Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts

Guanwu Lian , Zefan Du , Yifan Wang , Yelan Xiao , Mengyao Su , Chao Wu , Yucong Huang , Yuansheng Lin , Jingjing Xiong , Yichen Chen , Shibo Xi , Wenguang Tu , Zhigang Zou , Zhongxin Chen

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70052

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70052 DOI: 10.1002/agt2.70052
RESEARCH ARTICLE

Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts

Author information +
History +
PDF

Abstract

The recovery of valuable transition metals from deactivated catalysts is crucial for alleviating the challenges of resource scarcity and environmental pollution. Guided by AI-powered big data analysis, we identified an important research gap in the sustainable recovery of early transition metals and proposed a solid-phase upcycling strategy to transform waste catalysts into highly valuable single-atom catalysts (SACs). This involves a heat-induced redispersion of metal aggregates into single atoms on the polycrystalline carbon nitride (PCN) support, producing highly active M1-PCN SACs up to 20 wt% (M = Cu, Fe, Co, and Ni). Subsequent techno-economic analysis confirms a two-thirds reduction in production cost and greenhouse gas emissions compared to conventional hydrometallurgical and pyrometallurgical processes, thus paving a new path in the development of sustainable technologies for metal recovery.

Keywords

big-data analysis / dynamic aggregation / single-atom catalysts / solid-phase upcycling / spent catalyst recovery / techno-economic analysis

Cite this article

Download citation ▾
Guanwu Lian, Zefan Du, Yifan Wang, Yelan Xiao, Mengyao Su, Chao Wu, Yucong Huang, Yuansheng Lin, Jingjing Xiong, Yichen Chen, Shibo Xi, Wenguang Tu, Zhigang Zou, Zhongxin Chen. Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts. Aggregate, 2025, 6(8): e70052 DOI:10.1002/agt2.70052

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Zupanc, J. Install, M. Jereb, and T. Repo, “Sustainable and Selective Modern Methods of Noble Metal Recycling,” Angewandte Chemie International Edition 62 (2023): e202214453, https://doi.org/10.1002/anie.202214453.

[2]

Y. Chen, Q. Qiao, J. Cao, H. Li, and Z. Bian, “Precious Metal Recovery,” Joule 5 (2021): 3097-3115, https://doi.org/10.1016/j.joule.2021.11.002.

[3]

Y. Wei, W. Zhang, and J. Gao, “Trash or Treasure? Sustainable Noble Metal Recovery,” Green Chemistry 26 (2024): 5684-5707, https://doi.org/10.1039/d3gc04950g.

[4]

D. A. Singer, “Long-Term Copper Production to 2100,” Mathematical Geosciences 56 (2023): 711-722, https://doi.org/10.1007/s11004-023-10111-8.

[5]

W. Chen, J. Chen, K. V. Bets, et al., “Battery Metal Recycling by Flash Joule Heating,” Science Advances 9 (2023): eadh5131, https://doi.org/10.1126/sciadv.adh5131.

[6]

M. K. Jha, J.-C. Lee, M.-S. Kim, J. Jeong, B.-S. Kim, and V. Kumar, “Hydrometallurgical Recovery/Recycling of Platinum by the Leaching of Spent Catalysts: A Review,” Hydrometallurgy 133 (2013): 23-32, https://doi.org/10.1016/j.hydromet.2012.11.012.

[7]

G. Liang and Z. Qu, “Insight Into Pyrometallurgical Recovery of Platinum Group Metals From Spent Industrial Catalyst: Co-Disposal of Industrial Wastes,” ACS ES&T Engineering 3 (2023): 1532-1546, https://doi.org/10.1021/acsestengg.3c00129.

[8]

A. V. Oladeji, J. M. Courtney, M. Fernandez-Villamarin, and N. V. Rees, “Electrochemical Metal Recycling: Recovery of Palladium From Solution and In Situ Fabrication of Palladium-Carbon Catalysts via Impact Electrochemistry,” Journal of the American Chemical Society 144 (2022): 18562-18574, https://doi.org/10.1021/jacs.2c08239.

[9]

S. Cotty, J. Jeon, J. Elbert, V. S. Jeyaraj, A. V. Mironenko, and X. Su, “Electrochemical Recycling of Homogeneous Catalysts,” Science Advances 8 (2022): eade3094, https://doi.org/10.1126/sciadv.ade3094.

[10]

S. R. Cotty, N. Kim, and X. Su, “Electrochemically Mediated Recovery and Purification of Gold for Sustainable Mining and Electronic Waste Recycling,” ACS Sustainable Chemistry & Engineering 11 (2023): 3975-3986, https://doi.org/10.1021/acssuschemeng.3c00227.

[11]

Y. Su, A. Berbille, X.-F. Li, et al., “Reduction of Precious Metal Ions in Aqueous Solutions by Contact-Electro-Catalysis,” Nature Communications 15 (2024): 4196, https://doi.org/10.1038/s41467-024-48407-w.

[12]

J. Cao, Y. Chen, H. Shang, et al., “Aqueous Photocatalytic Recycling of Gold and Palladium From Waste Electronics and Catalysts,” ACS ES&T Engineering 2 (2022): 1445-1453, https://doi.org/10.1021/acsestengg.1c00505.

[13]

Y. Chen, S. Guan, H. Ge, et al., “Photocatalytic Dissolution of Precious Metals by TiO(2) Through Photogenerated Free Radicals,” Angewandte Chemie International Edition 61 (2022): e202213640, https://doi.org/10.1002/anie.202213640.

[14]

H. Yang, J. Xu, H. Cao, J. Wu, and D. Zhao, “Recovery of Homogeneous Photocatalysts by Covalent Organic Framework Membranes,” Nature Communications 14 (2023): 2726, https://doi.org/10.1038/s41467-023-38424-6.

[15]

Y. Chen, M. Xu, J. Wen, et al., “Selective Recovery of Precious Metals Through Photocatalysis,” Nature Sustainability 4 (2021): 618-626, https://doi.org/10.1038/s41893-021-00697-4.

[16]

Y. Hong, D. Thirion, S. Subramanian, et al., “Precious Metal Recovery From Electronic Waste by a Porous Porphyrin Polymer,” Proceedings of the National Academy of Sciences of the United States of America 117 (2020): 16174-16180, https://doi.org/10.1073/pnas.2000606117.

[17]

A. Zadehnazari, F. Auras, A. A. Altaf, et al., “Recycling E-Waste Into Gold-Loaded Covalent Organic Framework Catalysts for Terminal Alkyne Carboxylation,” Nature Communications 15 (2024): 10846, https://doi.org/10.1038/s41467-024-55156-3.

[18]

A. Ding, M. Li, C. Liu, et al., “Recovering Palladium and Gold by Peroxydisulfate-Based Advanced Oxidation Process,” Science Advances 10 (2024): eadm9311, https://doi.org/10.1126/sciadv.adm9311.

[19]

D. Xia, C. Lee, N. M. Charpentier, Y. Deng, Q. Yan, and J.-C. P. Gabriel, “Drivers and Pathways for the Recovery of Critical Metals From Waste-Printed Circuit Boards,” Advanced Science 11 (2024): e2309635, https://doi.org/10.1002/advs.202309635.

[20]

S. S. Shin, Y. Jung, S. Jeon, et al., “Efficient Recovery and Recycling/Upcycling of Precious Metals Using Hydrazide-Functionalized Star-Shaped Polymers,” Nature Communications 15 (2024): 3889, https://doi.org/10.1038/s41467-024-48090-x.

[21]

J. Wang, K. Jia, J. Ma, et al., “Sustainable Upcycling of Spent LiCoO2 to an Ultra-Stable Battery Cathode at High Voltage,” Nature Sustainability 6 (2023): 797-805, https://doi.org/10.1038/s41893-023-01094-9.

[22]

J. J. Roy, S. Rarotra, V. Krikstolaityte, et al., “Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability,” Advanced Materials 34 (2022): e2103346, https://doi.org/10.1002/adma.202103346.

[23]

J. Shi, S.-Q. Peng, B. Kuang, et al., “Porous Polypyrrolidines for Highly Efficient Recovery of Precious Metals Through Reductive Adsorption Mechanism,” Advanced Materials 36 (2024): e2405731, https://doi.org/10.1002/adma.202405731.

[24]

C. Stinn and A. Allanore, “Selective Sulfidation of Metal Compounds,” Nature 602 (2022): 78-83, https://doi.org/10.1038/s41586-021-04321-5.

[25]

X. Liang, N. Fu, S. Yao, Z. Li, and Y. Li, “The Progress and Outlook of Metal Single-Atom-Site Catalysis,” Journal of the American Chemical Society 144 (2022): 18155-18174, https://doi.org/10.1021/jacs.1c12642.

[26]

S. K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, and J. Pérez-Ramírez, “Single-Atom Catalysts Across the Periodic Table,” Chemical Reviews 120 (2020): 11703-11809, https://doi.org/10.1021/acs.chemrev.0c00576.

[27]

Z. Chen, J. Liu, and K. P. Loh, “Engineering Single Atom Catalysts for Flow Production: From Catalyst Design to Reactor Understandings,” Accounts of Materials Research 4 (2022): 27-41, https://doi.org/10.1021/accountsmr.2c00183.

[28]

F. G. Baddour, L. Snowden-Swan, J. D. Super, and K. M. Van Allsburg, “Estimating Precommercial Heterogeneous Catalyst Price: A Simple Step-Based Method,” Organic Process Research & Development 22 (2018): 1599-1605, https://doi.org/10.1021/acs.oprd.8b00245.

[29]

T. J. Ross, Fuzzy Logic With Engineering Applications (John Wiley & Sons, 2005).

[30]

K. B. Cohen and L. Hunter, “Getting Started in Text Mining,” PLoS Computational Biology 4 (2008): e20.

[31]

A. M. Aubaid and A. Mishra, “A Rule-Based Approach to Embedding Techniques for Text Document Classification,” Applied Sciences 10 (2020): 4009.

[32]

J. Song, Z. Chen, X. Cai, et al., “Promoting Dinuclear-Type Catalysis in Cu(1) -C(3) N(4) Single-Atom Catalysts,” Advanced Materials 34 (2022): e2204638, https://doi.org/10.1002/adma.202204638.

[33]

X. Hai, S. Xi, S. Mitchell, et al., “Scalable Two-Step Annealing Method for Preparing Ultra-High-Density Single-Atom Catalyst Libraries,” Nature Nanotechnology 17 (2022): 174-181, https://doi.org/10.1038/s41565-021-01022-y.

[34]

L. Liu, T. Chen, and Z. Chen, “Understanding the Dynamic Aggregation in Single-Atom Catalysis,” Advanced Science 11 (2024): e2308046, https://doi.org/10.1002/advs.202308046.

[35]

L. Laffont, M. Y. Wu, F. Chevallier, P. Poizot, M. Morcrette, and J. M. Tarascon, “High Resolution EELS of Cu-V Oxides: Application to Batteries Materials,” Micron 37 (2006): 459-464, https://doi.org/10.1016/j.micron.2005.11.007.

[36]

T. Yang, X. Mao, Y. Zhang, et al., “Coordination Tailoring of Cu Single Sites on C3N4 Realizes Selective CO2 Hydrogenation at Low Temperature,” Nature Communications 12 (2021): 6022.

[37]

J. Song, X. Cai, Z. Chen, et al., “Expedient Alkyne Semi-Hydrogenation by Using a Bimetallic AgCu-C(3)N(4) Single Atom Catalyst,” Chemical Science 15 (2024): 10577-10584, https://doi.org/10.1039/d4sc02469a.

[38]

W. Chen, J. Chen, K. V. Bets, et al., “Battery Metal Recycling by Flash Joule Heating,” Science Advances 9 (2023): eadh5131, https://doi.org/10.1126/sciadv.adh5131.

[39]

A. Elshkaki, B. K. Reck, and T. E. Graedel, “Anthropogenic Nickel Supply, Demand, and Associated Energy and Water Use,” Resources, Conservation and Recycling 125 (2017): 300-307, https://doi.org/10.1016/j.resconrec.2017.07.002.

[40]

M. Wang, A. Elgowainy, U. Lee, et al. Summary of Expansions and Updates in GREET® 2020 (Argonne National Laboratory, 2020), https://doi.org/10.2172/1671788.

[41]

X. Hai, Y. Zheng, Q. Yu, et al., “Geminal-Atom Catalysis for Cross-Coupling,” Nature 622 (2023): 754-760, https://doi.org/10.1038/s41586-023-06529-z.

[42]

Y. Du, Y. Zhu, S. Xi, et al., “XAFCA: A New XAFS Beamline for Catalysis Research,” Journal of Synchrotron Radiation 22 (2015): 839-843, https://doi.org/10.1107/S1600577515002854.

[43]

B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT,” Journal of Synchrotron Radiation 12 (2005): 537-541, https://doi.org/10.1107/S0909049505012719.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/