2012): 1394-1404. (b) I. Dagogo-Jack and A. T. Shaw, “Tumour Heterogeneity and Resistance to Cancer Therapies,” Nature Reviews Clinical Oncology 15 (2018): 81-94. (c) A. Majumder, “Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment,” Antioxidants 12 (2023): 1520. (d) P. P. Oza and K. Kashfi, “The Triple Crown: NO, CO, and H2S in Cancer Cell Biology,” Pharmacology & Therapeutics 249 (2023): 108502. (e) D. Wang, H. Yang, Y. Zhang, et al., “Inhibition of Cystathionine β-Synthase Promotes Apoptosis and Reduces Cell Proliferation in Chronic Myeloid Leukemia,” Signal Transduction and Targeted Therapy 6 (2021): 52. (f) C. Szabo, “Gasotransmitters in Cancer: From Pathophysiology to Experimental Therapy,” Nature Reviews Drug Discovery 15 (2016): 185-203. (g) B. Liu, S. Liang, Z. Wang, et al., “A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy,” Advanced Materials 33 (2021): e2101223. (h) Q. Zong, J. Li, Q. Xu, Y. Liu, K. Wang, and Y. Yuan, “Self-immolative Poly(thiocarbamate) With Localized H2S Signal Amplification for Precise Cancer Imaging and Therapy,” Nature Communications 15 (2024): 7558. (i) X. Hu, Y. Xiao, J. Sun, et al., “New Possible Silver Lining for Pancreatic Cancer Therapy: Hydrogen Sulfide and Its Donors,” Acta Pharmaceutica Sinica B 11 (2021): 1148-1157. (j) M. Li, C. Xu, J. Shi, et al., “Fatty Acids Promote Fatty Liver Disease via the Dysregulation of 3-Mercaptopyruvate Sulfurtransferase/Hydrogen Sulfide Pathway,” Gut 67 (2018): 2169-2180. (k) W. Y. Kim, M. Won, S. Koo, X. Zhang, and J. S. Kim, “Mitochondrial H2Sn-Mediated Anti-Inflammatory Theranostics,” Nano-Micro Letters 13 (2021): 168. (l) L. D. Yu, P. Hu, and Y. Chen, “Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy,” Advanced Materials 30 (2018): e1801964. (m) G. K. Kolluru, R. E. Shackelford, X. G. Shen, P. Dominic, and C. G. Kevil, “Sulfide Regulation of Cardiovascular Function in Health and Disease,” Nature Reviews Cardiology 20 (2023): 109-125. (n) E. Disbrow, K. Y. Stokes, C. Ledbetter, et al., “Plasma Hydrogen Sulfide: A Biomarker of Alzheimer’s Disease and Related Dementias,” Alzheimer’s & Dementia 17 (2021): 1391-1402. (o) R. H. Wang, Y. H. Chu, and K. T. Lin, “The Hidden Role of Hydrogen Sulfide Metabolism in Cancer,” International Journal of Molecular Sciences 22 (2021): 6562.

[3]

(a) C. Jiang, H. Huang, X. Kang, et al., “NBD-Based Synthetic Probes for Sensing Small Molecules and Proteins: Design, Sensing Mechanisms and Biological Applications,” Chemical Society Reviews 50 (2021): 7436-7495. (b) Z. Zheng, J. Gao, R. Wang, et al., “Molecular Engineering of Luminogens for High-Integrity Imaging of Hydrogen Polysulfides via Activatable Aggregation-Induced Dual-Color Fluorescence,” ACS Nano 17 (2023): 22060-22070. (c) K. G. Fosnacht and M. D. Pluth, “Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species,” Chemical Reviews 124 (2024): 4124-4257. (d) W. Chen, A. Pacheco, Y. Takano, J. J. Day, K. Hanaoka, and M. Xian, “A Single Fluorescent Probe to Visualize Hydrogen Sulfide and Hydrogen Polysulfides With Different Fluorescence Signals,” Angewandte Chemie International Edition 55 (2016): 9993-9996.

[4]

H.-H. Han, H. Tian, Y. Zang, et al., “Small-Molecule Fluorescence-Based Probes for Interrogating Major Organ Diseases,” Chemical Society Reviews 50 (2021): 9391-9429.

[5]

H. N. Kagalwala and A. R. Lippert, “Energy Transfer Chemiluminescent Spiroadamantane 1,2-Dioxetane Probes for Bioanalyte Detection and Imaging,” Angewandte Chemie International Edition 61 (2022): e202210057.

[6]

Y. H. Zhong, J. Li, A. Lambert, Z. J. Yang, and Q. Cheng, “Expanding the Scope of Chemiluminescence in Bioanalysis With Functional Nanomaterials,” Journal of Materials Chemistry B 7 (2019): 7257-7266.

[7]

H. N. Kagalwala, R. T. Reeves, and A. R. Lippert, “Chemiluminescent Spiroadamantane-1,2-Dioxetanes: Recent Advances in Molecular Imaging and Biomarker Detection,” Current Opinion in Chemical Biology 68 (2022): 102134.

[8]

(a) J. Köckenberger, R. Thurston, C. Sauer, J. Oppl, and M. R. Heinrich, “Connecting Ruthenium Photocatalysis to 1,2-Dioxetane-Mediated Chemiluminescence: A Versatile Combination for Optical Detection and Read-Out,” Angewandte Chemie International Edition 62 (2023): e202304474. (b) M. David, S. Gutkin, R. V. Nithun, M. Jbara, and D. Shabat, “Unprecedented Photoinduced-Electron-Transfer Probe With a Turn-ON Chemiluminescence Mode-of-Action,” Angewandte Chemie International Edition 64 (2025): e202417924. (c) H. N. Kagalwala, J. Gerberich, C. J. Smith, R. P. Mason, and A. R. Lippert, “Chemiluminescent 1,2-Dioxetane Iridium Complexes for Near-Infrared Oxygen Sensing,” Angewandte Chemie International Edition 61 (2022): e202115704.

[9]

(a) Z. Yan, Y. Pan, G. Jiao, et al., “A Smart Ru-Locked Chemiluminescence Probe via Bioorthogonal Activation for Highly Selective, Real-Time and Non-Invasive In Vivo Imaging of Thiol Dysregulation,” Journal of the American Chemical Society 145 (2023): 24698-24706. (b) J. Wang, X. Wang, X. Y. Fan, and P. R. Chen, “Unleashing the Power of Bond Cleavage Chemistry in Living Systems,” ACS Central Science 7 (2021): 929-943. (c) X. Wang, Y. Liu, X. Fan, et al., “Copper-Triggered Bioorthogonal Cleavage Reactions for Reversible Protein and Cell Surface Modifications,” Journal of the American Chemical Society 141 (2019): 17133-17141. (d) B. J. Stenton, B. L. Oliveira, M. J. Matos, L. Sinatra, and G. J. L. Bernardes, “A Thioether-Directed Palladium-Cleavable Linker for Targeted Bioorthogonal Drug Decaging,” Chemical Science 9 (2018): 4185-4189. (e) P. Klán, T. Šolomek, C. G. Bochet, et al., “Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy,” Chemical Reviews 113 (2013): 119-191.

[10]

(a) M. Yang, J. Huang, J. Fan, J. Du, K. Pu, and X. Peng, “Chemiluminescence for Bioimaging and Therapeutics: Recent Advances and Challenges,” Chemical Society Reviews 49 (2020): 6800-6815. (b) Y. C. Yan, P. F. Shi, W. L. Song, and S. Bi, “Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy: In Vitro and In Vivo Perspectives,” Theranostics 9 (2019): 4047-4065.

[11]

N. Hananya, A. Eldar Boock, C. R. Bauer, R. Satchi-Fainaro, and D. Shabat, “Remarkable Enhancement of Chemiluminescent Signal by Dioxetane-Fluorophore Conjugates: Turn-ON Chemiluminescence Probes With Color Modulation for Sensing and Imaging,” Journal of the American Chemical Society 138 (2016): 13438-13446.

[12]

S. Son, M. Won, O. Green, et al., “Chemiluminescent Probe for the In Vitro and In Vivo Imaging of Cancers Over-Expressing NQO1,” Angewandte Chemie International Edition 58 (2019): 1739-1743.

[13]

S. Gnaim, S. P. Gholap, L. Ge, et al., “Modular Access to Diverse Chemiluminescent Dioxetane-Luminophores Through Convergent Synthesis,” Angewandte Chemie International Edition 61 (2022): e202202187.

[14]

(a) O. Green, T. Eilon, N. Hananya, S. Gutkin, C. R. Bauer, and D. Shabat, “Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes,” ACS Central Science 3 (2017): 349-358. (b) J. Cao, R. Lopez, J. M. Thacker, et al., “Chemiluminescent Probes for Imaging H2S in Living Animals,” Chemical Science 6 (2015): 1979-1985.

[15]

J. Liu, J. Jiang, Y. Dou, et al., “A Novel Chemiluminescent Probe for Hydrazine Detection in Water and HeLa Cells,” Organic & Biomolecular Chemistry 17 (2019): 6975-6979.

[16]

(a) N. Schubert, J. W. Southwell, M. Vázquez-Hernández, et al., “Fluorescent Probes for Investigating the Internalisation and Action of Bioorthogonal Ruthenium Catalysts Within Gram-Positive Bacteria,” RSC Chemical Biology 5 (2024): 1201-1213. (b) E. S. Garcia, T. M. Xiong, A. Lifschitz, and S. C. Zimmerman, “Tandem Catalysis Using an Enzyme and a Polymeric Ruthenium-Based Artificial Metalloenzyme,” Polymer Chemistry 12 (2021): 6755-6760. (c) B. M. Trost, F. D. Toste, and A. B. Pinkerton, “Non-Metathesis Ruthenium-Catalyzed C−C Bond Formation,” Chemical Reviews 101 (2001): 2067-2096.

[17]

(a) J. Shum, L. C. Lee, M. W. Chiang, Y. W. Lam, and K. K. Lo, “A Concerted Enzymatic and Bioorthogonal Approach for Extra- and Intracellular Activation of Environment-Sensitive Ruthenium(II)-Based Imaging Probes and Photosensitizers,” Angewandte Chemie International Edition 62 (2023): e202303931. (b) Y. Xu, C. Li, X. Ma, et al., “Long Wavelength–Emissive Ru(II) Metallacycle–Based Photosensitizer Assisting InVivo Bacterial Diagnosis and Antibacterial Treatment,” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): e2209904119. (c) Q. Wu, C. Yuan, J. Wang, et al., “Uridine-Modified Ruthenium(II) Complex as Lysosomal LIMP-2 Targeting Photodynamic Therapy Photosensitizer for the Treatment of Triple-Negative Breast Cancer,” JACS Au 4 (2024): 1081-1096.

[18]

X. Xu, J. Zheng, N. Liang, et al., “Bioorthogonal/Ultrasound Activated Oncolytic Pyroptosis Amplifies In Situ Tumor Vaccination for Boosting Antitumor Immunity,” ACS Nano 18 (2024): 9413-9430.

[19]

T. Völker, F. Dempwolff, P. L. Graumann, and E. Meggers, “Progress Towards Bioorthogonal Catalysis With Organometallic Compounds,” Angewandte Chemie International Edition 53 (2014): 10536-10540.

[20]

N. Hananya and D. Shabat, “Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water,” ACS Central Science 5 (2019): 949-959.

[21]

(a) N. Hananya, O. Green, I. Gutierrez-Fernandez, D. Shabat, and J. B. Arellano, “Singlet Oxygen Detection by Chemiluminescence Probes in Living Cells,” in ROS Signaling in Plants: Methods and Protocols. Methods in Molecular Biology Vol 2798, ed. F. J. Corpas and J. M. Palma (Springer, 2024), 27-43. (b) R. Tannous, O. Shelef, S. Gutkin, et al., “Spirostrain-Accelerated Chemiexcitation of Dioxetanes Yields Unprecedented Detection Sensitivity in Chemiluminescence Bioassays,” ACS Central Science 10 (2024): 28-42. (c) H. Li, J. Wang, H. Kim, X. Peng, and J. Yoon, “Activatable Near-Infrared Versatile Fluorescent and Chemiluminescent Dyes Based on the Dicyanomethylene-4H-Pyran Scaffold: From Design to Imaging and Theranostics,” Angewandte Chemie International Edition 63 (2024): e202311764.

[22]

S. Mu, J. Zhang, H. Gao, et al., “Sequential Detection of H2S and HOBr With a Novel Lysosome-Targetable Fluorescent Probe and Its Application in Biological Imaging,” Journal of Hazardous Materials 422 (2022): 126898.

[23]

L. Rong, C. Zhang, Q. Lei, et al., “Long-Term Thiol Monitoring in Living Cells Using Bioorthogonal Chemistry,” Chemical Communications 51 (2015): 388-390.

[24]

X. Chen, Y. Zhou, X. Peng, and J. Yoon, “Fluorescent and Colorimetric Probes for Detection of Thiols,” Chemical Society Reviews 39 (2010): 2120-2135.

[25]

C. Streu and E. Meggers, “Ruthenium-Induced Allylcarbamate Cleavage in Living Cells,” Angewandte Chemie International Edition 45 (2006): 5645-5648.

[26]

S. L. Scinto, D. A. Bilodeau, R. Hincapie, et al., “Bioorthogonal Chemistry,” Nature Reviews Methods Primers 1 (2021): 30.

[27]

Z. Ullah, S. Roy, S. Muhammad, et al., “Fluorescence Imaging-Guided Surgery: Current Status and Future Directions,” Biomaterials Science 12 (2024): 3765-3804.

[28]

(a) A. Sharma, P. Verwilst, M. Li, et al., “Theranostic Fluorescent Probes,” Chemical Reviews 124 (2024): 2699-2804. (b) J. Zhao, G. Jin, G. Weng, J. Li, J. Zhu, and J. Zhao, “Recent Advances in Activatable Fluorescence Imaging Probes for Tumor Imaging,” Drug Discovery Today 22 (2017): 1367-1374.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/