Cell Membrane-Coated Lipid Nanoparticles for Drug Delivery

Moataz B. Zewail , Guangze Yang , Yilong Fan , Yue Hui , Chun-Xia Zhao , Yun Liu

Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70054

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70054 DOI: 10.1002/agt2.70054
REVIEW

Cell Membrane-Coated Lipid Nanoparticles for Drug Delivery

Author information +
History +
PDF

Abstract

Cell membrane coating (CMC) of nanoparticles (NPs) has emerged as a prominent strategy that has gained significant attention and achieved notable progress across various therapeutic sectors. Coating NPs with natural cell membranes endows them with various functions and addresses various challenges in drug delivery, such as prolonging circulation time, reducing immunogenicity, and improving targeting efficiency and cellular communication. Among the different NPs, lipid nanoparticles (LNPs) have revolutionized the field of nanomedicine by providing various advantageous features for drug delivery. The versatile characteristics of LNPs synergize well with cell membranes’ biomimetic properties, creating hybrid structures with enhanced functionalities for diverse biomedical applications. A more advanced form of LNPs with significantly enhanced capabilities can be achieved through CMC. However, significant opportunities remain for further advancements, with ongoing efforts focused on discovering innovative applications and fully harnessing the potential of this promising combination. This article provides a critical review of recent progress in cell membrane coated-LNPs (CMC-LNPs). First, different LNP types, their preparation methods, and coating strategies are summarized. The development, properties, functions, and applications of CMC-LNPs are then discussed. Last, their advantages, limitations, challenges, and future perspectives are presented.

Keywords

cell membrane coating / drug delivery / lipid nanoparticles / surface modification / targeted delivery

Cite this article

Download citation ▾
Moataz B. Zewail, Guangze Yang, Yilong Fan, Yue Hui, Chun-Xia Zhao, Yun Liu. Cell Membrane-Coated Lipid Nanoparticles for Drug Delivery. Aggregate, 2025, 6(7): e70054 DOI:10.1002/agt2.70054

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Xu, T. Fourniols, Y. Labrak, V. Préat, A. Beloqui, and A. des Rieux, “Surface Modification of Lipid-Based Nanoparticles,” ACS Nano 16 (2022): 7168-7196.

[2]

S. A. Dilliard and D. J. Siegwart, “Passive, Active and Endogenous Organ-Targeted Lipid and Polymer Nanoparticles for Delivery of Genetic Drugs,” Nature Reviews Materials 8 (2023): 282-300.

[3]

L. Xu, X. Wang, Y. Liu, G. Yang, R. J. Falconer, and C. X. Zhao, “Lipid Nanoparticles for Drug Delivery,” Advanced NanoBiomed Research 2 (2022): 2100109.

[4]

H. Shrestha, R. Bala, and S. Arora, “Lipid-Based Drug Delivery Systems,” Journal of Pharmaceutical Research 2014 (2014): 801820.

[5]

M. Pradhan, S. Srivastava, D. Singh, S. Saraf, S. Saraf, and M. R. Singh, “Perspectives of Lipid-Based Drug Carrier Systems for Transdermal Delivery,” Critical Reviews in Therapeutic Drug Carrier Systems 35 (2018): 331-367.

[6]

X. Hou, T. Zaks, R. Langer, and Y. Dong, “Lipid Nanoparticles for mRNA Delivery,” Nature Reviews Materials 6 (2021): 1078-1094.

[7]

L. Schoenmaker, D. Witzigmann, J. A. Kulkarni, et al., “mRNA-Lipid Nanoparticle COVID-19 Vaccines: Structure and Stability,” International Journal of Pharmaceutics 601 (2021): 120586.

[8]

R. Tenchov, R. Bird, A. E. Curtze, and Q. Zhou, “Lipid Nanoparticles─from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement,” ACS Nano 15 (2021): 16982-17015.

[9]

D. E. Large, R. G. Abdelmessih, E. A. Fink, and D. T. Auguste, “Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application,” Advanced Drug Delivery Reviews 176 (2021): 113851.

[10]

Y. C. Barenholz, “Doxil® — The First FDA-Approved Nano-Drug: Lessons Learned,” Journal of Controlled Release 160 (2012): 117-134.

[11]

A. Akinc, M. A. Maier, M. Manoharan, et al., “The Onpattro Story and the Clinical Translation of Nanomedicines Containing Nucleic Acid-Based Drugs,” Nature Nanotechnology 14 (2019): 1084-1087.

[12]

S. Yonezawa, H. Koide, and T. Asai, “Recent Advances in siRNA Delivery Mediated by Lipid-Based Nanoparticles,” Advanced Drug Delivery Reviews 154 (2020): 64-78.

[13]

M. B. Zewail, A. S. Doghish, H. M. El-Husseiny, et al., “Lipid-Based Nanocarriers: An Attractive Approach for Rheumatoid Arthritis Management,” Biomaterials Science 12 (2024): 6163-6195.

[14]

J. Hu, Y. Sheng, J. Shi, B. Yu, Z. Yu, and G. Liao, “Long Circulating Polymeric Nanoparticles for Gene/Drug Delivery,” Current Drug Metabolism 19 (2018): 723-738.

[15]

C.-M. J. Hu, L. Zhang, S. Aryal, C. Cheung, R. H. Fang, and L. Zhang, “Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform,” Proceedings of the National Academy of Sciences 108 (2011): 10980-10985.

[16]

R. H. Fang, A. V. Kroll, W. Gao, and L. Zhang, “Cell Membrane Coating Nanotechnology,” Advanced Materials 30 (2018): 1706759.

[17]

P. Lei, H. Yu, J. Ma, et al., “Cell Membrane Nanomaterials Composed of Phospholipids and Glycoproteins for Drug Delivery in Inflammatory Bowel Disease: A Review,” International Journal of Biological Macromolecules 249 (2023): 126000.

[18]

A. Narain, S. Asawa, V. Chhabria, and Y. Patil-Sen, “Cell Membrane Coated Nanoparticles: Next-Generation Therapeutics,” Nanomedicine 12 (2017): 2677-2692.

[19]

H. Liu, Y.-Y. Su, X.-C. Jiang, and J.-Q. Gao, “Cell Membrane-Coated Nanoparticles: A Novel Multifunctional Biomimetic Drug Delivery System,” Drug Delivery and Translational Research 13 (2023): 716-737.

[20]

V. Chugh, K. Vijaya Krishna, and A. Pandit, “Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation,” ACS Nano 15 (2021): 17080-17123.

[21]

A. Puri, K. Loomis, B. Smith, et al., “Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic,” Critical Reviews in Therapeutic Drug Carrier Systems 26 (2009): 523-580.

[22]

A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, et al., “Liposome: Classification, Preparation, and Applications,” Nanoscale Research Letters 8 (2013): 102.

[23]

D. Guimarães, A. Cavaco-Paulo, and E. Nogueira, “Design of Liposomes as Drug Delivery System for Therapeutic Applications,” International Journal of Pharmaceutics 601 (2021): 120571.

[24]

M. Li, F. Chen, Q. Yang, et al., “Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment,” Biomaterials Research 28 (2024): 0023.

[25]

H. He, Y. Lu, J. Qi, Q. Zhu, Z. Chen, and W. Wu, “Adapting Liposomes for Oral Drug Delivery,” Acta Pharmaceutica Sinica B 9 (2019): 36-48.

[26]

M. L. Immordino, F. Dosio, and L. Cattel, “Stealth Liposomes: Review of the Basic Science, Rationale, and Clinical Applications, Existing and Potential,” International Journal of Nanomedicine 1 (2006): 297-315.

[27]

J. Nel, K. Elkhoury, É. Velot, et al., “Functionalized Liposomes for Targeted Breast Cancer Drug Delivery,” Bioactive Materials 24 (2023): 401-437.

[28]

L. Belfiore, D. N. Saunders, M. Ranson, K. J. Thurecht, G. Storm, and K. L. Vine, “Towards Clinical Translation of Ligand-Functionalized Liposomes in Targeted Cancer Therapy: Challenges and Opportunities,” Journal of Controlled Release 277 (2018): 1-13.

[29]

Y. Li, G. Yang, L. Gerstweiler, S. H. Thang, and C. X. Zhao, “Design of Stimuli-Responsive Peptides and Proteins,” Advanced Functional Materials 33 (2023): 2210387.

[30]

S. Hua, “Lipid-Based Nano-Delivery Systems for Skin Delivery of Drugs and Bioactives,” Frontiers Media SA 6 (2015): 219.

[31]

A. Ascenso, S. Raposo, C. Batista, et al., “Development, Characterization, and Skin Delivery Studies of Related Ultradeformable Vesicles: Transfersomes, Ethosomes, and Transethosomes,” International Journal of Nanomedicine 10 (2015): 5837.

[32]

E. L. Romero and M. J. Morilla, “Highly Deformable and Highly Fluid Vesicles as Potential Drug Delivery Systems: Theoretical and Practical Considerations,” International Journal of Nanomedicine 8 (2013): 3171.

[33]

M. W. Akram, H. Jamshaid, F. U. Rehman, M. Zaeem, J. z. Khan, and A. Zeb, “Transfersomes: a Revolutionary Nanosystem for Efficient Transdermal Drug Delivery,” AAPS PharmSciTech 23 (2022): 7.

[34]

J. Chen, W. L. Lu, W. Gu, S. S. Lu, Z. P. Chen, and B.-C. Cai, “Skin Permeation Behavior of Elastic Liposomes: Role of Formulation Ingredients,” Expert Opinion on Drug Delivery 10 (2013): 845-856.

[35]

E. Pilch and W. Musiał, “Liposomes With an Ethanol Fraction as an Application for Drug Delivery,” International Journal of Molecular Sciences 19 (2018): 3806.

[36]

M. Emanet and G. Ciofani, “Ethosomes as Promising Transdermal Delivery Systems of Natural-Derived Active Compounds,” Advanced NanoBiomed Research 3 (2023): 2300020.

[37]

N. Nainwal, S. Jawla, R. Singh, and V. A. Saharan, “Transdermal Applications of Ethosomes—a Detailed Review,” Journal of Liposome Research 29 (2019): 103-113.

[38]

D. Despotopoulou, N. Lagopati, S. Pispas, M. Gazouli, C. Demetzos, and N. Pippa, “The Technology of Transdermal Delivery Nanosystems: From Design and Development to Preclinical Studies,” International Journal of Pharmaceutics 611 (2022): 121290.

[39]

P. Bhardwaj, P. Tripathi, R. Gupta, and S. Pandey, “Niosomes: A Review on Niosomal Research in the Last Decade,” Journal of Drug Delivery Science and Technology 56 (2020): 101581.

[40]

R. Bartelds, M. H. Nematollahi, T. Pols, et al., “Niosomes, an Alternative for Liposomal Delivery,” PLoS ONE 13 (2018): e0194179.

[41]

M. Khatoon, K. U. Shah, F. U. Din, et al., “Proniosomes Derived Niosomes: Recent Advancements in Drug Delivery and Targeting,” Drug Delivery 24 (2017): 56-69.

[42]

G. P. Kumar and P. Rajeshwarrao, “Nonionic Surfactant Vesicular Systems for Effective Drug Delivery—An Overview,” Acta Pharmaceutica Sinica B 1 (2011): 208-219.

[43]

M. A. El-Nabarawi, R. N. Shamma, F. Farouk, and S. M. Nasralla, “Bilosomes as a Novel Carrier for the Cutaneous Delivery for Dapsone as a Potential Treatment of Acne: Preparation, Characterization and in Vivo Skin Deposition Assay,” Journal of Liposome Research 30 (2020): 1-11.

[44]

P. Palekar-Shanbhag, S. Lande, R. Chandra, and D. Rane, “Bilosomes: Superior Vesicular Carriers,” Current Drug Therapy 15 (2020): 312-320.

[45]

L. Wang, X. Huang, H. Jing, C. Ma, and H. Wang, “Bilosomes as Effective Delivery Systems to Improve the Gastrointestinal Stability and Bioavailability of Epigallocatechin Gallate (EGCG),” Food Research International 149 (2021): 110631.

[46]

H. Abbas, Y. A. El-Feky, M. M. Al-Sawahli, N. M. El-Deeb, H. B. El-Nassan, and M. Zewail, “Development and Optimization of Curcumin Analog Nano-Bilosomes Using 2 1 .3 1 Full Factorial Design for Anti-Tumor Profiles Improvement in human Hepatocellular Carcinoma: In-vitro Evaluation, in-vivo Safety Assay,” Drug Delivery 29 (2022): 714-727.

[47]

M. A. Abdelbari, S. S. El-Mancy, A. H. Elshafeey, and A. A. Abdelbary, “Implementing Spanlastics for Improving the Ocular Delivery of Clotrimazole: In Vitro Characterization, Ex Vivo Permeability, Microbiological Assessment and in Vivo Safety Study,” International Journal of Nanomedicine 16 (2021): 6249-6261.

[48]

M. D. Ansari, Z. Saifi, J. Pandit, et al., “Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery,” AAPS PharmSciTech 23 (2022): 112.

[49]

S. Kakkar and I. P. Kaur, “Spanlastics—A Novel Nanovesicular Carrier System for Ocular Delivery,” International Journal of Pharmaceutics 413 (2011): 202-210.

[50]

I. A. Chacko, V. M. Ghate, L. Dsouza, and S. A. Lewis, “Lipid Vesicles: A Versatile Drug Delivery Platform for Dermal and Transdermal Applications,” Colloids and Surfaces B: Biointerfaces 195 (2020): 111262.

[51]

B. J. Gowda, M. G. Ahmed, S. A. Alshehri, et al., “The Cubosome-Based Nanoplatforms in Cancer Therapy: Seeking New Paradigms for Cancer Theranostics,” Environmental Research 237 (2023): 116894.

[52]

K. Singhal, N. Kaushik, and A. Kumar, “Cubosomes: Versatile Nanosized Formulation for Efficient Delivery of Therapeutics,” Current Drug Delivery 19 (2022): 644-657.

[53]

D. Sivadasan, M. H. Sultan, S. S. Alqahtani, and S. Javed, “Cubosomes in Drug Delivery—A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications,” Biomedicines 11 (2023): 1114.

[54]

A. S. Palma, B. R. Casadei, M. C. Lotierzo, R. D. de Castro, and L. R. S. Barbosa, “A Short Review on the Applicability and Use of Cubosomes as Nanocarriers,” Biophysical Reviews 15 (2023): 553-567.

[55]

R. H. Müller, K. Mäder, and S. Gohla, “Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery — A Review of the State of the Art,” European Journal of Pharmaceutics and Biopharmaceutics 50 (2000): 161-177.

[56]

D. Kakkar Thukral, S. Dumoga, and A. K. Mishra, “Solid Lipid Nanoparticles: Promising Therapeutic Nanocarriers for Drug Delivery,” Current Drug Delivery 11 (2014): 771-791.

[57]

A. Czajkowska-Kośnik, M. Szekalska, and K. Winnicka, “Nanostructured Lipid Carriers: A Potential Use for Skin Drug Delivery Systems,” Pharmacological Reports 71 (2019): 156-166.

[58]

V. R. Salvi and P. Pawar, “Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier,” Journal of Drug Delivery Science and Technology 51 (2019): 255-267.

[59]

M. B. Zewail, G. F. Asaad, S. M. Swellam, et al., “Design, Characterization and in Vivo Performance of Solid Lipid Nanoparticles (SLNs)-Loaded Mucoadhesive Buccal Tablets for Efficient Delivery of Lornoxicam in Experimental Inflammation,” International Journal of Pharmaceutics 624 (2022): 122006.

[60]

R. Paliwal, S. R. Paliwal, R. Kenwat, B. D. Kurmi, and M. K. Sahu, “Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents,” Expert Opinion on Therapeutic Patents 30 (2020): 179-194.

[61]

B. Heurtault, P. Saulnier, B. Pech, J. Benoıt, and J. Proust, “Interfacial Stability of Lipid Nanocapsules,” Colloids and Surfaces B 30 (2003): 225-235.

[62]

D. Urimi, M. Hellsing, N. Mahmoudi, et al., “Structural Characterization Study of a Lipid Nanocapsule Formulation Intended for Drug Delivery Applications Using Small-Angle Scattering Techniques,” Molecular Pharmaceutics 19 (2022): 1068-1077.

[63]

C. R. Mouzouvi, A. Umerska, A. K. Bigot, and P. Saulnier, “Surface Active Properties of Lipid Nanocapsules,” PLoS ONE 12 (2017): e0179211.

[64]

A. Chouchou, A. Aubert-Pouessel, C. Dorandeu, et al., “Lipid Nanocapsules Formulation and Cellular Activities Evaluation of a Promising anticancer Agent: EAPB0503,” International Journal of Pharmaceutical Investigation 7 (2017): 155-163.

[65]

N. Dabholkar, T. Waghule, V. K. Rapalli, et al., “Lipid Shell Lipid Nanocapsules as Smart Generation Lipid Nanocarriers,” Journal of Molecular Liquids 339 (2021): 117145.

[66]

N. T. Huynh, C. Passirani, P. Saulnier, and J.-P. Benoit, “Lipid Nanocapsules: A New Platform for Nanomedicine,” International Journal of Pharmaceutics 379 (2009): 201-209.

[67]

L. Battaglia and E. Ugazio, “Lipid Nano- and Microparticles: An Overview of Patent-Related Research,” Journal of Nanomaterials 2019 (2019): 2834941.

[68]

C. Dulieu and D. Bazile, “Influence of Lipid Nanocapsules Composition on Their Aptness to Freeze-Drying,” Pharmaceutical Research 22 (2005): 285-292.

[69]

D. Karati, S. Mukherjee, B. Prajapati, et al., “A Review on Lipid-Polymer Hybrid Nanocarriers in Cancer,” Journal of Drug Delivery Science and Technology 97 (2024): 105827.

[70]

M. B. Zewail, G. F. Asaad, M. E. Shabana, et al., “PEGylated Lipid Polymeric Nanoparticles for Management of Rheumatoid Arthritis,” Journal of Drug Delivery Science and Technology 101 (2024): 106242.

[71]

M. B. Zewail, S. A. El-Gizawy, G. F. Asaad, and W. A. El-Dakroury, “Development of Famotidine-Loaded Lecithin-Chitosan Nanoparticles for Prolonged and Efficient Anti-Gastric Ulcer Activity,” Journal of Drug Delivery Science and Technology 91 (2024): 105196.

[72]

K. R. Gajbhiye, R. Salve, M. Narwade, A. Sheikh, P. Kesharwani, and V. Gajbhiye, “Lipid Polymer Hybrid Nanoparticles: A Custom-Tailored next-Generation Approach for Cancer Therapeutics,” Molecular Cancer 22 (2023): 160.

[73]

C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, “Nano-Emulsions,” Current Opinion in Colloid & Interface Science 10 (2005): 102.

[74]

Y. Singh, J. G. Meher, K. Raval, et al., “Nanoemulsion: Concepts, Development and Applications in Drug Delivery,” Journal of Controlled Release 252 (2017): 28-49.

[75]

M. B. Zewail, S. A. El-Gizawy, G. F. Asaad, M. E. Shabana, and W. A. El-Dakroury, “Chitosan Coated Clove Oil-Based Nanoemulsion: An Attractive Option for Oral Delivery of Leflunomide in Rheumatoid Arthritis,” International Journal of Pharmaceutics 643 (2023): 123224.

[76]

Y. Zhang, Z. Shang, C. Gao, et al., “Nanoemulsion for Solubilization, Stabilization, and in Vitro Release of Pterostilbene for Oral Delivery,” AAPS PharmSciTech 15 (2014): 1000-1008.

[77]

A. A. Date, N. Desai, R. Dixit, and M. Nagarsenker, “Self-Nanoemulsifying Drug Delivery Systems: Formulation Insights, Applications and Advances,” Nanomedicine 5 (2010): 1595-1616.

[78]

M. B. Zewail, S. A. El-Gizawy, M. A. Osman, and Y. A. Haggag, “Preparation and in Vitro Characterization of a Novel Self-Nano Emulsifying Drug Delivery System for a Fixed-Dose Combination of candesartan Cilexetil and Hydrochlorothiazide,” Journal of Drug Delivery Science and Technology 61 (2021): 102320.

[79]

A. Lippacher, R. Müller, and K. Mäder, “Investigation on the Viscoelastic Properties of Lipid Based Colloidal Drug Carriers,” International Journal of Pharmaceutics 196 (2000): 227-230.

[80]

W. Mehnert and K. Mäder, “Solid Lipid Nanoparticles,” Advanced Drug Delivery Reviews 64 (2012): 83-101.

[81]

L. Battaglia and M. Gallarate, “Lipid Nanoparticles: State of the art, new Preparation Methods and Challenges in Drug Delivery,” Expert Opinion on Drug Delivery 9 (2012): 497-508.

[82]

P. Ganesan and D. Narayanasamy, “Lipid Nanoparticles: Different Preparation Techniques, Characterization, Hurdles, and Strategies for the Production of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Oral Drug Delivery,” Sustainable Chemistry and Pharmacy 6 (2017): 37-56.

[83]

R. Lander, W. Manger, M. Scouloudis, A. Ku, C. Davis, and A. Lee, “Gaulin Homogenization: A Mechanistic Study,” Biotechnology Progress 16 (2000): 80-85.

[84]

A. R. Tekade, M. R. Suryavanshi, A. B. Shewale, and V. S. Patil, “Design and Development of Donepezil Hydrochloride Loaded Nanostructured Lipid Carriers for Efficient Management of Alzheimer's Disease,” Drug Development and Industrial Pharmacy 49 (2023): 590-600.

[85]

S. Melchior, M. Codrich, A. Gorassini, et al., “Design and Advanced Characterization of Quercetin-Loaded Nano-Liposomes Prepared by High-Pressure Homogenization,” Food Chemistry 428 (2023): 136680.

[86]

A. C. Silva, E. González-Mira, M. García, et al., “Preparation, Characterization and Biocompatibility Studies on Risperidone-Loaded Solid Lipid Nanoparticles (SLN): High Pressure Homogenization versus Ultrasound,” Colloids and Surfaces B: Biointerfaces 86 (2011): 158-165.

[87]

S. Mor, S. N. Battula, G. Swarnalatha, H. Pushpadass, L. N. Naik, and M. Franklin, “Preparation of Casein Biopeptide-Loaded Niosomes by High Shear Homogenization and Their Characterization,” Journal of Agricultural and Food Chemistry 69 (2021): 4371-4380.

[88]

S. J. Shepherd, D. Issadore, and M. J. Mitchell, “Microfluidic Formulation of Nanoparticles for Biomedical Applications,” Biomaterials 274 (2021): 120826.

[89]

M. Yang, Y. Gao, Y. Liu, G. Yang, C.-X. Zhao, and K.-J. Wu, “Integration of Microfluidic Systems With External Fields for Multiphase Process Intensification,” Chemical Engineering Science 234 (2021): 116450.

[90]

F. Tian, L. Cai, C. Liu, and J. Sun, “Microfluidic Technologies for Nanoparticle Formation,” Lab on A Chip 22 (2022): 512-529.

[91]

M. Schubert and C. Müller-Goymann, “Solvent Injection as a New Approach for Manufacturing Lipid Nanoparticles—evaluation of the Method and Process Parameters,” European Journal of Pharmaceutics and Biopharmaceutics 55 (2003): 125-131.

[92]

G. Prakash, A. Shokr, N. Willemen, S. M. Bashir, S. R. Shin, and S. Hassan, “Microfluidic Fabrication of Lipid Nanoparticles for the Delivery of Nucleic Acids,” Advanced Drug Delivery Reviews 184 (2022): 114197.

[93]

Y. Dong, W. K. Ng, S. Shen, S. Kim, and R. B. Tan, “Solid Lipid Nanoparticles: Continuous and Potential Large-Scale Nanoprecipitation Production in Static Mixers,” Colloids and Surfaces B: Biointerfaces 94 (2012): 68-72.

[94]

M. Maeki, T. Saito, Y. Sato, et al., “A Strategy for Synthesis of Lipid Nanoparticles Using Microfluidic Devices With a Mixer Structure,” RSC Advances 5 (2015): 46181-46185.

[95]

I. V. Zhigaltsev, N. Belliveau, I. Hafez, et al., “Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems With Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing,” Langmuir 28 (2012): 3633-3640.

[96]

N. Kimura, M. Maeki, Y. Sato, et al., “Development of the iLiNP Device: Fine Tuning the Lipid Nanoparticle Size Within 10 Nm for Drug Delivery,” ACS Omega 3 (2018): 5044-5051.

[97]

C. C. Cheung and W. T. Al-Jamal, “Sterically Stabilized Liposomes Production Using Staggered Herringbone Micromixer: Effect of Lipid Composition and PEG-Lipid Content,” International Journal of Pharmaceutics 566 (2019): 687-696.

[98]

J. A. Kulkarni, Y. Y. C. Tam, S. Chen, et al., “Rapid Synthesis of Lipid Nanoparticles Containing Hydrophobic Inorganic Nanoparticles,” Nanoscale 9 (2017): 13600-13609.

[99]

S. Zhang, J. Yun, S. Shen, et al., “Formation of Solid Lipid Nanoparticles in a Microchannel System With a Cross-Shaped Junction,” Chemical Engineering Science 63 (2008): 5600-5605.

[100]

J. P. Martins, G. Torrieri, and H. A. Santos, “The Importance of Microfluidics for the Preparation of Nanoparticles as Advanced Drug Delivery Systems,” Expert Opinion on Drug Delivery 15 (2018): 469-479.

[101]

W. Li, Q. Chen, T. Baby, et al., “Insight Into Drug Encapsulation in Polymeric Nanoparticles Using Microfluidic Nanoprecipitation,” Chemical Engineering Science 235 (2021): 116468.

[102]

A. Olanrewaju, M. Beaugrand, M. Yafia, and D. Juncker, “Capillary Microfluidics in Microchannels: From Microfluidic Networks to Capillaric Circuits,” Lab on A Chip 18 (2018): 2323-2347.

[103]

M. Maeki, S. Uno, A. Niwa, Y. Okada, and M. Tokeshi, “Microfluidic Technologies and Devices for Lipid Nanoparticle-Based RNA Delivery,” Journal of Controlled Release 344 (2022): 80-96.

[104]

A. Vogelaar, S. Marcotte, J. Cheng, B. Oluoch, and J. Zaro, “Use of Microfluidics to Prepare Lipid-Based Nanocarriers,” Pharmaceutics 15 (2023): 1053.

[105]

M. Maeki, Y. Okada, S. Uno, et al., “Mass Production System for RNA-Loaded Lipid Nanoparticles Using Piling up Microfluidic Devices,” Applied Materials Today 31 (2023): 101754.

[106]

K. J. Hassett, K. E. Benenato, E. Jacquinet, et al., “Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines,” Molecular Therapy Nucleic Acids 15 (2019): 1-11.

[107]

R. Verbeke, I. Lentacker, S. C. De Smedt, and H. Dewitte, “The Dawn of mRNA Vaccines: The COVID-19 Case,” Journal of Controlled Release 333 (2021): 511-520.

[108]

B. G. Carvalho, B. T. Ceccato, M. Michelon, S. W. Han, and L. G. de la Torre, “Advanced Microfluidic Technologies for Lipid Nano-Microsystems From Synthesis to Biological Application,” Pharmaceutics 14 (2022): 141.

[109]

S. V. Khairnar, P. Pagare, A. Thakre, et al., “Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles,” Pharmaceutics 14 (2022): 1886.

[110]

C. G. Barreras-Urbina, B. Ramírez-Wong, G. A. López-Ahumada, et al., “Nano- and Micro-Particles by Nanoprecipitation: Possible Application in the Food and Agricultural Industries,” International Journal of Food Properties 19 (2016): 1912-1923.

[111]

Y. Liu, G. Yang, D. Zou, et al., “Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery,” Industrial & Engineering Chemistry Research 59 (2019): 4134.

[112]

U. Bilati, E. Allémann, and E. Doelker, “Development of a Nanoprecipitation Method Intended for the Entrapment of Hydrophilic Drugs Into Nanoparticles,” European Journal of Pharmaceutical Sciences 24 (2005): 67-75.

[113]

G. Yang, Y. Liu, S. Jin, et al., “Phase Separation-Induced Nanoprecipitation for Making Polymer Nanoparticles With High Drug Loading,” Aggregate 4 (2023): e314.

[114]

C. J. M. Rivas, M. Tarhini, W. Badri, et al., “Nanoprecipitation Process: From Encapsulation to Drug Delivery,” International Journal of Pharmaceutics 532 (2017): 66-81.

[115]

Y. Liu, G. Yang, S. Jin, L. Xu, and C. X. Zhao, “Development of High-Drug-Loading Nanoparticles,” ChemPlusChem 85 (2020): 2143-2157.

[116]

Y. Liu, G. Yang, T. Baby, D. C. Tengjisi, D. A. Weitz, and C. X. Zhao, “Stable Polymer Nanoparticles With Exceptionally High Drug Loading by Sequential Nanoprecipitation,” Angewandte Chemie International Edition 132 (2020): 4750-4758.

[117]

L. Xu, X. Wang, G. Yang, et al., “Development of a Concentration-Controlled Sequential Nanoprecipitation for Making Lipid Nanoparticles With High Drug Loading,” Aggregate 4 (2023): e369.

[118]

J. S. Suk, Q. Xu, N. Kim, J. Hanes, and L. M. Ensign, “PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery,” Advanced Drug Delivery Reviews 99 (2016): 28-51.

[119]

S. Zou, B. Wang, C. Wang, Q. Wang, and L. Zhang, “Cell Membrane-Coated Nanoparticles: Research Advances,” Nanomedicine 15 (2020): 625-641.

[120]

X.-y. Yang, Y.-x. Li, M. Li, L. Zhang, L.-X. Feng, and N. Zhang, “Hyaluronic Acid-Coated Nanostructured Lipid Carriers for Targeting paclitaxel to Cancer,” Cancer Letters 334 (2013): 338-345.

[121]

W. Zeng, Q. Li, T. Wan, et al., “Hyaluronic Acid-Coated Niosomes Facilitate Tacrolimus Ocular Delivery: Mucoadhesion, Precorneal Retention, Aqueous Humor Pharmacokinetics, and Transcorneal Permeability,” Colloids and Surfaces B: Biointerfaces 141 (2016): 28-35.

[122]

M. Zewail, N. M. El-Deeb, M. R. Mousa, and H. Abbas, “Hyaluronic Acid Coated Teriflunomide (A771726) Loaded Lipid Carriers for the Oral Management of Rheumatoid Arthritis,” International Journal of Pharmaceutics 623 (2022): 121939.

[123]

K. Y. Choi, G. Saravanakumar, J. H. Park, and K. Park, “Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions With Proteins in Cancer,” Colloids and Surfaces B: Biointerfaces 99 (2012): 82-94.

[124]

H. Shen, S. Shi, Z. Zhang, T. Gong, and X. Sun, “Coating Solid Lipid Nanoparticles With Hyaluronic Acid Enhances Antitumor Activity Against Melanoma Stem-Like Cells,” Theranostics 5 (2015): 755-771.

[125]

Z. Poon, J. B. Lee, S. W. Morton, and P. T. Hammond, “Controlling in Vivo Stability and Biodistribution in Electrostatically Assembled Nanoparticles for Systemic Delivery,” Nano Letters 11 (2011): 2096-2103.

[126]

T. Jiang, Z. Zhang, Y. Zhang, et al., “Dual-Functional Liposomes Based on pH-Responsive Cell-Penetrating Peptide and Hyaluronic Acid for Tumor-Targeted Anticancer Drug Delivery,” Biomaterials 33 (2012): 9246-9258.

[127]

H. Yu, Z. Tang, D. Zhang, et al., “Pharmacokinetics, Biodistribution and in Vivo Efficacy of Cisplatin Loaded Poly(l-glutamic acid)-g-methoxy Poly(ethylene glycol) Complex Nanoparticles for Tumor Therapy,” Journal of Controlled Release 205 (2015): 89-97.

[128]

H. Zhou, Z. Fan, J. Deng, et al., “Hyaluronidase Embedded in Nanocarrier PEG Shell for Enhanced Tumor Penetration and Highly Efficient Antitumor Efficacy,” Nano Letters 16 (2016): 3268-3277.

[129]

M. Pannuzzo, S. Esposito, L.-P. Wu, et al., “Overcoming Nanoparticle-Mediated Complement Activation by Surface PEG Pairing,” Nano Letters 20 (2020): 4312-4321.

[130]

B. W. Neun, Y. Barenholz, J. Szebeni, and M. A. Dobrovolskaia, “Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro,” Molecules 23 (2018): 1700.

[131]

R. P. Garay, R. El-Gewely, J. K. Armstrong, G. Garratty, and P. Richette, “Antibodies Against Polyethylene Glycol in Healthy Subjects and in Patients Treated With PEG-Conjugated Agents,” Expert Opinion on Drug Delivery Taylor & Francis 9 (2012): 1319-1323.

[132]

Q. Yang and S. K. Lai, “Anti-PEG Immunity: Emergence, Characteristics, and Unaddressed Questions,” WIREs Nanomedicine and Nanobiotechnology 7 (2015): 655-677.

[133]

J. Vandorpe, E. Schacht, S. Stolnik, et al., “Poly(organo phosphazene) Nanoparticles Surface Modified With Poly(ethylene oxide),” Biotechnology and Bioengineering 52 (1996): 89-95.

[134]

D. B. Shenoy and M. M. Amiji, “Poly(ethylene oxide)-Modified Poly(ɛ-Caprolactone) Nanoparticles for Targeted Delivery of Tamoxifen in Breast Cancer,” International Journal of Pharmaceutics 293 (2005): 261-270.

[135]

H. Bludau, A. E. Czapar, A. S. Pitek, S. Shukla, R. Jordan, and N. F. Steinmetz, “POxylation as an Alternative Stealth Coating for Biomedical Applications,” European Polymer Journal 88 (2017): 679-688.

[136]

N. Kong, R. Zhang, G. Wu, et al., “Intravesical Delivery of KDM6A -mRNA via Mucoadhesive Nanoparticles Inhibits the Metastasis of Bladder Cancer,” Proceedings of the National Academy of Sciences 119 (2022): e2112696119.

[137]

W. A. El-Dakroury, M. B. Zewail, G. F. Asaad, et al., “Fexofenadine-Loaded Chitosan Coated Solid Lipid Nanoparticles (SLNs): A Potential Oral Therapy for Ulcerative Colitis,” European Journal of Pharmaceutics and Biopharmaceutics 196 (2024): 114205.

[138]

D. Bi, L. Zhao, R. Yu, et al., “Surface Modification of Doxorubicin-loaded Nanoparticles Based on Polydopamine With pH-Sensitive Property for Tumor Targeting Therapy,” Drug Delivery 25 (2018): 564-575.

[139]

Z. Tang, X. You, Y. Xiao, et al., “Inhaled mRNA Nanoparticles Dual-Targeting Cancer Cells and Macrophages in the Lung for Effective Transfection,” Proceedings of the National Academy of Sciences 120 (2023): e2304966120.

[140]

R. Li, Y. He, S. Zhang, J. Qin, and J. Wang, “Cell Membrane-Based Nanoparticles: A New Biomimetic Platform for Tumor Diagnosis and Treatment,” Acta Pharmaceutica Sinica B 8 (2018): 14-22.

[141]

L.-L. Li, J.-H. Xu, G.-B. Qi, X. Zhao, F. Yu, and H. Wang, “Core-Shell Supramolecular Gelatin Nanoparticles for Adaptive and “on-Demand” Antibiotic Delivery,” ACS Nano 8 (2014): 4975-4983.

[142]

X. Ren, R. Zheng, X. Fang, et al., “Red Blood Cell Membrane Camouflaged Magnetic Nanoclusters for Imaging-Guided Photothermal Therapy,” Biomaterials 92 (2016): 13-24.

[143]

X. Wei, G. Zhang, D. Ran, et al., “T-Cell-Mimicking Nanoparticles Can Neutralize HIV Infectivity,” Advanced Materials 30 (2018): 1802233.

[144]

Y. Liu, J. Luo, X. Chen, W. Liu, and T. Chen, “Preparation and Characterisation of Rutile Titanium Dioxide of Special Hollow Microspheres,” Nano-Micro Letters 11 (2019): 1-3.

[145]

Y. Chen, M. Zhu, B. Huang, Y. Jiang, and J. Su, “Advances in Cell Membrane-Coated Nanoparticles and Their Applications for Bone Therapy,” Biomaterials Advances 144 (2023): 213232.

[146]

A. Fernández-Borbolla, L. García-Hevia, and M. L. Fanarraga, “Cell Membrane-Coated Nanoparticles for Precision Medicine: A Comprehensive Review of Coating Techniques for Tissue-Specific Therapeutics,” International Journal of Molecular Sciences 25 (2024): 2071.

[147]

F. Oroojalian, M. Beygi, B. Baradaran, A. Mokhtarzadeh, and M. A. Shahbazi, “Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy,” Small 17 (2021): 2006484.

[148]

Y. Zhai, J. Su, W. Ran, et al., “Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy,” Theranostics 7 (2017): 2575-2592.

[149]

W. Gao, R. H. Fang, S. Thamphiwatana, et al., “Modulating Antibacterial Immunity via Bacterial Membrane-Coated Nanoparticles,” Nano Letters 15 (2015): 1403-1409.

[150]

H. Liu, M. Li, T. Zhang, et al., “Engineered Bacterial Extracellular Vesicles for Osteoporosis Therapy,” Chemical Engineering Journal 450 (2022): 138309.

[151]

W. Gao and L. Zhang, “Coating Nanoparticles With Cell Membranes for Targeted Drug Delivery,” Journal of Drug Targeting 23 (2015): 619-626.

[152]

Z. Chen, P. Zhao, Z. Luo, et al., “Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy,” ACS Nano 10 (2016): 10049-10057.

[153]

H. Gong, Q. Zhang, A. Komarla, et al., “Nanomaterial Biointerfacing via Mitochondrial Membrane Coating for Targeted Detoxification and Molecular Detection,” Nano Letters 21 (2021): 2603-2609.

[154]

C.-M. J. Hu, R. H. Fang, K.-C. Wang, et al., “Nanoparticle Biointerfacing by Platelet Membrane Cloaking,” Nature 526 (2015): 118-121.

[155]

C. Gao, Z. Wu, Z. Lin, X. Lin, and Q. He, “Polymeric Capsule-Cushioned Leukocyte Cell Membrane Vesicles as a Biomimetic Delivery Platform,” Nanoscale 8 (2016): 3548-3554.

[156]

J. Yang, Y. Teng, Y. Fu, and C. Zhang, “Chlorins e6 Loaded Silica Nanoparticles Coated With Gastric Cancer Cell Membrane for Tumor Specific Photodynamic Therapy of Gastric Cancer,” International Journal of Nanomedicine 14 (2019): 5061.

[157]

W. He, J. Frueh, Z. Wu, and Q. He, “Leucocyte Membrane-Coated Janus Microcapsules for Enhanced Photothermal Cancer Treatment,” Langmuir 32 (2016): 3637-3644.

[158]

H. Rennhofer and B. Zanghellini, “Dispersion State and Damage of Carbon Nanotubes and Carbon Nanofibers by Ultrasonic Dispersion: A Review,” Nanomaterials 11 (2021): 1469.

[159]

V. Vijayan, S. Uthaman, and I.-K. Park, “Cell Membrane-Camouflaged Nanoparticles: A Promising Biomimetic Strategy for Cancer Theragnostics,” Polymers 10 (2018): 983.

[160]

L. Rao, B. Cai, L.-L. Bu, et al., “Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy,” ACS Nano 11 (2017): 3496-3505.

[161]

K. Shimizu, H. Nakamura, and S. Watano, “MD Simulation Study of Direct Permeation of a Nanoparticle Across the Cell Membrane Under an External Electric Field,” Nanoscale 8 (2016): 11897-11906.

[162]

H. Hu, C. Yang, F. Zhang, et al., “A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines,” Advanced Science 8 (2021): 2002020.

[163]

A. K. A. Silva, R. Di Corato, T. Pellegrino, et al., “Cell-Derived Vesicles as a Bioplatform for the Encapsulation of Theranostic Nanomaterials,” Nanoscale 5 (2013): 11374.

[164]

B. Choi, W. Park, S.-B. Park, W.-K. Rhim, and D. K. Han, “Recent Trends in Cell Membrane-Cloaked Nanoparticles for Therapeutic Applications,” Methods 177 (2020): 2-14.

[165]

S. Alimohammadvand, M. K. Zenjanab, M. Mashinchian, J. Shayegh, and R. Jahanban-Esfahlan, “Recent Advances in Biomimetic Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy,” Biomedicine & Pharmacotherapy 177 (2024): 116951.

[166]

A. Macário-Soares, I. Sousa-Oliveira, M. Correia, et al., “Cell Membrane and Extracellular Vesicle Membrane-Coated Nanoparticles: An Envisaged Approach for the Management of Skin Conditions,” View 2024, 5, 20240043.

[167]

J. Tan, C. Zhu, L. Li, J. Wang, X.-H. Xia, and C. Wang, “Engineering Cell Membranes: From Extraction Strategies to Emerging Biosensing Applications,” Analytical Chemistry 96 (2024): 7880-7894.

[168]

C. Xu, D. Ju, and X. Zhang, “Cell Membrane-Derived Vesicle: A Novel Vehicle for Cancer Immunotherapy,” Frontiers in Immunology 13 (2022): 923598.

[169]

Y. Wang, P. Zhang, Y. Wei, et al., “Cell-Membrane-Display Nanotechnology,” Advanced Healthcare Materials 10 (2021): 2001014.

[170]

D. Wang, Y. Guo, B. C. Heng, et al., “Cell Membrane Vesicles Derived From hBMSCs and hUVECs Enhance Bone Regeneration,” Bone Research 12 (2024): 23.

[171]

D. Wang, S. Jiang, F. Zhang, et al., “Cell Membrane Vesicles With Enriched CXCR4 Display Enhances Their Targeted Delivery as Drug Carriers to Inflammatory Sites,” Advanced Science 8 (2021): 2101562.

[172]

L. J. Ochyl, J. D. Bazzill, C. Park, Y. Xu, R. Kuai, and J. J. Moon, “PEGylated Tumor Cell Membrane Vesicles as a New Vaccine Platform for Cancer Immunotherapy,” Biomaterials 182 (2018): 157-166.

[173]

Y. Yang, K. Wang, Y. Pan, L. Rao, and G. Luo, “Engineered Cell Membrane-Derived Nanoparticles in Immune Modulation,” Advanced Science 8 (2021): 2102330.

[174]

R. Bazak, M. Houri, S. El Achy, S. Kamel, and T. Refaat, “Cancer Active Targeting by Nanoparticles: A Comprehensive Review of Literature,” Journal of Cancer Research and Clinical Oncology 141 (2015): 769-784.

[175]

Y. Ma, J. Yi, J. Ruan, et al., “Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation,” Advanced Healthcare Materials (2024): 2400514.

[176]

S. Kunjiappan, P. Pavadai, S. Vellaichamy, et al., “Surface Receptor-Mediated Targeted Drug Delivery Systems for Enhanced Cancer Treatment: A state-of-the-Art Review,” Drug Development Research 82 (2021): 309-340.

[177]

H. Yan, D. Shao, Y. H. Lao, M. Li, H. Hu, and K. W. Leong, “Engineering Cell Membrane-Based Nanotherapeutics to Target Inflammation,” Advanced Science 6 (2019): 1900605.

[178]

P. Dash, A. M. Piras, and M. Dash, “Cell Membrane Coated Nanocarriers—an Efficient Biomimetic Platform for Targeted Therapy,” Journal of Controlled Release 327 (2020): 546-570.

[179]

F. Mohammad-Rafiei, J. Y. Khojini, F. Ghazvinian, et al., “Cell Membrane Biomimetic Nanoparticles in Drug Delivery,” Biotechnology and Applied Biochemistry 70 (2023): 1843-1859.

[180]

L. M. Negi, S. Talegaonkar, M. Jaggi, F. J. Ahmad, Z. Iqbal, and R. K. Khar, “Role of CD44 in Tumour Progression and Strategies for Targeting,” Journal of Drug Targeting 20 (2012): 561-573.

[181]

R. Deng, R. Zhao, Z. Zhang, et al., “Chondrocyte Membrane-coated Nanoparticles Promote Drug Retention and Halt Cartilage Damage in Rat and Canine Osteoarthritis,” Science Translational Medicine 16 (2024): eadh9751.

[182]

D. Ling, X. Jia, K. Wang, et al., “Cancer Cell Membrane-Coated Bacterial Ghosts for Highly Efficient Paclitaxel Delivery Against Metastatic Lung Cancer,” Acta Pharmaceutica Sinica B 14 (2024): 365-377.

[183]

S. Krishnamurthy, M. Gnanasammandhan, C. Xie, K. Huang, M. Cui, and J. Chan, “Monocyte Cell Membrane-Derived Nanoghosts for Targeted Cancer Therapy,” Nanoscale 8 (2016): 6981-6985.

[184]

S. T. Yurkin and Z. Wang, “Cell Membrane-Derived Nanoparticles: Emerging Clinical Opportunities for Targeted Drug Delivery,” Nanomedicine 12 (2017): 2007-2019.

[185]

X. Geng, D. Gao, D. Hu, et al., “Active-Targeting NIR-II Phototheranostics in Multiple Tumor Models Using Platelet-Camouflaged Nanoprobes,” ACS Applied Materials and Interfaces 12 (2020): 55624-55637.

[186]

S. Yaman, U. Chintapula, E. Rodriguez, H. Ramachandramoorthy, and K. T. Nguyen, “Cell-Mediated and Cell Membrane-Coated Nanoparticles for Drug Delivery and Cancer Therapy,” Cancer Drug Resistance 3 (2020): 879-911.

[187]

Y. He, S. Zhang, Y. She, et al., presented at Exploration 2024.

[188]

F. Zhang, F. Li, G.-H. Lu, et al., “Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer,” ACS Nano 2019, 13, 5662-5673.

[189]

X. Xu, Z. Zhang, J. Du, et al., “Recruiting T-Cells Toward the Brain for Enhanced Glioblastoma Immunotherapeutic Efficacy by Co-Delivery of Cytokines and Immune Checkpoint Antibodies With Macrophage-Membrane-Camouflaged Nanovesicles,” Advanced Materials 35 (2023): 2209785.

[190]

Z. Liu, F. Wang, X. Liu, et al., “Cell Membrane-camouflaged Liposomes for Tumor Cell-selective Glycans Engineering and Imaging in Vivo,” Proceedings of the National Academy of Sciences 118 (2021): e2022769118.

[191]

D. Nie, Z. Dai, J. Li, et al., “Cancer-Cell-Membrane-Coated Nanoparticles With a Yolk-Shell Structure Augment Cancer Chemotherapy,” Nano Letters 20 (2019): 936-946.

[192]

A. Pitchaimani, T. D. T. Nguyen, and S. Aryal, “Natural Killer Cell Membrane Infused Biomimetic Liposomes for Targeted Tumor Therapy,” Biomaterials 160 (2018): 124-137.

[193]

L. Liu, X. Bai, M.-V. Martikainen, et al., “Cell Membrane Coating Integrity Affects the Internalization Mechanism of Biomimetic Nanoparticles,” Nature Communications 12 (2021): 5726.

[194]

H. Chen, J. Ji, L. Zhang, et al., “Nanoparticles Coated With Brain Microvascular Endothelial Cell Membranes Can Target and Cross the Blood-Brain Barrier to Deliver Drugs to Brain Tumors,” Small 20 (2024): 2306714.

[195]

L. Chen, W. Hong, W. Ren, T. Xu, Z. Qian, and Z. He, “Recent Progress in Targeted Delivery Vectors Based on Biomimetic Nanoparticles,” Signal Transduction and Targeted Therapy 6 (2021): 225.

[196]

B. Li, F. Wang, L. Gui, Q. He, Y. Yao, and H. Chen, “The Potential of Biomimetic Nanoparticles for Tumor-Targeted Drug Delivery,” Nanomedicine 13 (2018): 2099-2118.

[197]

H.-Y. Chen, J. Deng, Y. Wang, C.-Q. Wu, X. Li, and H.-W. Dai, “Hybrid Cell Membrane-Coated Nanoparticles: A Multifunctional Biomimetic Platform for Cancer Diagnosis and Therapy,” Acta Biomaterialia 112 (2020): 1-13.

[198]

W. Tang, Y. Yang, L. Yang, M. Tang, Y. Chen, and C. Li, “Macrophage Membrane-Mediated Targeted Drug Delivery for Treatment of Spinal Cord Injury Regardless of the Macrophage Polarization States,” Asian Journal of Pharmaceutical Sciences 16 (2021): 459-470.

[199]

J. Zhou, B. Guo, W. Zhu, et al., “Novel Biomimetic Nanostructured Lipid Carriers for Cancer Therapy: Preparation, Characterization, and in Vitro / in Vivo Evaluation,” Pharmaceutical Development and Technology 26 (2021): 81-91.

[200]

J. Xie, Q. Shen, K. Huang, et al., “Oriented Assembly of Cell-Mimicking Nanoparticles via a Molecular Affinity Strategy for Targeted Drug Delivery,” ACS Nano 2019, 13, 5268-5277.

[201]

A. Vaidya, S. Moore, S. Chatterjee, et al., “Expanding RNAi to Kidneys, Lungs, and Spleen via Selective ORgan Targeting (SORT) siRNA Lipid Nanoparticles,” Advanced Materials 36 (2024): 2313791.

[202]

I. Ferreira-Faria, S. Yousefiasl, A. Macário-Soares, et al., “Stem Cell Membrane-Coated Abiotic Nanomaterials for Biomedical Applications,” Journal of Controlled Release 351 (2022): 174-197.

[203]

S. A. Dilliard, Y. Sun, M. O. Brown, et al., “The Interplay of Quaternary Ammonium Lipid Structure and Protein Corona on Lung-Specific mRNA Delivery by Selective Organ Targeting (SORT) Nanoparticles,” Journal of Controlled Release 361 (2023): 361-372.

[204]

X. Lian, S. Chatterjee, Y. Sun, et al., “Bone-Marrow-Homing Lipid Nanoparticles for Genome Editing in Diseased and Malignant Haematopoietic Stem Cells,” Nature Nanotechnology 19 (2024): 1409-1417.

[205]

C. Corbo, R. Molinaro, F. Taraballi, et al., “Unveiling the in Vivo Protein Corona of Circulating Leukocyte-Like Carriers,” ACS Nano 11 (2017): 3262-3273.

[206]

M. Sushnitha, M. Evangelopoulos, E. Tasciotti, and F. Taraballi, “Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications,” Frontiers in Bioengineering and Biotechnology 8 (2020): 627.

[207]

Y. Pan, Y. Yu, X. Wang, and T. Zhang, “Tumor-Associated Macrophages in Tumor Immunity,” Frontiers in Immunology 11 (2020): 583084.

[208]

Z. Zeng and K. Pu, “Improving Cancer Immunotherapy by Cell Membrane-Camouflaged Nanoparticles,” Advanced Functional Materials 30 (2020): 2004397.

[209]

G. Deng, Z. Sun, S. Li, et al., “Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth,” ACS Nano 12 (2018): 12096-12108.

[210]

W. L. Liu, M. Z. Zou, S. Y. Qin, et al., “Recent Advances of Cell Membrane-Coated Nanomaterials for Biomedical Applications,” Advanced Functional Materials 30 (2020): 2003559.

[211]

M. Wu, X. Liu, H. Bai, et al., “Surface-Layer Protein-Enhanced Immunotherapy Based on Cell Membrane-Coated Nanoparticles for the Effective Inhibition of Tumor Growth and Metastasis,” ACS Applied Materials and Interfaces 11 (2019): 9850-9859.

[212]

Q.-V. Le, J. Lee, H. Lee, G. Shim, and Y.-K. Oh, “Cell Membrane-Derived Vesicles for Delivery of Therapeutic Agents,” Acta Pharmaceutica Sinica B 11 (2021): 2096-2113.

[213]

X. Zhang, P. Angsantikul, M. Ying, et al., “Remote Loading of Small-Molecule Therapeutics Into Cholesterol-Enriched Cell-Membrane-Derived Vesicles,” Angewandte Chemie International Edition 56 (2017): 14075-14079.

[214]

R. A. Roberts, T. K. Eitas, J. D. Byrne, et al., “Towards Programming Immune Tolerance Through Geometric Manipulation of Phosphatidylserine,” Biomaterials 72 (2015): 1-10.

[215]

Q. Zhang, C. Hu, J. Feng, et al., “Anti-Inflammatory Mechanisms of Neutrophil Membrane-Coated Nanoparticles Without Drug Loading,” Journal of Controlled Release 369 (2024): 12-24.

[216]

H. Cao, Z. Dan, X. He, et al., “Liposomes Coated With Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer,” ACS Nano 10 (2016): 7738-7748.

[217]

M. Chen, Y. Cui, W. Hao, et al., “Ligand-Modified Homologous Targeted Cancer Cell Membrane Biomimetic Nanostructured Lipid Carriers for Glioma Therapy,” Drug Delivery 28 (2021): 2241-2255.

[218]

H. He, C. Guo, J. Wang, et al., “Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing,” Nano Letters 18 (2018): 6164-6174.

[219]

S. Fu, M. Liang, Y. Wang, et al., “Dual-Modified Novel Biomimetic Nanocarriers Improve Targeting and Therapeutic Efficacy in Glioma,” ACS Applied Materials and Interfaces 11 (2018): 1841-1854.

[220]

E. Soprano, E. Polo, B. Pelaz, and P. Del Pino, “Biomimetic Cell-Derived Nanocarriers in Cancer Research,” Journal of Nanobiotechnology 20 (2022): 538.

[221]

Y. Han, X. Chu, L. Cui, et al., “Neuronal Mitochondria-Targeted Therapy for Alzheimer's Disease by Systemic Delivery of resveratrol Using Dual-Modified Novel Biomimetic Nanosystems,” Drug Delivery 27 (2020): 502-518.

[222]

K.-H. Bang, Y.-G. Na, H. W. Huh, et al., “The Delivery Strategy of Paclitaxel Nanostructured Lipid Carrier Coated With Platelet Membrane,” Cancers 11 (2019): 807.

[223]

Y. Han, C. Gao, H. Wang, et al., “Macrophage Membrane-Coated Nanocarriers Co-Modified by RVG29 and TPP Improve Brain Neuronal Mitochondria-Targeting And Therapeutic Efficacy in Alzheimer's Disease Mice,” Bioactive Materials 6 (2021): 529-542.

[224]

J. Panyam and V. Labhasetwar, “Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue,” Advanced Drug Delivery Reviews 55 (2003): 329-347.

[225]

R. Singh and J. W. Lillard, “Nanoparticle-Based Targeted Drug Delivery,” Experimental and Molecular Pathology 86 (2009): 215-223.

[226]

S. Rayamajhi, T. D. T. Nguyen, R. Marasini, and S. Aryal, “Macrophage-Derived Exosome-Mimetic Hybrid Vesicles for Tumor Targeted Drug Delivery,” Acta Biomaterialia 94 (2019): 482-494.

[227]

Y. Kato, S. Ozawa, C. Miyamoto, et al., “Acidic Extracellular Microenvironment and Cancer,” Cancer Cell International 13 (2013): 89.

[228]

C. Corbet and O. Feron, “Tumour Acidosis: From the Passenger to the Driver's Seat,” Nature Reviews Cancer 17 (2017): 577-593.

[229]

W. Xu, I. A. Siddiqui, M. Nihal, et al., “Aptamer-Conjugated and Doxorubicin-Loaded Unimolecular Micelles for Targeted Therapy of Prostate Cancer,” Biomaterials 34 (2013): 5244-5253.

[230]

R. Zhou, S. Xue, Y. Cheng, et al., “Macrophage Membrane-Camouflaged Biomimetic Nanoparticles for Rheumatoid Arthritis Treatment via Modulating Macrophage Polarization,” Journal of Nanobiotechnology 22 (2024): 578.

[231]

Y. Jiang, N. Krishnan, J. Zhou, et al., “Engineered Cell-Membrane-Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity,” Advanced Materials 32 (2020): 2001808.

[232]

M. Föller, S. M. Huber, and F. Lang, “Erythrocyte Programmed Cell Death,” LUBMB Life 60 (2008): 661-668.

[233]

L. Rao, L. L. Bu, J. H. Xu, et al., “Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance,” Small 11 (2015): 6225-6236.

[234]

F. Raza, H. Zafar, S. Zhang, et al., “Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy,” Advanced Healthcare Materials 10 (2021): 2002081.

[235]

C.-M. J. Hu, R. H. Fang, J. Copp, B. T. Luk, and L. Zhang, “A Biomimetic Nanosponge That Absorbs Pore-Forming Toxins,” Nature Nanotechnology 8 (2013): 336-340.

[236]

Y. He, R. Li, H. Li, et al., “Erythroliposomes: Integrated Hybrid Nanovesicles Composed of Erythrocyte Membranes and Artificial Lipid Membranes for Pore-Forming Toxin Clearance,” ACS Nano 2019, 13, 4148-4159.

[237]

L. Jiang, Y. Zhu, P. Luan, et al., “Bacteria—Anchoring Hybrid Liposome Capable of Absorbing Multiple Toxins for Antivirulence Therapy of Escherichia coli Infection,” ACS Nano 15 (2021): 4173-4185.

[238]

Q. Zhang, D. Dehaini, Y. Zhang, et al., “Neutrophil Membrane-Coated Nanoparticles Inhibit Synovial Inflammation and Alleviate Joint Damage in Inflammatory Arthritis,” Nature Nanotechnology 13 (2018): 1182-1190.

[239]

W. Wang, F. Wu, M. Mohammadniaei, et al., “Genetically Edited T-cell Membrane Coated AIEgen Nanoparticles Effectively Prevents Glioblastoma Recurrence,” Biomaterials 293 (2023): 121981.

[240]

Y. Han, H. Pan, W. Li, et al., “T Cell Membrane Mimicking Nanoparticles With Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy,” Advanced Science 6 (2019): 1900251.

[241]

J. Lopes, D. Lopes, M. Pereira-Silva, et al., “Macrophage Cell Membrane-Cloaked Nanoplatforms for Biomedical Applications,” Small Methods 6 (2022): 2200289.

[242]

W. Xiang, X. Liu, L. Zhang, C. Liu, and G. Liu, “Cell Membrane-Encapsulated Nanoparticles for Vaccines and Immunotherapy,” Particuology 64 (2022): 35-42.

[243]

X. Zhou, X. Liu, and L. Huang, “Macrophage-Mediated Tumor Cell Phagocytosis: Opportunity for Nanomedicine Intervention,” Advanced Functional Materials 31 (2021): 2006220.

[244]

Y. Xia, L. Rao, H. Yao, Z. Wang, P. Ning, and X. Chen, “Engineering Macrophages for Cancer Immunotherapy and Drug Delivery,” Advanced Materials 32 (2020): 2002054.

[245]

Y. Huang, C. Mei, Y. Tian, T. Nie, Z. Liu, and T. Chen, “Bioinspired Tumor-Homing Nanosystem for Precise Cancer Therapy via Reprogramming of Tumor-Associated Macrophages,” NPG Asia Materials 10 (2018): 1002-1015.

[246]

R. H. Fang, W. Gao, and L. Zhang, “Targeting Drugs to Tumours Using Cell Membrane-Coated Nanoparticles,” Nature Reviews Clinical Oncology 20 (2023): 33-48.

[247]

K. Ying, Y. Zhu, J. Wan, et al., “Macrophage Membrane-Biomimetic Adhesive Polycaprolactone Nanocamptothecin for Improving Cancer-Targeting Efficiency and Impairing Metastasis,” Bioactive Materials 20 (2023): 449-462.

[248]

B. Liang, T. Deng, J. Li, X. Ouyang, W. Na, and D. Deng, “Biomimetic Theranostic Strategy for Anti-Metastasis Therapy of Breast Cancer via the Macrophage Membrane Camouflaged Superparticles,” Materials Science & Engineering, C: Biomimetic and Supramolecular Systems 115 (2020): 111097.

[249]

J. Lai, G. Deng, Z. Sun, et al., “Scaffolds Biomimicking Macrophages for a Glioblastoma NIR-Ib Imaging Guided Photothermal Therapeutic Strategy by Crossing Blood-Brain Barrier,” Biomaterials 211 (2019): 48-56.

[250]

C. I. Dahlberg, D. Sarhan, M. Chrobok, A. D. Duru, and E. Alici, “Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity,” Frontiers in Immunology 6 (2015): 605.

[251]

N. Doshi, J. N. Orje, B. Molins, J. W. Smith, S. Mitragotri, and Z. M. Ruggeri, “Platelet Mimetic Particles for Targeting Thrombi in Flowing Blood,” Advanced Materials 24 (2012): 3864-3869.

[252]

X. Wei, J. Gao, R. H. Fang, et al., “Nanoparticles Camouflaged in Platelet Membrane Coating as an Antibody Decoy for the Treatment of Immune Thrombocytopenia,” Biomaterials 111 (2016): 116-123.

[253]

Q. Hu, W. Sun, C. Qian, C. Wang, H. N. Bomba, and Z. Gu, “Anticancer Platelet-Mimicking Nanovehicles,” Advanced Materials 27 (2015): 7043-7050.

[254]

X. Wei, M. Ying, D. Dehaini, et al., “Nanoparticle Functionalization With Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis,” ACS Nano 12 (2018): 109-116.

[255]

R. Huang, G.-Q. Cai, J. Li, et al., “Platelet Membrane-Camouflaged Silver Metal-Organic Framework Drug System Against Infections Caused by Methicillin-Resistant Staphylococcus Aureus,” Journal of Nanobiotechnology 19 (2021): 1.

[256]

J. Zhuang, Y. Duan, Q. Zhang, et al., “Multimodal Enzyme Delivery and Therapy Enabled by Cell Membrane-Coated Metal-Organic Framework Nanoparticles,” Nano Letters 20 (2020): 4051-4058.

[257]

B. Qiao, Y. Luo, H.-B. Cheng, et al., “Artificial Nanotargeted Cells With Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy,” ACS Nano 14 (2020): 12652-12667.

[258]

L. Rao, L. L. Bu, B. Cai, et al., “Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging,” Advanced Materials 28 (2016): 3460-3466.

[259]

Y. Lu, L. Fan, J. Wang, et al. Small (2023): 2306540.

[260]

E. Soprano, M. Migliavacca, M. López-Ferreiro, B. Pelaz, E. Polo, and P. Del Pino Journal of Colloid & Interface Science (2023).

[261]

M. Wang, Y. Xin, H. Cao, et al., “Recent Advances in Mesenchymal Stem Cell Membrane-Coated Nanoparticles for Enhanced Drug Delivery,” Biomater Science 2021, 9, 1088-1103.

[262]

R. J. Bose, B. J. Kim, Y. Arai, et al., “Bioengineered Stem Cell Membrane Functionalized Nanocarriers for Therapeutic Targeting of Severe Hindlimb Ischemia,” Biomaterials 185 (2018): 360-370.

[263]

N. Yang, Y. Ding, Y. Zhang, et al., “Surface Functionalization of Polymeric Nanoparticles With Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy,” ACS Applied Materials and Interfaces 10 (2018): 22963-22973.

[264]

D. Dehaini, X. Wei, R. H. Fang, et al., “Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization,” Advanced Materials 29 (2017): 1606209.

[265]

D. Wang, H. Dong, M. Li, et al., “Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma,” ACS Nano 12 (2018): 5241-5252.

[266]

Q. Xie, Y. Liu, Y. Long, et al., “Hybrid-Cell Membrane-Coated Nanocomplex-Loaded Chikusetsusaponin IVa Methyl Ester for a Combinational Therapy Against Breast Cancer Assisted by Ce6,” Biomaterials Science 9 (2021): 2991-3004.

[267]

A. Clayton, A. Turkes, H. Navabi, M. D. Mason, and Z. Tabi, “Induction of Heat Shock Proteins in B-Cell Exosomes,” Journal of Cell Science 118 (2005): 3631-3638.

[268]

G. Skogberg, V. Lundberg, M. Berglund, et al., “Human Thymic Epithelial Primary Cells Produce Exosomes Carrying Tissue-Restricted Antigens,” Immunology and Cell Biology 93 (2015): 727-734.

[269]

R. C. Lai, R. W. Y. Yeo, and S. K. Lim, “Mesenchymal Stem Cell Exosomes,” Seminars in Cell & Developmental Biology 40 (2015): 82-88.

[270]

J. Ren, W. He, L. Zheng, and H. Duan, “From Structures to Functions: Insights Into Exosomes as Promising Drug Delivery Vehicles,” Biomaterials Science 4 (2016): 910-921.

[271]

Y. Feng, Q. Tang, B. Wang, et al., “Targeting the Tumor Microenvironment With Biomaterials for Enhanced Immunotherapeutic Efficacy,” Journal of Nanobiotechnology 22 (2024): 737.

[272]

Y. Lin, J. Wu, W. Gu, et al., “Exosome-Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs,” Advanced Science 5 (2018): 1700611.

[273]

M. Piffoux, A. K. Silva, C. Wilhelm, F. Gazeau, and D. Tareste, “Modification of Extracellular Vesicles by Fusion With Liposomes for the Design of Personalized Biogenic Drug Delivery Systems,” ACS Nano 12 (2018): 6830-6842.

[274]

Y. Li, T. Yan, W. Chang, C. Cao, and D. Deng, “Fabricating an Intelligent Cell-Like Nano-Prodrug via Hierarchical Self-Assembly Based on the DNA Skeleton for Suppressing Lung Metastasis of Breast Cancer,” Biomaterials Science 7 (2019): 3652-3661.

[275]

C. M. Ünal, V. Schaar, and K. Riesbeck, “Bacterial Outer Membrane Vesicles in Disease and Preventive Medicine,” Presented At Seminars in Immunopathology 33 (2011): 395-408.

[276]

H. Liu, Q. Zhang, S. Wang, W. Weng, Y. Jing, and J. Su, “Bacterial Extracellular Vesicles as Bioactive Nanocarriers for Drug Delivery: Advances and Perspectives,” Biomaterials Science 14 (2022): 169-181.

[277]

Y. Zhang, R. Yu, C. Zhao, et al., “CAFs Homologous Biomimetic Liposome Bearing BET Inhibitor and Pirfenidone Synergistically Promoting Antitumor Efficacy in Pancreatic Ductal Adenocarcinoma,” Advanced Science 11 (2024): 2305279.

[278]

T. Liu, Y. Wang, M. Zhang, et al., “The Optimization Design of Macrophage Membrane Camouflaging Liposomes for Alleviating Ischemic Stroke Injury Through Intranasal Delivery,” International Journal of Molecular Sciences 25 (2024): 2927.

[279]

X. Qi, X. Hou, Z. Wei, et al., “Macrophage Membrane-Coated SN-38-Encapsulated Liposomes for Efficient Treatment of Colorectal Cancer,” Journal of Drug Delivery Science and Technology 91 (2024): 104904.

[280]

M. Duan, D. Zhou, J. Ke, et al., “Dual Targetable Drug Delivery System Based on Cell Membrane Camouflaged Liposome for Enhanced Tumor Targeting and Improved Anti-Tumor Efficiency,” Colloids and Surfaces B: Biointerfaces (2024): 113892.

[281]

Y. Meng, S. Chen, P. Li, C. Wang, and X. Ni, “Homologous Tumor Cell Membrane-Encapsulated Methyl 5-Aminolevulinate Solid Lipid Nanoparticles for the Precise Localization of Melanoma and Sensitization by Radiotherapy,” Materials and Design (2024): 112813.

[282]

J. Yan, M. Wang, S. Lv, et al., “SiATG5-Loaded Cancer Cell Membrane-Fused Liposomes Induced Increased Uptake of Albumin-Bound Chemotherapeutics by Pancreatic Cancer Cells,” Journal of Controlled Release 367 (2024): 620-636.

[283]

F. Zhang, C. Wen, Y. Peng, et al., “Biomimetic Lipid Nanoparticles for Homologous-Targeting and Enhanced Photodynamic Therapy Against Glioma,” European Journal of Pharmaceutical Sciences 190 (2023): 106574.

[284]

H. Pan, S. Yang, L. Gao, et al., “At the Crossroad of Nanotechnology and Cancer Cell Membrane Coating: Expanding Horizons With Engineered Nanoplatforms for Advanced Cancer Therapy Harnessing Homologous Tumor Targeting,” Coordination Chemistry Reviews 506 (2024): 215712.

[285]

W. Wang, C. Zou, X. Liu, et al., “Biomimetic Dendritic Cell-Based Nanovaccines for Reprogramming the Immune Microenvironment to Boost Tumor Immunotherapy,” ACS Nano 18 (2024): 34063-34076.

[286]

A. V. Kroll, R. H. Fang, Y. Jiang, et al., “Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity,” Advanced Materials 29 (2017): 1703969.

[287]

Y. Zhuo, H. Zeng, C. Su, Q. Lv, T. Cheng, and L. Lei, “Tailoring Biomaterials for Vaccine Delivery,” Journal of Nanobiotechnology 22 (2024): 480.

[288]

A. R. Kirtane, M. Verma, P. Karandikar, J. Furin, R. Langer, and G. Traverso, “Nanotechnology Approaches for Global Infectious Diseases,” Nature Nanotechnology 16 (2021): 369-384.

[289]

Y. Chen, M. Zhu, B. Huang, Y. Jiang, and J. Su, “Advances in Cell Membrane-Coated Nanoparticles and Their Applications for Bone Therapy,” Biomaterials Advances 144 (2023): 213232.

[290]

Y. Zhou, Y. Deng, Z. Liu, et al., “Cytokine-Scavenging Nanodecoys Reconstruct Osteoclast/Osteoblast Balance Toward the Treatment of Postmenopausal Osteoporosis,” Science Advances 7 (2021): eabl6432.

[291]

X. Xue, H. Liu, S. Wang, et al., “Neutrophil-Erythrocyte Hybrid Membrane-Coated Hollow Copper Sulfide Nanoparticles for Targeted and Photothermal/ Anti-Inflammatory Therapy of Osteoarthritis,” Composites Part B: Engineering 237 (2022): 109855.

[292]

D. D'Atri, L. Zerrillo, J. Garcia, et al., “Nanoghosts: Mesenchymal Stem Cells Derived Nanoparticles as a Unique Approach for Cartilage Regeneration,” Journal of Controlled Release 337 (2021): 472-481.

[293]

X. Zhang, J. Chen, Q. Jiang, et al., “Highly Biosafe Biomimetic Stem Cell Membrane-Disguised Nanovehicles for Cartilage Regeneration,” Journal of Materials Chemistry B 8 (2020): 8884-8893.

[294]

L. Feng, C. Dou, Y. Xia, et al., “Neutrophil-Like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery,” ACS Nano 15 (2021): 2263-2280.

[295]

M. Wang, Y. Wang, P. Zhang, et al. Acta Biomaterialia (2025).

[296]

L. Cao, M. Du, M. Cai, et al., “Neutrophil Membrane-Coated Nanoparticles for Targeted Delivery of Toll-Like Receptor 4 siRNA Ameliorate LPS-Induced Acute Lung Injury,” International Journal of Pharmaceutics 668 (2025): 124960.

[297]

T. Guo, L. Chen, F. Li, et al., “Biomimetic Nanoparticles Loaded Lutein Functionalized by Macrophage Membrane for Targeted Amelioration Pressure Overload-Induced Cardiac Fibrosis,” Biomedicine & Pharmacotherapy 167 (2023): 115579.

[298]

Y. Xue, G. Zeng, J. Cheng, J. Hu, M. Zhang, and Y. Li, “Engineered Macrophage Membrane-Enveloped Nanomedicine for Ameliorating Myocardial Infarction in a Mouse Model,” Bioengineering & Translational Medicine 6 (2021): e10197.

[299]

C. Tang, C. Wang, Y. Zhang, et al., “Recognition, Intervention, and Monitoring of Neutrophils in Acute Ischemic Stroke,” Nano Letters 19 (2019): 4470-4477.

[300]

Y. Bai, J. Chen, S. Zhang, et al., “Inflammation-Responsive Cell Membrane-Camouflaged Nanoparticles Against Liver Fibrosis via Regulating Endoplasmic Reticulum Stress and Oxidative Stress,” Advanced Materials 36 (2024): 2310443.

[301]

D. Zhou, J. Hao, D. Li, et al., “An Injectable miR181a-IFI6 Nanoparticles Promote High-Quality Healing of Radiation-Induced Skin Injury,” Materials Today Advances 15 (2022): 100267.

[302]

M. Xu, A. Zhu, Y. Pan, Z. Suleman, J. Cheng, and M. Liu, “PLGA Nanoparticles Coated With Activated Dendritic Cell Membrane Can Prolong Protein Expression and Improve the Efficacy of mRNA,” Advances in Therapy 7 (2024): 2400180.

[303]

X. Cai, A. Ullah, R. Qian, J. Cui, L. Wu, and S. Shen, “Membrane-Coated Protein Nanoparticles for mRNA Delivery,” Journal of Drug Delivery Science and Technology 93 (2024): 105427.

[304]

R. Kumar, D. S. Dkhar, R. Kumari, S. Mahapatra, V. K. Dubey, and P. Chandra, “Lipid Based Nanocarriers: Production Techniques, Concepts, and Commercialization Aspect,” Journal of Drug Delivery Science and Technology 74 (2022): 103526.

[305]

M. Haider, S. M. Abdin, L. Kamal, and G. Orive, “Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review,” Pharmaceutics 12 (2020): 288.

[306]

N. Dhiman, R. Awasthi, B. Sharma, H. Kharkwal, and G. T. Kulkarni, “Lipid Nanoparticles as Carriers for Bioactive Delivery,” Frontiers in Chemistry 9 (2021): 580118.

[307]

K. Hadinoto, A. Sundaresan, and W. S. Cheow, “Lipid-polymer Hybrid Nanoparticles as a New Generation Therapeutic Delivery Platform: A Review,” European Journal of Pharmaceutics and Biopharmaceutics 85 (2013): 427-443.

[308]

T. Date, V. Nimbalkar, J. Kamat, A. Mittal, R. I. Mahato, and D. Chitkara, “Lipid-Polymer Hybrid Nanocarriers for Delivering Cancer Therapeutics,” Journal of Controlled Release 271 (2018): 60-73.

[309]

J. K. Patra, G. Das, L. F. Fraceto, et al., “Nano Based Drug Delivery Systems: Recent Developments and Future Prospects,” Journal of Nanobiotechnology 16 (2018).

[310]

B. Kaupbayeva and A. J. Russell, “Polymer-Enhanced Biomacromolecules,” Progress in Polymer Science 101 (2020): 101194.

[311]

K. Guo, N. Xiao, Y. Liu, et al., “Engineering Polymer Nanoparticles Using Cell Membrane Coating Technology and Their Application in Cancer Treatments: Opportunities and Challenges,” Nano Materials Science 4 (2022): 295-321.

[312]

M. A. Aboudzadeh, J. Kruse, M. S. Iglesias, et al., “Gold Nanoparticles Endowed With Low-Temperature Colloidal Stability by Cyclic Polyethylene Glycol in Ethanol,” Soft Matter 17 (2021): 7792-7801.

[313]

Q. T. Shubhra, K. Guo, Y. Liu, M. Razzak, M. S. Manir, and A. M. Alam, “Dual Targeting Smart Drug Delivery System for Multimodal Synergistic Combination Cancer Therapy With Reduced Cardiotoxicity,” Acta Biomaterialia 131 (2021): 493-507.

[314]

M. Szwed, M. L. Torgersen, R. V. Kumari, et al., “Biological Response and Cytotoxicity Induced by Lipid Nanocapsules,” Journal of Nanobiotechnology 18 (2020): 5.

[315]

A. R. Nikpoor, M. R. Jaafari, P. Zamani, et al., “Cell Cytotoxicity, Immunostimulatory and Antitumor Effects of Lipid Content of Liposomal Delivery Platforms in Cancer Immunotherapies. A Comprehensive in-vivo and in-vitro Study,” International Journal of Pharmaceutics 567 (2019): 118492.

[316]

R. Kedmi, N. Ben-Arie, and D. Peer, “The Systemic Toxicity of Positively Charged Lipid Nanoparticles and the Role of Toll-Like Receptor 4 in Immune Activation,” Biomaterials 31 (2010): 6867-6875.

[317]

M. Sedic, J. J. Senn, A. Lynn, et al., “Safety Evaluation of Lipid Nanoparticle-Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey,” Veterinary Pathology 55 (2018): 341-354.

[318]

H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan, “Toxicity of Cationic Lipids and Cationic Polymers in Gene Delivery,” Journal of Controlled Release 114 (2006): 100-109.

[319]

D. Lombardo, P. Calandra, M. T. Caccamo, S. Magazù, and M. A. Kiselev, “Colloidal Stability of Liposomes,” AIMS Materials Science (2019): 6.

[320]

V. Soni, S. Chandel, P. Jain, and S. Asati, Nanobiomaterials in Galenic Formulations and Cosmetics. (Elsevier, 2016): 93.

[321]

B. Bahmani, H. Gong, B. T. Luk, et al., “Intratumoral Immunotherapy Using Platelet-Cloaked Nanoparticles Enhances Antitumor Immunity in Solid Tumors,” Nature Communications 12 (2021): 1999.

[322]

Y. Chen, M. Chen, Y. Zhang, et al., “Broad-Spectrum Neutralization of Pore-Forming Toxins With Human Erythrocyte Membrane-Coated Nanosponges,” Advanced Healthcare Materials 7 (2018): 1701366.

[323]

S. Wang, L. Yang, W. He, M. Zheng, and Y. Zou, “Cell Membrane Camouflaged Biomimetic Nanoparticles as a Versatile Platform for Brain Diseases Treatment,” Small Methods 9 (2025): 2400096.

[324]

A. Colombo, S. Briançon, J. Lieto, and H. Fessi, “Project, Design, and Use of a Pilot Plant for Nanocapsule Production,” Drug Development and Industrial Pharmacy 27 (2001): 1063-1072.

[325]

D. Landesman-Milo and D. Peer, “Transforming Nanomedicines from Lab Scale Production to Novel Clinical Modality,” Bioconjugate Chemistry 27 (2016): 855-862.

[326]

C. Jensen and Y. Teng, “Is It Time to Start Transitioning from 2D to 3D Cell Culture?,” Frontiers in Molecular Biosciences 7 (2020): 33.

[327]

S. Busatto, G. Vilanilam, T. Ticer, et al., “Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles From Large Volumes of Fluid,” Cells 7 (2018): 273.

[328]

P. Ganesan, G. Karthivashan, S. Y. Park, J. Kim, and D.-K. Choi, “Microfluidization Trends in the Development of Nanodelivery Systems and Applications in Chronic Disease Treatments,” International Journal of Nanomedicine (2018): 6109-6121.

[329]

I. Wortzel, S. Dror, C. M. Kenific, and D. Lyden, “Exosome-Mediated Metastasis: Communication From a Distance,” Developmental Cell 49 (2019): 347-360.

[330]

W. D. Shlomchik, “Graft-Versus-Host Disease,” Nature Reviews Immunology 7 (2007): 340-352.

[331]

J. Ren, X. Liu, C. Fang, S. Jiang, C. H. June, and Y. Zhao, “Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition,” Clinical Cancer Research 23 (2017): 2255-2266.

[332]

G. G. Gornalusse, R. K. Hirata, S. E. Funk, et al., “HLA-E-expressing Pluripotent Stem Cells Escape Allogeneic Responses and Lysis by NK Cells,” Nature Biotechnology 35 (2017): 765-772.

[333]

T. Ahmed, “Organ-on-a-chip Microengineering for Bio-Mimicking Disease Models and Revolutionizing Drug Discovery,” Biosensors and Bioelectronics: X 11 (2022): 100194.

[334]

N. Desai, V. Tambe, P. Pofali, and L. K. Vora, “Cell Membrane-Coated Nanoparticles: A New Frontier in Immunomodulation,” Advanced NanoBiomed Research (2024): 2400012.

[335]

I. K. Herrmann, M. J. A. Wood, and G. Fuhrmann, “Extracellular Vesicles as a Next-Generation Drug Delivery Platform,” Nature Nanotechnology 16 (2021): 748-759.

[336]

J. E. Dahlman, K. J. Kauffman, Y. Xing, et al., “Barcoded Nanoparticles for High Throughput in Vivo Discovery of Targeted Therapeutics,” Proceedings of the National Academy of Sciences 114 (2017): 2060-2065.

[337]

M. Z. Hatit, M. P. Lokugamage, C. N. Dobrowolski, et al., “Species-Dependent in Vivo mRNA Delivery and Cellular Responses to Nanoparticles,” Nature Nanotechnology 17 (2022): 310-318.

[338]

N. S. Bhise, J. Ribas, V. Manoharan, et al., “Organ-on-a-chip Platforms for Studying Drug Delivery Systems,” Journal of Controlled Release 190 (2014): 82-93.

[339]

Y. Shao, J. Wang, A. Jin, S. Jiang, L. Lei, and L. Liu, “Biomaterial-Assisted Organoid Technology for Disease Modeling and Drug Screening,” Materials Today Bio 30 (2024): 101438.

[340]

H. Chen, P. Lei, H. Ji, et al., “Advances in Escherichia coli Nissle 1917 as a Customizable Drug Delivery System for Disease Treatment and Diagnosis Strategies,” Materials Today Bio 18 (2023): 100543.

[341]

T. Jiang, Y. Zhan, J. Ding, et al., “Biomimetic Cell Membrane-Coated Nanoparticles for Cancer Theranostics,” Chemmedchem 19 (2024): e202400410.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/