Cross-Linked Protein Crystals With an Intense Nonconventional Full-Color Photoluminescence Originating From Through-Space Intermolecular Interaction

Renbin Zhou , Xiaoli Lu , Xuefeng Zhou , Xuejiao Liu , Shanmin Wang , Tymish Y. Ohulchanskyy , Da-Chuan Yin , Junle Qu

Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70070

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70070 DOI: 10.1002/agt2.70070
RESEARCH ARTICLE

Cross-Linked Protein Crystals With an Intense Nonconventional Full-Color Photoluminescence Originating From Through-Space Intermolecular Interaction

Author information +
History +
PDF

Abstract

The emergence of nonconventional luminescent materials (NLMs) has attracted significant attention due to their sustainable synthesis and tunable optical properties. Yet, establishing a clear structure–emission relationship remains a challenge. In this work, we report a previously unknown class of NLMs: cross-linked protein crystals that exhibit intense photoluminescence (PL) in the visible range (425–680 nm). We systematically investigated seven natural protein crystals (concanavalin, catalase, lysozyme, hemoglobin, α-chymotrypsin, pepsin, and β-lactoglobulin) cross-linked with glutaraldehyde and demonstrated that cross-linking induces broadband emission that is absent in natural crystals. Focusing on polymorphic lysozyme crystals (tetragonal, orthorhombic, and monoclinic), we found excitation-dependent fluorescence with lifetimes in the nanosecond range and quantum yields up to 20% (in the monoclinic phase under 450 nm excitation). Single- and two-photon spectroscopy, as well as pressure- and solvent-modulated PL studies, confirm that the emission is due to intermolecular through-space interactions (TSI) within the crystal lattice. Compression enhances TSI and redshifts the emission, whereas the solvent (DMSO)-induced swelling reduces TSI and causes a blue shift, establishing a direct structure–emission correlation. This work establishes protein crystals as programmable NLMs with tunable emission and provides a mechanistic framework for the design of nonconventional luminogens through protein crystal engineering.

Keywords

intermolecular through-space interactions / nonconventional luminescent materials / polymorphism / protein crystals / structure–emission relationship

Cite this article

Download citation ▾
Renbin Zhou, Xiaoli Lu, Xuefeng Zhou, Xuejiao Liu, Shanmin Wang, Tymish Y. Ohulchanskyy, Da-Chuan Yin, Junle Qu. Cross-Linked Protein Crystals With an Intense Nonconventional Full-Color Photoluminescence Originating From Through-Space Intermolecular Interaction. Aggregate, 2025, 6(7): e70070 DOI:10.1002/agt2.70070

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Tang, T. Yang, Z. Zhao, et al., “Nonconventional Luminophores: Characteristics, Advancements and Perspectives,” Chemical Society Reviews 50 (2021): 12616-12655.

[2]

H. Zhang, Z. Zhao, P. R. McGonigal, et al., “Clusterization-Triggered Emission: Uncommon Luminescence From Common Materials,” Materials Today 32 (2020): 275-292.

[3]

H. Zhang and B. Z. Tang, “Through-Space Interactions in Clusteroluminescence,” JACS Au 1 (2021): 1805-1814.

[4]

J. Luo, S. Guo, F. Chen, et al., “Rational Design Strategies for Nonconventional Luminogens With Efficient and Tunable Emission in Dilute Solution,” Chemical Engineering Journal 454 (2023): 140469.

[5]

Z. Xiong, J. Zhang, L. Wang, et al., “Controllable Secondary Through-Space Interaction and Clusteroluminescence,” CCS Chemistry 5 (2023): 2832-2844.

[6]

Q. Xu, J. Zhang, J. Zhi Sun, H. Zhang, and B. Z. Tang, “Efficient Organic Emitters Enabled by Ultrastrong Through-Space Conjugation,” Nature Photonics 18 (2024): 1185-1194.

[7]

S. Wang, Z. Yang, X. Sun, et al., “Anomalous Pressure-Induced Blue-Shifted Emission of Ionic Copper-Iodine Clusters: The Competitive Effect Between Cuprophilic Interactions and Through-Space Interactions,” Angewandte Chemie 137 (2024): e202414810.

[8]

Y. Z. Wang, Z. H. Zhao, and W. Z. Yuan, “Intrinsic Luminescence From Nonaromatic Biomolecules,” ChemPlusChem 85 (2020): 1065-1080.

[9]

C. Xiaohong, W. Yunzhong, Z. Yongming, and Y. Wangzhang, “Clustering-Triggered Emission of Nonconventional Luminophores,” Progress in Chemistry 31 (2019): 1560-1575.

[10]

Q. Zhou, B. Cao, C. Zhu, et al., “Clustering-Triggered Emission of Nonconjugated Polyacrylonitrile,” Small 12 (2016): 6586-6592.

[11]

J. Deng, H. Jia, W. Xie, H. Wu, J. Li, and H. Wang, “Nontraditional Organic/Polymeric Luminogens With Red-Shifted Fluorescence Emissions,” Macromolecular Chemistry and Physics 223 (2022): 2100425.

[12]

W. Tao, L. Zhang, J. Gong, et al., “Macrocycle-Based Supramolecular Assembly: An Alternative Strategy for Visualizing the Mechanism of Piezochromic Luminescence,” Dyes and Pigments 210 (2023): 110967.

[13]

J. T. Jiang, S. J. Lu, M. Liu, et al., “Tunable Photoluminescence Properties of Microcrystalline Cellulose With Gradually Changing Crystallinity and Crystal Form,” Macromolecular Rapid Communications 42 (2021): 2100321.

[14]

X.-M. Cai, Y. Lin, Y. Li, et al., “BioAIEgens Derived From Rosin: How Does Molecular Motion Affect Their Photophysical Processes in Solid State?,” Nature Communications 12 (2021): 1773.

[15]

L. Guo, L. Yan, Y. He, et al., “Hyperbranched Polyborate: A Non-Conjugated Fluorescent Polymer With Unanticipated High Quantum Yield and Multicolor Emission,” Angewandte Chemie International Edition 61 (2022): e202204383.

[16]

Q. Zhang, Z. Zhao, G. Yang, et al., “Synergistic Photoluminescence Enhancement in Nonaromatic Amino Acids and Sugars via Glycosylation,” Advanced Functional Materials (2025): 2423603, https://doi.org/10.1002/adfm.202423603.

[17]

Q. Zhou, M. Liu, Y. Zhang, et al., “Packing Density-Promoted Emission Strategy Toward Tunable Photoluminescence and Room-Temperature Phosphorescence,” ACS Sustainable Chemistry & Engineering 10 (2022): 8568-8576.

[18]

X. Ji, W. Tian, K. Jin, et al., “Anionic Polymerization of Nonaromatic Maleimide to Achieve Full-Color Nonconventional Luminescence,” Nature Communications 13 (2022): 3717.

[19]

Q.-W. Zhang, D. Li, X. Li, et al., “Multicolor Photoluminescence Including White-Light Emission by a Single Host-Guest Complex,” Journal of the American Chemical Society 138 (2016): 13541-13550.

[20]

S. Ye, N. Meftahi, I. Lyskov, et al., “Machine Learning-Assisted Exploration of a Versatile Polymer Platform With Charge Transfer-Dependent Full-Color Emission,” Chem 9 (2023): 924-947.

[21]

Z. Zhang, W. Yan, D. Dang, H. Zhang, J. Zhi Sun, and B. Z. Tang, “The Role of Amide (n,π∗) Transitions in Polypeptide Clusteroluminescence,” Cell Reports Physical Science 3 (2022): 100716.

[22]

Z. Zhang, J. Zhang, Z. Xiong, et al., “NIR Clusteroluminescence of Non-Conjugated Phenolic Resins Enabled by Through-Space Interactions,” Angewandte Chemie International Edition 62 (2023): e202306762.

[23]

Y. Lai, T. Zhu, T. Geng, et al., “Effective Internal and External Modulation of Nontraditional Intrinsic Luminescence,” Small 16 (2020): 2005035.

[24]

Q. Li, X. Wang, Q. Huang, Z. Li, B. Z. Tang, and S. Mao, “Molecular-Level Enhanced Clusterization-Triggered Emission of Nonconventional Luminophores in Dilute Aqueous Solution,” Nature Communications 14 (2023): 409.

[25]

B. Song, J. Zhang, J. Zhou, A. Qin, J. W. Y. Lam, and B. Z. Tang, “Facile Conversion of Water to Functional Molecules and Cross-Linked Polymeric Films With Efficient Clusteroluminescence,” Nature Communications 14 (2023): 3115.

[26]

W. Ji, H. Yuan, B. Xue, et al., “Co-Assembly Induced Solid-State Stacking Transformation in Amino Acid-Based Crystals With Enhanced Physical Properties,” Angewandte Chemie 134 (2022): e202201234.

[27]

L. Xu, X. Liang, S. Zhong, Z. Li, Y. Gao, and X. Cui, “Natural Silk Fibroin Based on Aggregation-Induced Emission With a Clustering-Triggered Mechanism and Its Multiple Applications,” ACS Sustainable Chemistry & Engineering 9 (2021): 12043-12048.

[28]

Q. Wang, X. Dou, X. Chen, et al., “Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence Upon Concentration and Insight Into the Emission Mechanism,” Angewandte Chemie 131 (2019): 12797-12803.

[29]

R. Ravanfar, C. J. Bayles, and A. Abbaspourrad, “Structural Chemistry Enables Fluorescence of Amino Acids in the Crystalline Solid State,” Crystal Growth & Design 20 (2020): 1673-1680.

[30]

Z. A. Arnon, T. Kreiser, B. Yakimov, et al., “On-Off Transition and Ultrafast Decay of Amino Acid Luminescence Driven by Modulation of Supramolecular Packing,” iScience 24 (2021): 102695.

[31]

M. Abe, R. Suzuki, K. Hirano, H. Koizumi, K. Kojima, and M. Tachibana, “Existence of Twisting in Dislocation-Free Protein Single Crystals,” Proceedings of the National Academy of Sciences of the United States of America 119 (2022): e2120846119.

[32]

E.-K. Yan, H.-L. Cao, C.-Y. Zhang, et al., “Cross-Linked Protein Crystals by Glutaraldehyde and Their Applications,” RSC Advances 5 (2015): 26163-26174.

[33]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy. (Springer, 2006).

[34]

L. M. Tolbert, A. Baldridge, J. Kowalik, and K. M. Solntsev, “Collapse and Recovery of Green Fluorescent Protein Chromophore Emission Through Topological Effects,” Accounts of Chemical Research 45 (2012): 171-181.

[35]

R. Zhou, T. Y. Ohulchanskyy, Y. Xu, et al., “Tumor-Microenvironment-Activated NIR-II Nanotheranostic Platform for Precise Diagnosis and Treatment of Colon Cancer,” ACS Applied Materials & Interfaces 14 (2022): 23206-23218.

[36]

R. Zhou, H. Xu, J. Qu, and T. Y. Ohulchanskyy, “Hemoglobin Nanocrystals for Drugs Free, Synergistic Theranostics of Colon Tumor,” Small 19 (2023): 2205165.

[37]

R. B. Zhou, T. Y. Ohulchanskyy, H. Xu, R. Ziniuk, and J. L. Qu, “Catalase Nanocrystals Loaded With Methylene Blue as Oxygen Self-Supplied, Imaging-Guided Platform for Photodynamic Therapy of Hypoxic Tumors,” Small 17 (2021): 2103569.

[38]

R. B. Zhou, H. L. Cao, C. Y. Zhang, and D. C. Yin, “A Review on Recent Advances for Nucleants and Nucleation in Protein Crystallization,” Crystengcomm 19 (2017): 1143-1155.

[39]

S. Tao, S. Zhu, T. Feng, C. Zheng, and B. Yang, “Crosslink-Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives,” Angewandte Chemie 132 (2020): 9910-9924.

[40]

S. Zhu, L. Wang, N. Zhou, et al., “The Crosslink Enhanced Emission (CEE) in Non-Conjugated Polymer Dots: From the Photoluminescence Mechanism to the Cellular Uptake Mechanism and Internalization,” Chemical Communications 50 (2014): 13845-13848.

[41]

P. Li and Z. Sun, “An Innovative Way to Modulate the Photoluminescence of Carbonized Polymer Dots,” Light: Science & Applications 11 (2022): 81.

[42]

J. S. Collins and T. H. Goldsmith, “Spectral Properties of Fluorescence Induced by Glutaraldehyde Fixation,” Journal of Histochemistry & Cytochemistry 29 (1981): 411-414.

[43]

R. D. Frank, H. Dresbach, H. Thelen, and H.-G. Sieberth, “Glutardialdehyde Induced Fluorescence Technique (GIFT): A New Method for the Imaging of Platelet Adhesion on Biomaterials,” Journal of Biomedical Materials Research 52 (2000): 374-381.

[44]

H. M. Kim, Y.-W. Noh, H. S. Park, et al., “Self-Fluorescence of Chemically Crosslinked MRI Nanoprobes to Enable Multimodal Imaging of Therapeutic Cells,” Small 8 (2012): 666-670.

[45]

D.a H. Shin, M. B. Heo, and Y. T. Lim, “Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging,” Molecules 20 (2015): 4369-4382.

[46]

H. Xie, L. Zhang, L. Wu, and J. Wang, “Polyacrylamide Nanoparticles with Visible and Near-Infrared Autofluorescence,” Particle & Particle Systems Characterization 34 (2017): 1700222.

[47]

S. Zhang, C. J. J. Gerard, A. Ikni, et al., “Microfluidic Platform for Optimization of Crystallization Conditions,” Journal of Crystal Growth 472 (2017): 18-28.

[48]

E. A. Permyakov, Luminescent Spectroscopy of Proteins. (CRC press, 2018).

[49]

Y.a-P. Sun, B. Zhou, Y.i Lin, et al., “Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence,” Journal of the American Chemical Society 128 (2006): 7756-7757.

[50]

J. Li and X. Gong, “The Emerging Development of Multicolor Carbon Dots,” Small 18 (2022): 2205099.

[51]

X. Zhang, J. Gong, W. Tao, X. Jiang, C. Chen, and P. Wei, “Less Is More: Tunable Polymorphs With Packing-Dependent Deep-Red to Near-Infrared Emission Based on a Geometrically Simple Molecule,” ACS Materials Letters 4 (2022): 1468-1474.

[52]

J. Zhang, P. Alam, S. Zhang, et al., “Secondary Through-Space Interactions Facilitated Single-Molecule White-Light Emission From Clusteroluminogens,” Nature Communications 13 (2022): 3492.

[53]

S. Datta, B. K. Biswal, and M. Vijayan, “The Effect of Stabilizing Additives on the Structure and Hydration of Proteins: A Study Involving Tetragonal Lysozyme,” Acta Crystallographica Section D 57 (2001): 1614-1620.

[54]

N. T. Saraswathi, R. Sankaranarayanan, and M. Vijayan, “Effect of Stabilizing Additives on the Structure and Hydration of Proteins: A Study Involving Monoclinic Lysozyme,” Acta Crystallographica Section D 58 (2002): 1162-1167.

[55]

K. Takano, Y. Yamagata, S. Fujii, and K. Yutani, “Contribution of the Hydrophobic Effect to the Stability of Human Lysozyme:  Calorimetric Studies and X-Ray Structural Analyses of the Nine Valine to Alanine Mutants,” Biochemistry 36 (1997): 688-698.

[56]

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. Radha Kishan, and P. Guptasarma, “A Novel UV Laser-Induced Visible Blue Radiation From Protein Crystals and Aggregates: Scattering Artifacts or Fluorescence Transitions of Peptide Electrons Delocalized Through Hydrogen Bonding?,” Archives of Biochemistry and Biophysics 428 (2004): 144-153.

[57]

L. L. Del Mercato, P. P. Pompa, G. Maruccio, et al., “Charge Transport and Intrinsic Fluorescence in Amyloid-Like Fibrils,” Proceedings of the National Academy of Sciences of the United States of America 104 (2007): 18019-18024.

[58]

G. D. Mirón, J. A. Semelak, L. Grisanti, et al., “The Carbonyl-Lock Mechanism Underlying Non-Aromatic Fluorescence in Biological Matter,” Nature Communications 14 (2023): 7325.

[59]

U. N. Morzan, G. Díaz Mirón, L. Grisanti, M. C. G. Lebrero, G. S. Kaminski Schierle, and A. Hassanali, “Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule?,” Journal of Physical Chemistry B 126 (2022): 7203-7211.

[60]

L. Grisanti, M. Sapunar, A. Hassanali, and N. Došlić, “Toward Understanding Optical Properties of Amyloids: A Reaction Path and Nonadiabatic Dynamics Study,” Journal of the American Chemical Society 142 (2020): 18042-18049.

[61]

K. H. Jong, Y. T. Azar, L. Grisanti, et al., “Low Energy Optical Excitations as an Indicator of Structural Changes Initiated at the Termini of Amyloid Proteins,” Physical Chemistry Chemical Physics 21 (2019): 23931-23942.

[62]

C. Niyangoda, T. Miti, L. Breydo, V. Uversky, and M. Muschol, “Carbonyl-Based Blue Autofluorescence of Proteins and Amino Acids,” PLoS One 12 (2017): e0176983.

[63]

D. Pinotsi, L. Grisanti, P. Mahou, et al., “Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures,” Journal of the American Chemical Society 138 (2016): 3046-3057.

[64]

A. D. Stephens, M. N. Qaisrani, M. T. Ruggiero, et al., “Short Hydrogen Bonds Enhance Nonaromatic Protein-related Fluorescence,” Proceedings of the National Academy of Sciences of the United States of America 118 (2021): e2020389118.

[65]

P. Makuła, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” Journal of Physical Chemistry Letters 9 (2018): 6814-6817.

[66]

N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, “MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations,” Journal of Computational Chemistry 32 (2011): 2319-2327.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/