Formation of the Most Iodine-Rich Polyiodide [I13] in Pore-Partitioned Metal-Organic Frameworks for Efficient Iodine Capture

Feng-Yu Chen , Xin-Xin Lu , Yu-Hui Luo , Jie Li , Dong-En Zhang , Yong Yan

Aggregate ›› 2025, Vol. 6 ›› Issue (6) : e70051

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (6) :e70051 DOI: 10.1002/agt2.70051
RESEARCH ARTICLE

Formation of the Most Iodine-Rich Polyiodide [I13] in Pore-Partitioned Metal-Organic Frameworks for Efficient Iodine Capture

Author information +
History +
PDF

Abstract

Radioactive iodine produced from nuclear fission in power plants presents substantial environmental risks and requires effective remediation measures. Metal-organic frameworks (MOFs) containing specifically designed pore geometries with stable skeletons that allow dense packing of guest molecules are sought after for iodine capture. Here, 14 new MOFs were developed through reticular chemistry for a comprehensive study of the iodine capture behavior. Remarkably, one of this family of materials, JOU-20(FeCo2), exhibited an exceptional static vapor iodine uptake capacity of 3.08 g/g at 80°C and a high iodine storage density of 4.69 g/cm3. Significantly, single-crystal X-ray diffraction revealed the adsorbed iodine in JOU-20(FeCo2) forming an unusual aggregation of the giant trigonal antiprismatic polyiodide anion [I13]. To the best of our knowledge, this is the first time that the polyiodide [I13] was structurally resolved in a crystalline framework, and it represents the most iodine-rich polyiodide species ever discovered experimentally. Combined spectroscopy and theoretical calculation methods demonstrated that nitrogen/sulfur sites and metal nodes play critical roles in stabilizing [I13]. This work introduces a pore partition strategy to create a confined space with specific pore geometry for the formation of unusual polyiodide [I13], and multiple binding sites for stabilizing it, which significantly enhances the iodine adsorption performance of MOFs.

Keywords

iodine capture / metal-organic framework / mixed-metal clusters / polyiodide / structural regulation

Cite this article

Download citation ▾
Feng-Yu Chen, Xin-Xin Lu, Yu-Hui Luo, Jie Li, Dong-En Zhang, Yong Yan. Formation of the Most Iodine-Rich Polyiodide [I13] in Pore-Partitioned Metal-Organic Frameworks for Efficient Iodine Capture. Aggregate, 2025, 6(6): e70051 DOI:10.1002/agt2.70051

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. H. Xie, Z. Y. Zheng, Q. Y. Lin, et al., “Calix[4]pyrrole-based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption From Water,” Angewandte Chemie International Edition 61 (2022): e202113724.

[2]

K. Jin, B. Lee, and J. Park, “Metal-Organic Frameworks as a Versatile Platform for Radionuclide Management,” Coordination Chemistry Reviews 427 (2021): 213473.

[3]

Z. Zhang, X. Dong, J. Yin, et al., “Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of Low-concentration Iodine at High Temperatures,” Journal of the American Chemical Society 144 (2022): 6821-6829.

[4]

M. O'Shaughnessy, J. Glover, R. Hafizi, et al., “Porous Isoreticular Non-Metal Organic Frameworks,” Nature 630 (2024): 102-108.

[5]

Y. G. Zhang, L. W. He, T. T. Pan, et al., “Superior Iodine Uptake Capacity Enabled by an Open Metal-sulfide Framework Composed of Three Types of Active Sites,” CCS Chemistry 5 (2023): 1540-1548.

[6]

K. W. Chapman, P. J. Chupas, and T. M. Nenoff, “Radioactive Iodine Capture in Silver-Containing Mordenites Through Nanoscale Silver Iodide Formation,” Journal of the American Chemical Society 132 (2010): 8897-8899.

[7]

H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, “The Chemistry and Applications of Metal-organic Frameworks,” Science 341 (2013): 1230444.

[8]

X. R. Zhang, J. Maddock, T. M. Nenoff, M. A. Denecke, S. H. Yang, and M. Schröder, “Adsorption of Iodine in Metal-Organic Framework Materials,” Chemical Society Reviews 51 (2022): 3243-3262.

[9]

J. W. Wang, S. C. Fan, H. P. Li, X. H. Bu, Y. Y. Xue, and Q. G. Zhai, “De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C2H2/C2H4 and C2H2/CO2 Separations in Metal-Organic Frameworks,” Angewandte Chemie International Edition 62 (2023): e202217839.

[10]

W. Xie, D. Cui, S. R. Zhang, Y. H. Xu, and D. L. Jiang, “Iodine Capture In Porous Organic Polymers And Metal-Organic Frameworks Materials,” Materials Horizons 6 (2019): 1571-1595.

[11]

E. A. Dolgopolova, A. M. Rice, C. R. Martin, and N. B. Shustova, “Photochemistry and Photophysics of MOFs: Steps Towards MOF-Based Sensing Enhancements,” Chemical Society Reviews 47 (2018): 4710-4728.

[12]

S. Mallakpour, E. Nikkhoo, and C. M. Hussain, “Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment,” Coordination Chemistry Reviews 451 (2022): 214262.

[13]

J. T. Hughes, D. F. Sava, T. M. Nenoff, and A. Navrotsky, “Thermochemical Evidence for Strong Iodine Chemisorption by ZIF-8,” Journal of the American Chemical Society 135 (2013): 16256-16259.

[14]

Y. S. Wei, M. Zhang, M. Kitta, Z. Liu, S. Horike, and Q. Xu, “A Single-Crystal Open-Capsule Metal-Organic Framework,” Journal of the American Chemical Society 141 (2019): 7906-7916.

[15]

Z. Yin, Q. X. Wang, and M. H. Zeng, “Iodine Release and Recovery, Influence of Polyiodide Anions on Electrical Conductivity and Nonlinear Optical Activity in an Interdigitated and Interpenetrated Bipillared-Bilayer Metal-Organic Framework,” Journal of the American Chemical Society 134 (2012): 4857-4863.

[16]

Y. Y. Xue, X. Y. Bai, J. Zhang, et al., “Precise Pore Space Partitions Combined With High-Density Hydrogen-Bonding Acceptors Within Metal-Organic Frameworks for Highly Efficient Acetylene Storage and Separation,” Angewandte Chemie International Edition 60 (2021): 10122-10128.

[17]

C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot, and T. Loiseau, “Capture of Iodine in Highly Stable Metal-Organic Frameworks: A Systematic Study,” Chemical Communications 49 (2013): 10320.

[18]

B. Y. Li, X. L. Dong, H. Wang, et al., “Capture of Organic Iodides From Nuclear Waste by Metal-Organic Framework-Based Molecular Traps,” Nature Communications 8 (2017): 485.

[19]

W. Zhou, A. M. Li, M. Zhou, Y. Y. Xu, Y. Zhang, and Q. He, “Nonporous Amorphous Superadsorbents for Highly Effective and Selective Adsorption of Iodine in Water,” Nature Communications 14 (2023): 5388.

[20]

P. H. Andrade, H. Ahouari, C. Volkringer, et al., “Electron-donor Functional Groups, Band Gap Tailoring, and Efficient Charge Separation: Three Keys to Improve the Gaseous Iodine Uptake in MOF Materials,” ACS Applied Materials & Interfaces 15 (2023): 31032-31048.

[21]

A. Gładysiak, T. N. Nguyen, M. Spodaryk, et al., “Incarceration of Iodine in a Pyrene-Based Metal-Organic Framework,” Chemistry - A European Journal 25 (2019): 501-506.

[22]

D. Dai, J. Yang, Y. C. Zou, et al., “Macrocyclic Arenes-Based Conjugated Macrocycle Polymers for Highly Selective CO2 Capture and Iodine Adsorption,” Angewandte Chemie International Edition 60 (2021): 8967-8975.

[23]

S. Y. Yao, W. H. Fang, Y. Y. Sun, S. T. Wang, and J. Zhang, “Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture,” Journal of the American Chemical Society 143 (2021): 2325-2330.

[24]

M. S. Zhang, J. Samanta, B. A. Atterberry, R. Staples, A. J. Rossini, and C. F. Ke, “A Crosslinked Ionic Organic Framework for Efficient Iodine and Iodide Remediation in Water,” Angewandte Chemie International Edition 61 (2022): e202214189.

[25]

Y. Z. Tang, H. L. Huang, J. Li, W. J. Xue, and C. L. Zhong, “IL-induced Formation of Dynamic Complex Iodide Anions in IL@MOF Composites for Efficient Iodine Capture,” Journal of Materials Chemistry A 7 (2019): 18324-18329.

[26]

Y. Q. Xie, T. T. Pan, Q. Lei, et al., “Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity,” Angewandte Chemie International Edition 60 (2021): 22432-22440.

[27]

T. T. Pan, K. J. Yang, X. L. Dong, et al., “Strategies for High-Temperature Methyl Iodide Capture in Azolate-Based Metal-Organic Frameworks,” Nature Communications 15 (2024): 2630.

[28]

B. Lee, Y. P. Chen, and J. Park, “Visualization of Iodine Chemisorption Facilitated by Aryl C-H Bond Activation,” ACS Applied Materials & Interfaces 11 (2019): 25817-25823.

[29]

L. Y. Wang, T. Li, X. T. Dong, M. B. Pang, S. T. Xiao, and W. Zhang, “Thiophene-Based MOFs for Iodine Capture: Effect of Pore Structures and Interaction Mechanism,” Chemical Engineering Journal 425 (2021): 130578.

[30]

M. B. Kim, J. R. Yu, S. H. R. Shin, H. M. Johnson, R. K. Motkuri, and P. K. Thallapally, “Enhanced Iodine Capture Using a Postsynthetically Modified Thione-Silver Zeolitic Imidazole Framework,” ACS Applied Materials & Interfaces 15 (2023): 54702-54710.

[31]

M. L. Li, X. P. Wang, J. Zhang, Y. H. Gao, and W. Zhang, “Cu-loaded MOF-303 for Iodine Adsorption: The Roles of Cu Species and Pyrazole Ligands,” Applied Surface Science 619 (2023): 156819.

[32]

P. H. Svensson and L. Kloo, “Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide-Iodine Systems,” Chemical Reviews 103 (2003): 1649-1684.

[33]

I. Turkevych, S. Kazaoui, N. A. Belich, et al., “Strategic Advantages of Reactive Polyiodide Melts for Scalable Perovskite Photovoltaics,” Nature Nanotechnology 14 (2019): 57-63.

[34]

J. Wu, Z. Lan, J. M. Lin, et al., “Electrolytes in Dye-Sensitized Solar Cells,” Chemical Reviews 115 (2015): 2136-2173.

[35]

K. F. Tebbe and D. R. Buchem, “The Most Iodine-Rich Polyiodide Yet: Fe3I29,” Angewandte Chemie International Edition 36 (1997): 1345-1346.

[36]

J. Hu, Z. Zhang, T. Deng, et al., “Porous Aromatic Frameworks Enabling Polyiodide Confinement Toward High Capacity and Long Lifespan Zinc-Iodine Batteries,” Advanced Materials 36 (2024): 2401091.

[37]

Y. Tang, Z. He, W. Xue, H. Huang, and G. Zhang, “Dynamic Polyiodide Anions Formation in Cationic Covalent Organic Framework for Efficient Iodine Capture,” Chemical Engineering Journal 470 (2023): 144211.

[38]

Y. S. Wei, M. Zhang, P. Q. Liao, et al., “Coordination Templated [2+2+2] Cyclotrimerization in a Porous Coordination Framework,” Nature Communications 6 (2015): 8348.

[39]

S. Y. Li, S. C. Fan, P. Zhang, W. Y. Yuan, and Y. Wang, Q. G. Zhai, “Metal-Cluster-Powered Ultramicropore Alliance in Pore-Space-Partitioned Metal-Organic Frameworks For Benchmark One-Step Ethylene Purification,” Chem 10 (2024): 2761-2775.

[40]

Q. G. Zhai, X. H. Bu, C. Y. Mao, et al., “An Ultra-tunable Platform for Molecular Engineering of High-performance Crystalline Porous Materials,” Nature Communications 7 (2016): 13645.

[41]

L. W. He, L. Chen, X. L. Dong, et al., “A Nitrogen-rich Covalent Organic Framework for Simultaneous Dynamic Capture of Iodine and Methyl Iodide,” Chem 7 (2021): 699-714.

[42]

J. Li, X Zhang, M. Fan, et al., “Direct Observation of Enhanced Iodine Binding Within a Series of Functionalized Metal-Organic Frameworks With Exceptional Irradiation Stability,” Journal of the American Chemical Society 146 (2024): 14048-14057.

[43]

D. F. Sava, K. W. Chapman, M. A. Rodriguez, et al., “Competitive I2 Sorption by Cu-BTC From Humid Gas Streams,” Chemistry of Materials 25 (2013): 2591-2596.

[44]

J. Yang, S. J. Hu, L. X. Cai, L. P. Zhou, and Q. F. Sun, “Counteranion-Mediated Efficient Iodine Capture in a Hexacationic Imidazolium Organic Cage Enabled by Multiple Non-Covalent Interactions,” Nature Communications 14 (2023): 6082.

[45]

H. B. Huo, X. D. Xiao, L. Chang, et al., “Cation-π and Electrostatic Interactions Co-Driven Assembly of Two-Dimensional Heteropore Supramolecular Polymers With Rapid Iodine Capture Capability,” Science China Chemistry 66 (2023): 2070-2082.

[46]

X. H. Guo, Y. Li, M. C. Zhang, et al., “Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) With Quasi-3D Topologies for Rapid I2 Adsorption,” Angewandte Chemie International Edition 59 (2020): 22697-22705.

[47]

M. M. Jia, S. Y. Rong, P. C. Su, and W. B. Li, “Designing Functional Terminals and Vacancies Into Crystalline Porous Materials for Iodine Capture,” Chemical Engineering Journal 437 (2022): 135432.

[48]

B. Valizadeh, T. N. Nguyen, B. Smit, and K. C. Stylianou, “Porous Metal-Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gas-Sparged Column,” Advanced Functional Materials 28 (2018): 1801596.

[49]

Y. Q. Xie, T. T. Pan, Q. Lei, et al., “Efficient and Simultaneous Capture of Iodine and Methyl Iodide Achieved by a Covalent Organic Framework,” Nature Communications 13 (2022): 2878.

[50]

X. R. Zhang, I. D. Silva, H. G. Godfrey, et al., “Confinement of Iodine Molecules Into Triple-Helical Chains Within Robust Metal-Organic Frameworks,” Journal of the American Chemical Society 139 (2017): 16289-16296.

[51]

G. Brunet, D. A. Safin, M. Z. Aghaji, et al., “Stepwise Crystallographic Visualization of Dynamic Guest Binding in a Nanoporous Framework,” Chemical Science 8 (2017): 3171-3177.

[52]

C. Liu, Y. C. Jin, Z. H. Yu, et al., “Transformation of Porous Organic Cages and Covalent Organic Frameworks With Efficient Iodine Vapor Capture Performance,” Journal of the American Chemical Society 144 (2022): 12390-12399.

[53]

G. B. Wang, K. Leus, H. S. Jena, et al., “A Fluorine-Containing Hydrophobic Covalent Triazine Framework With Excellent Selective CO2 Capture Performance,” Journal of Materials Chemistry A 4 (2016): 51-58.

[54]

Y. Wang, J. Tao, S. H. Xiong, et al., “Ferrocene-Based Porous Organic Polymers for High-Affinity Iodine Capture,” Chemical Engineering Journal 380 (2020): 122420.

[55]

X. H. Guo, Y. Tian, M. Zhang, et al., “Mechanistic Insight Into Hydrogen-Bond-Controlled Crystallinity and Adsorption Property of Covalent Organic Frameworks From Flexible Building Blocks,” Chemistry of Materials 30 (2018): 2299-2308.

[56]

M. Das, S. K. Sarkar, Y. S. Patra, A. Manna, S. Mukherjee, and S. Das, “Soft Self-Templating Approach-Derived Covalent Triazine Framework With Bimodal Nanoporosity for Efficient Radioactive Iodine Capture for Safe Nuclear Energy,” ACS Applied Nano Materials 5 (2022): 8783-8793.

[57]

H. L. Li, D. Zhang, K. Cheng, Z. Y. Li, and P. Z. Li, “Effective Iodine Adsorption by Nitrogen-Rich Nanoporous Covalent Organic Frameworks,” ACS Applied Nano Materials 6 (2023): 1295-1302.

[58]

D. Y. Tong, Y. L. Zhao, Z. C. Chen, T. Bo, S. W. Nie, and S. T. Xiao, “A Systematic First-Principles Study of Volatile Iodine Adsorption Onto Zeolitic Imidazolate Frameworks,” Microporous Mesoporous Materials 317 (2021): 111017.

[59]

S. Chibani, M. Chebbi, S. Lebegue, L. Cantrelc, and M. Badawi, “Impact of the Si/Al Ratio on the Selective Capture of Iodine Compounds in Silver-mordenite: A Periodic DFT Study,” Physical Chemistry Chemical Physics 18 (2016): 25574-25581.

[60]

S. Chibani, F. Chiter, L. Cantrel, and J. F. Paul, “Capture of Iodine Species in MIL-53(Al), MIL-120(Al), and HKUST-1(Cu) Periodic DFT and Ab-Initio Molecular Dynamics Studies,” Journal of Physical Chemistry C 121 (2017): 25283-25291.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/