π-Bridged Dimer Strategy of Aggregation-Induced Emission Molecules to Achieve Very Strong Absorption Ability
Liwei Dou , Huanlong Zheng , Haonan Xiong , Shengjie Fu , Chenguang Wang , Di Li
Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70068
π-Bridged Dimer Strategy of Aggregation-Induced Emission Molecules to Achieve Very Strong Absorption Ability
Aggregation-induced emission (AIE) molecules have attracted widespread attention due to their remarkable fluorescence properties in the aggregated state. However, the highly twisted structures of AIE molecules significantly disrupt the π-conjugations, thus resulting in weak absorption abilities (i.e., small molar absorption coefficients ε). To overcome this problem, herein we have proposed an efficient molecular design strategy: π-bridged dimer of AIE molecules. Accordingly, two series of AIE dimer molecules, TPE-BTO-Dimer 1‒6 and DTPE-BTO-Dimer 1‒6 with various π-bridged moieties, have been newly synthesized. In comparison to the corresponding AIE monomer molecules TPE-BTO and DTPE-BTO, the dimer molecules retain the AIE character while exhibit largely improved absorption abilities (the ε values are increased by 2.3‒3.7 times to 6.01‒9.54 × 104 M−1 cm−1) as well as significantly redshifted absorption maxima. The theoretical calculations have revealed that the π-bridged dimer strategy dramatically increases the oscillator strength of electron transition from the ground state to an excited state and thus results in a large ε. In the transient absorption studies, the local excited state components of dimer molecules are obviously higher than those of monomer molecules, which further confirms the effectiveness of π-bridged dimer strategy. Moreover, one of the AIE dimer molecules DTPE-BTO-Dimer 6 with near-infrared (NIR) emission has been applied in NIR fluorescence imaging-guided photothermal therapy. The very strong absorption ability has enabled its nanoparticles to exhibit a high photothermal conversion efficiency of 73% under the 655 nm laser irradiation and thus display a desired photothermal therapy performance.
absorption property / aggregation-induced emission / fluorescence imaging / molar absorption coefficient / photothermal therapy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |