Self-Assembly of Hydration-Dependent Quasi-Spherical Mixed Micelles into Selective Mesoscale Complex Crystalline Structures

Young-Jin Yoon , Tae-Hwan Kim

Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70049

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (8) : e70049 DOI: 10.1002/agt2.70049
RESEARCH ARTICLE

Self-Assembly of Hydration-Dependent Quasi-Spherical Mixed Micelles into Selective Mesoscale Complex Crystalline Structures

Author information +
History +
PDF

Abstract

Over the past three decades, a variety of complex structures mimicking intermetallic compounds have been discovered in soft matter systems. However, a complete understanding of the mechanisms that govern the self-assembly of these complex structures in aqueous solution is still lacking. Herein, we investigate the formation of mesoscale complex crystal structures with micelle packing of nonionic amphiphilic molecules in aqueous solutions using small-angle X-ray scattering (SAXS). The SAXS measurements revealed both unary-micelle and binary-micelles liquid crystalline phases, including face-centered cubic (FCC), body-centered cubic (BCC), Frank-Kasper (FK) σ, and FK A15 and NaZn13, FK C14, and FK C15 phases, respectively, which arise from the interplay of composition, temperature, and time. Quantitative SAXS analyses with Le Bail refinements and electron density reconstruction indicated that EO hydration, the interfacial curvature of micelles, and micellar packing play important roles in the formation of mesoscale complex crystalline structures during the self-assembly process of the nonionic ternary system. This study is the first demonstration of binary mesoscale complex crystalline structures with quasispherical close packing in nonionic amphiphilic aqueous solution, offering broader insights for the self-assembly mechanism of the complex crystalline structures on soft materials.

Keywords

amphiphiles / liquid crystals / self-assembly / supramolecular chemistry / surfactant

Cite this article

Download citation ▾
Young-Jin Yoon, Tae-Hwan Kim. Self-Assembly of Hydration-Dependent Quasi-Spherical Mixed Micelles into Selective Mesoscale Complex Crystalline Structures. Aggregate, 2025, 6(8): e70049 DOI:10.1002/agt2.70049

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Nagarajan, “Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail,” Langmuir 18 (2002): 31-38.

[2]

R. Nagarajan and E. Ruckenstein, “Theory of Surfactant Self-Assembly: A Predictive Molecular Thermodynamic Approach,” Langmuir 7 (1991): 2934-2969.

[3]

C. M. Bates and F. S. Bates, “50th Anniversary Perspective: Block Polymers-Pure Potential,” Macromolecules 50, (2017): 3-22.

[4]

P. Alexandridis and B. Lindman, Amphiphilic Block Copolymers: Self-Assembly and Applications. (Elsevier, 2000).

[5]

M. Huang, C.-H. Hsu, J. Wang, et al., “Selective Assemblies of Giant Tetrahedra via Precisely Controlled Positional Interactions,” Science 348 (2015): 424-428.

[6]

H. Lei, Y. Liu, T. Liu, et al., “Unimolecular Nanoparticles toward More Precise Regulations of Self-Assembled Superlattices in Soft Matter,” Angewandte Chemie International Edition 61 (2022): e202203433.

[7]

A. M. F. Neto and S. R. Salinas, The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties. (OUP Oxford, 2005).

[8]

T. Kato, N. Mizoshita, and K. Kishimoto, “Functional Liquid-Crystalline Assemblies: Self-Organized Soft Materials,” Angewandte Chemie International Edition 45 (2006): 38-68.

[9]

A. Matranga, S. Baig, J. Boland, et al., “Biomimetic Reflectors Fabricated Using Self-Organising, Self-Aligning Liquid Crystal Polymers,” Advanced Materials 25 (2013): 520-523.

[10]

J. Yoon, W. Lee, and E. L. Thomas, “Optically Pumped Surface-Emitting Lasing Using Self-Assembled Block-Copolymer-Distributed Bragg Reflectors,” Nano Letters 6 (2006): 2211-2214.

[11]

A. K. Satheesan, N. Puthiya Purayil, and C. Keloth, “Platinum-17-Doped Flexible Nonlinear Distributed Bragg Reflectors for Optical Filtering Applications,” ACS Applied Optical Materials 2 (2024): 1466-1473.

[12]

B. M. Boyle, T. A. French, R. M. Pearson, B. G. McCarthy, and G. M. Miyake, “Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals From Block Copolymers,” ACS Nano 11 (2017): 3052-3058.

[13]

A.-P. Hynninen, J. H. Thijssen, E. C. Vermolen, M. Dijkstra, and A. Van Blaaderen, “Self-Assembly Route for Photonic Crystals With a Bandgap in the Visible Region,” Nature Materials 6 (2007): 202-205.

[14]

H. Kim and C. Leal, “Cuboplexes: Topologically Active siRNA Delivery,” ACS Nano 9 (2015): 10214-10226.

[15]

A. C. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature 359 (1992): 710-712.

[16]

M. E. Davis, “Ordered Porous Materials for Emerging Applications,” Nature 417 (2002): 813-821.

[17]

S. Aleandri, D. Bandera, R. Mezzenga, and E. M. Landau, “Biotinylated Cubosomes: A Versatile Tool for Active Targeting and Codelivery of Paclitaxel and a Fluorescein-Based Lipid Dye,” Langmuir 31 (2015): 12770-12776.

[18]

T. M. Gillard, S. Lee, and F. S. Bates, “Dodecagonal Quasicrystalline Order in a Diblock Copolymer Melt,” The Proceedings of the National Academy of Sciences 113 (2016): 5167-5172.

[19]

X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K. Hobbs, “Supramolecular Dendritic Liquid Quasicrystals,” Nature 428 (2004): 157-160.

[20]

S. Lee, M. J. Bluemle, and F. S. J. S. Bates, “Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts,” Science 330 (2010): 349-353.

[21]

G. Ungar, Y. Liu, X. Zeng, V. Percec, and W.-D. Cho, “Giant Supramolecular Liquid Crystal Lattice,” Science 299 (2003): 1208-1211.

[22]

Z. Su, C.-H. Hsu, Z. Gong, et al., “Identification of a Frank-Kasper Z Phase From Shape Amphiphile Self-Assembly,” Nature Chemistry 11 (2019): 899-905.

[23]

K. Kim, M. W. Schulze, A. Arora, et al., “Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy,” Science 356 (2017): 520-523.

[24]

R. Vargas, P. Mariani, A. Gulik, and V. Luzzati, “Cubic Phases of Lipid-Containing Systems: The Structure of Phase Q223 (Space Group Pm3n). An X-ray Scattering Study,” Journal of Molecular Biology 225 (1992): 137-145.

[25]

X.-Y. Yan, Y. Liu, X.-Y. Liu, et al., “Guidelines for superlattice Engineering With Giant Molecules: The Pivotal Role of Mesoatoms,” Physical Review Materials 7 (2023): 120302.

[26]

H. Lei, X.-H. Li, Y. Liu, et al., “Diverse Superlattices Constructed via Perylene Bisimide Type of Giant Shape Amphiphiles: Assisted With Unimolecular Nanoparticles,” Thermochimica Acta 719 (2023): 179411.

[27]

Y. Wang, Y. Huang, X. Y. Yan, et al., “Soft Alloys Constructed With Distinct Mesoatoms via Self-Sorting Assembly of Giant Shape Amphiphiles,” Angewandte Chemie International Edition 61 (2022): e202200637.

[28]

C. M. Baez-Cotto, G. L. Jackson, and M. K. Mahanthappa, “Aqueous Lyotropic Mesophase Behavior of Gemini Dicarboxylate Surfactants Swollen With n -Decane,” Langmuir 36 (2020): 2307-2321.

[29]

C. M. Baez-Cotto and M. K. Mahanthappa, “Micellar Mimicry of Intermetallic C14 and C15 Laves Phases by Aqueous Lyotropic Self-Assembly,” ACS Nano 12 (2018): 3226-3234.

[30]

S. A. Kim, K.-J. Jeong, A. Yethiraj, and M. K. Mahanthappa, “Low-Symmetry Sphere Packings of Simple Surfactant Micelles Induced by Ionic Sphericity,” The Proceedings of the National Academy of Sciences 114 (2017): 4072-4077.

[31]

G. S. Attard, J. C. Glyde, and C. G. Göltner, “Liquid-Crystalline Phases as Templates for the Synthesis of Mesoporous Silica,” Nature 378 (1995): 366-368.

[32]

Q. Huo, D. I. Margolese, and G. D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials,” Chemistry of Materials 8 (1996): 1147-1160.

[33]

C. Xiao, N. Fujita, K. Miyasaka, Y. Sakamoto, and O. Terasaki, “Dodecagonal Tiling in Mesoporous Silica,” Nature 487 (2012): 349-353.

[34]

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,” Journal of the American Chemical Society 120 (1998): 6024-6036.

[35]

K. W. Park, J. Y. Kim, H. J. Seo, and O. Y. Kwon, “Preparation of Mesoporous Silica by Nonionic Surfactant Micelle-Templated Gelation of Na2SiO3 and H2SiF6 and Application as a Catalyst Carrier for the Partial Oxidation of CH4,” Scientific Reports 9 (2019): 13360.

[36]

J. Liu, G. Du, and T. Chen, “Synthesis of Ordered Mesoporous Silica With Nonionic Surfactant/Anionic Polyelectrolyte as Template Under Near-Neutral pH Conditions,” Langmuir 40 (2024): 14016-14026.

[37]

I. W. Hamley, Block Copolymers in Solution: Fundamentals and Applications. (John Wiley & Sons, 2005).

[38]

J. Schefer, R. McDaniel, and B. P. Schoenborn, “Small-Angle Neutron Scattering Studies on Brij-58 Micelles,” Journal of Physical Chemistry 92 (1988): 729-732.

[39]

S. Fall, B. Pattier, L. Benyayia, and A. Gibaud, “Binary Phase Diagram of Water/Brij58 Studied by SAXS,” Acta Physica Polonica A 121 (2012): 388-396.

[40]

K. Bryskhe, K. Schille, J.-E. Löfroth, and U. Olsson, “Lipid-Block Copolymer Immiscibility,” Physical Chemistry Chemical Physics 3 (2001): 1303-1309.

[41]

P. Alexandridis, V. Athanassiou, S. Fukuda, and T. A. Hatton, “Surface Activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers,” Langmuir 10 (1994): 2604-2612.

[42]

R. Nagarajan, “Solubilization of Hydrocarbons and Resulting Aggregate Shape Transitions in Aqueous Solutions of Pluronic® (PEO-PPO-PEO) Block Copolymers,” Colloids and Surfaces. B, Biointerfaces 16 (1999): 55-72.

[43]

C. Doe, H.-S. Jang, S. R. Kline, and S.-M. Choi, “Subdomain Structures of Lamellar and Reverse Hexagonal Pluronic Ternary Systems Investigated by Small Angle Neutron Scattering,” Macromolecules 42 (2009): 2645-2650.

[44]

J.-M. Ha, H.-S. Jang, S.-H. Lim, and S. M. Choi, “Selective Distributions of Functionalized Single-Walled Carbon Nanotubes in a Polymeric Reverse Hexagonal Phase,” Soft Matter 11 (2015): 5821-5827.

[45]

J. Stewart, A. Saiani, A. Bayly, and G. Tiddy, “Phase Behavior of Lyotropic Liquid Crystals in Linear Alkylbenzene Sulphonate (LAS) Systems in the Presence of Dilute and Concentrated Electrolyte,” Journal of Dispersion Science and Technology 32 (2011): 1700-1710.

[46]

D. V. Perroni, C. M. Baez-Cotto, G. P. Sorenson, and M. K. Mahanthappa, “Linker Length-Dependent Control of Gemini Surfactant Aqueous Lyotropic Gyroid Phase Stability,” Journal of Physical Chemistry Letters 6 (2015): 993-998.

[47]

M. Rappolt, F. Cacho-Nerin, C. Morello, and A. Yaghmur, “How the Chain Configuration Governs the Packing of Inverted Micelles in the Cubic Fd3m-Phase,” Soft Matter 9 (2013): 6291.

[48]

G. Carlström and B. Halle, “The State of Water in non-Ionic Surfactant Solutions and Lyotropic Phases. Oxygen-17 Magnetic Relaxation Study,” Journal of the Chemical Society, Faraday Transactions 1 85 (1989): 1049.

[49]

M. Björling, P. Linse, and G. Karlström, “Distribution of Segments for Terminally Attached Poly(ethylene oxide) Chains,” Journal of Physical Chemistry 94 (1990): 471-481.

[50]

T. P. Lodge, J. Bang, M. J. Park, and K. Char, “Origin of the Thermoreversible fcc-bcc Transition in Block Copolymer Solutions,” Physical Review Letter 92 (2004): 145501.

[51]

G. A. McConnell and A. P. Gast, “Melting of Ordered Arrays and Shape Transitions in Highly Concentrated Diblock Copolymer Solutions,” Macromolecules 30 (1997): 435-444.

[52]

G. A. McConnell, A. P. Gast, J. S. Huang, and S. D. Smith, “Disorder-Order Transitions in Soft Sphere Polymer Micelles,” Physical Review Letter 71 (1993): 2102-2105.

[53]

P. Ziherl and R. D. Kamien, “Maximizing Entropy by Minimizing Area: Towards a New Principle of Self-Organization,” Journal of Physical Chemistry B 105 (2001): 10147-10158.

[54]

A. Jayaraman, D. Y. Zhang, B. L. Dewing, and M. K. Mahanthappa, “Path-Dependent Preparation of Complex Micelle Packings of a Hydrated Diblock Oligomer,” ACS Central Science 5 (2019): 619-628.

[55]

M. J. Park, J. Bang, T. Harada, K. Char, and T. P. Lodge, “Epitaxial Transitions Among FCC, HCP, BCC, and Cylinder Phases in a Block Copolymer Solution,” Macromolecules 37 (2004): 9064-9075.

[56]

K. K. Lachmayr, C. M. Wentz, and L. R. Sita, “An Exceptionally Stable and Scalable Sugar-Polyolefin Frank-Kasper A15 Phase,” Angewandte Chemie International Edition 59 (2020): 1521-1526.

[57]

K. Foroutani, S. M. Ghasemi, and B. Pourabbas, “Molecular Tailoring of Polystyrene-Block-Poly (acrylic acid) Block Copolymer Toward Additive-Free Asymmetric Isoporous Membranes via SNIPS,” Journal of Membrane Science 623 (2021): 119099.

[58]

L. L. Missoni and M. Tagliazucchi, “The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent,” ACS Nano 2020, 14, 5649-5658.

[59]

S. W. Winslow, J. W. Swan, and W. A. Tisdale, “The Importance of Unbound Ligand in Nanocrystal Superlattice Formation,” Journal of the American Chemical Society 142 (2020): 9675-9968.

[60]

M. D. Eldridge, P. A. Madden, and D. Frenkel, “Entropy-Driven Formation of a Superlattice in a Hard-Sphere Binary Mixture,” Nature 365 (1993): 35-37.

[61]

G. M. Grason, B. A. Didonna, and R. D. Kamien, “Geometric Theory of Diblock Copolymer Phases,” Physical Review Letter 91, (2003): 058304.

[62]

A. Travesset, “Binary Nanoparticle Superlattices of Soft-Particle Systems,” The Proceedings of the National Academy of Sciences 112 (2015): 9563-9567.

[63]

X. Cottin and P. A. Monson, “Substitutionally Ordered Solid Solutions of Hard Spheres,” Journal of Chemical Physics 102 (1995): 3354-3360.

[64]

Y.-J. Yoon, J.-M. Ha, H.-J. Seo, J. D. Jang, C. Do, and T.-H. Kim, “Temperature-Responsive Binary Superlattices Prepared by the Selective Solvent Evaporation of O/W Microemulsion Composed of Gold Nanoparticles and Surfactants,” Nanoscale 15 (2023): 12481-12491.

[65]

Y. Wang, J. Huang, X. Y. Yan, et al., “Soft Alloys Constructed With Distinct Mesoatoms via Self-Sorting Assembly of Giant Shape Amphiphiles,” Angewandte Chemie International Edition 61 (2022): e202200637.

[66]

M. I. Bodnarchuk, M. V. Kovalenko, W. Heiss, and D. V. Talapin, “Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor,” Journal of the American Chemical Society 132 (2010): 11967-11977.

[67]

K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Polymers in Aqueous Solution, Wiley-Blackwell 2002.

[68]

G. Wanka, H. Hoffmann, and W. Ulbricht, “The Aggregation Behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in Aqueous Solution,” Colloid and Polymer Science 268 (1990): 101-117.

[69]

W. H. Ansari, N. Fatma, and M. Panda, “Solubilization of Polycyclic Aromatic Hydrocarbons by Novel Biodegradable Cationic Gemini Surfactant ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy) Dichloride and its Binary Mixtures With Conventional Surfactants,” Soft Matter 9 (2013): 1478.

[70]

M. Panda and M. Kamil, “Polymer-Amphiphile Interactions: an Overview,” Colloid and Polymer Science 295 (2017): 2363-2371.

[71]

S.-H. Chen, C. Liao, E. Fratini, P. Baglioni, and F. Mallamace, “Interaction, Critical, Percolation and Kinetic Glass Transitions in Pluronic L-64 Micellar Solutions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 183-185 (2001): 95-111.

[72]

F. E. Antunes, L. Gentile, C. O. Rossi, L. Tavano, and G. A. Ranieri, “Gels of Pluronic F127 and Nonionic Surfactants From Rheological Characterization to Controlled Drug Permeation,” Colloids and Surfaces. B, Biointerfaces 87 (2011): 42-48.

[73]

R. Dong and J. Hao, “Complex Fluids of Poly(oxyethylene) Monoalkyl Ether Nonionic Surfactants,” Chemical Reviews 110 (2010): 4978-5022.

[74]

R. Ivanova, P. Alexandridis, and B. Lindman, “Interaction of Poloxamer Block Copolymers With Cosolvents and Surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 183-185 (2001): 41-53.

[75]

D. Löf; A. Niemiec; K. Schillen; W. Loh; and G. Olofsson, “A Calorimetry and Light Scattering Study of the Formation and Shape Transition of Mixed Micelles of EO20PO68EO20 Triblock Copolymer (P123) and Nonionic Surfactant (C12EO6),” Journal of Physical Chemistry B 111 (2007): 5911-5920.

[76]

D. Löf, A. Niemiec, K. Schillen, W. Loh, and G. Olofsson, “Rheological Study of the Shape Transition of Block Copolymer−Nonionic Surfactant Mixed Micelles,” Langmuir 23 (2007): 11000-11006.

[77]

K. Schillen, J. Jansson, D. Löf, and T. Costa, “Mixed Micelles of a PEO−PPO−PEO Triblock Copolymer (P123) and a Nonionic Surfactant (C12EO6) in Water. A Dynamic and Static Light Scattering Study,” Journal of Physical Chemistry B 112 (2008): 5551-5562.

[78]

S. Kancharla, D. Bedrov, and M. Tsianou, “Structure and Composition of Mixed Micelles Formed by Nonionic Block Copolymers and Ionic Surfactants in Water Determined by Small-Angle Neutron Scattering With Contrast Variation,” Journal of Colloid and Interface Science 609 (2022): 456-468.

[79]

S. Kancharla, N. A. Zoyhofski, L. Bufalini, B. F. Chatelais, P. Alexandridis, and P. Alexandridis, “Association Between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization,” Polymers 12 (2020): 1831.

[80]

P. Alexandridis and T. A. Hatton, “Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) Block Copolymer Surfactants in Aqueous Solutions and at Interfaces: Thermodynamics, Structure, Dynamics, and Modeling,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 96 (1995): 1-46.

[81]

P. Alexandridis, T. Nivaggioli, and T. A. Hatton, “Temperature Effects on Structural Properties of Pluronic P104 and F108 PEO-PPO-PEO Block Copolymer Solutions,” Langmuir 11 (1995): 1468-1476.

[82]

N. Konig, L. Willner, G. Carlstrom, et al., “Spherical Micelles With Nonspherical Cores: Effect of Chain Packing on the Micellar Shape,” Macromolecules 53 (2020): 10686-10698.

[83]

T. Shikata, M. Okuzono, and N. Sugimoto, “Temperature-Dependent Hydration/Dehydration Behavior of Poly(ethylene oxide)s in Aqueous Solution,” Macromolecules 46 (2013): 1956-1961.

[84]

D. Löf, M. Tomsic, O. Glatter, G. Fritz-Popovski, and K. Schillén, “Structural Characterization of Nonionic Mixed Micelles Formed by C12EO6 Surfactant and P123 Triblock Copolymer,” Journal of Physical Chemistry B 113 (2009): 5478-5486.

[85]

S. Couderc, Y. Li, D. M. Bloor, J. F. Holzwarth, and E. Wyn-Jones, “Interaction Between the Nonionic Surfactant Hexaethylene Glycol Mono- n -dodecyl Ether (C 12 EO 6) and the Surface Active Nonionic ABA Block Copolymer Pluronic F127 (EO 97 PO 69 EO 97) Formation of Mixed Micelles Studied Using Isothermal Titration Calorimetry and Differential Scanning Calorimetry,” Langmuir 17 (2001): 4818-4824.

[86]

I. Coropceanu, M. A. Boles, and D. V. Talapin, “Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection,” Journal of the American Chemical Society 141, (2019): 5728-5740.

[87]

M. J. Hollamby, C. F. Smith, M. M. Britton, et al., “The Aggregation of an alkyl-C60 Derivative as a Function of Concentration, Temperature and Solvent Type,” Physical Chemistry Chemical Physics 20 (2018): 3373-3380.

[88]

S. Manet, A. Lecchi, M. Impéror-Clerc, et al., “Structure of Micelles of a Nonionic Block Copolymer Determined by SANS and SAXS,” Journal of Physical Chemistry B 115 (2011): 11318-11329.

[89]

Y.-Q. Yeh, C.-J. Su, C.-A. Wang, et al., “Diatom-Inspired Self-Assembly for Silica Thin Sheets of Perpendicular Nanochannels,” Journal of Colloid & Interface Science 584 (2021): 647-659.

[90]

R. L. Johnston and R. Hoffmann, “Structure-Bonding Relationships in the Laves Phases,” Zeitschrift für anorganische und allgemeine Chemie 616 (1992): 105-120.

[91]

A.-P. Hynninen, L. Filion, and M. Dijkstra, “Stability of LS and LS2 Crystal Structures in Binary Mixtures of Hard and Charged Spheres,” Journal of Chemical Physics 131 (2009): 064902.

[92]

A. J. Mueller, A. P. Lindsay, A. Jayaraman, et al., “Tuning Diblock Copolymer Particle Packing Symmetry With Variable Molecular Weight Core-Homopolymers,” Macromolecules 55, (2022): 8332-8344.

[93]

J. Xie and A. C. Shi, “Formation of Complex Spherical Packing Phases in Diblock Copolymer/Homopolymer Blends,” Giant 5 (2021): 100043.

[94]

A. J. Mueller, J. Mueller, A. P. Lindsay, and A. Jayaraman, “Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends,” ACS Macro Letters 9 (2020): 576-582.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/