Aggregation-Induced Anti-Kasha Emission: Unraveling Multimodal Luminescence Mechanisms in a Single Molecule With Five Morphologies
Ling Yu , Yuzhang Liu , Dakai Zhou , Zhigang Ni , Shijun Li , Chuluo Yang
Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70075
Aggregation-Induced Anti-Kasha Emission: Unraveling Multimodal Luminescence Mechanisms in a Single Molecule With Five Morphologies
In recent years, the exploration of emission pathways from high-excited states in organic luminogens has received extensive attention owing to the anti-Kasha's rule emission with the potential of improving the exciton utilization. However, it is extremely difficult to predict the anti-Kasha effect and estimate the luminescent mechanism of high-energy excited states. We here present a rational design on the basis of the intermolecular noncovalent interactions to achieve the purpose of altering the molecular optoelectronic properties and regulating the distribution of high-energy excited state. The emitter, p-Py-SO2-DMAC, with π–π dimer stacking is designed and synthesized, which not only exceptionally shows five aggregation morphologies and presents the infrequent aggregation-induced anti-Kasha's rule emission, room-temperature phosphorescence (RTP), and mechanoluminescence (ML) behaviors simultaneously, but also possesses the features of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE). The multiple luminescent mechanisms have been scientifically verified by experimental and theoretical investigations.
aggregation-induced emission / anti-Kasha‘s rule / mechanoluminescence / room-temperature phosphorescence / thermally activated delayed fluorescence
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |