Mechanism of Cationic Peptide-Induced Assembly of Gold Nanoparticles: Modulation of Electrostatic Repulsion

Benjamin Lam , Robert Ramji , Margaret Mullooly , Kristina D. Closser , Tod A. Pascal , Jesse V. Jokerst

Aggregate ›› 2025, Vol. 6 ›› Issue (6) : e70043

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (6) :e70043 DOI: 10.1002/agt2.70043
RESEARCH ARTICLE

Mechanism of Cationic Peptide-Induced Assembly of Gold Nanoparticles: Modulation of Electrostatic Repulsion

Author information +
History +
PDF

Abstract

The aggregation of plasmonic nanoparticles can lead to new and controllable properties useful for numerous applications. We recently showed the reversible aggregation of gold nanoparticles (AuNPs) via a small, cationic di-arginine peptide; however, the mechanism underlying this aggregation is not yet comprehensively understood. Here, we seek insights into the intermolecular interactions of cationic peptide-induced assembly of citrate-capped AuNPs by empirically measuring how peptide identity impacts AuNP aggregation. We examined the nanoscale interactions between the peptides and the AuNPs via UV-vis spectroscopy to determine the structure-function relationship of peptide length and charge on AuNP aggregation. Careful tuning of the sequence of the di-arginine peptide demonstrated that the mechanism of assembly is driven by a reduction in electrostatic repulsion. We show that acetylated N-terminals and carboxylic acid C-terminals decrease the effectiveness of the peptide in inducing AuNP aggregation. The increase in peptide size through the addition of glycine or proline units hinders aggregation and leads to less redshift. Arginine-based peptides were also found to be more effective in assembling the AuNPs than cysteine-based peptides of equivalent length. We also illustrate that aggregation is independent of peptide stereochemistry. Finally, we demonstrate the modulation of peptide-AuNP behavior through changes to the pH, salt concentration, and temperature. Notably, histidine-based and tyrosine-based peptides could reversibly aggregate the AuNPs in response to the pH.

Keywords

DLVO theory / gold nanoparticles / intermolecular interactions / peptides / reversible aggregation

Cite this article

Download citation ▾
Benjamin Lam, Robert Ramji, Margaret Mullooly, Kristina D. Closser, Tod A. Pascal, Jesse V. Jokerst. Mechanism of Cationic Peptide-Induced Assembly of Gold Nanoparticles: Modulation of Electrostatic Repulsion. Aggregate, 2025, 6(6): e70043 DOI:10.1002/agt2.70043

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Rauschenberg, S. Bandaru, M. P. Waller, and B. J. Ravoo, “Peptide-Based Carbohydrate Receptors,” Chemistry: A European Journal 20, no. 10 (2014): 2770-2782, https://doi.org/10.1002/chem.201303777.

[2]

S. Galdiero, A. Falanga, M. Cantisani, M. Vitiello, G. Morelli, and M. Galdiero, “Peptide-Lipid Interactions: Experiments and Applications,” International Journal of Molecular Sciences 14, no. 9 (2013): 18758-18789, https://doi.org/10.3390/ijms140918758.

[3]

J. S. Freitag, C. Möser, R. Belay, et al., “Integration of Functional Peptides Into Nucleic Acid-Based Nanostructures,” Nanoscale 15, no. 17 (2023): 7608-7624, https://doi.org/10.1039/D2NR05429A.

[4]

R. L. Stanfield and I. A. Wilson, “Protein-Peptide Interactions,” Current Opinion in Structural Biology 5, no. 1 (1995): 103-113, https://doi.org/10.1016/0959-440x(95)80015-s.

[5]

K. Wu, H. Bai, Y. T. Chang, et al., “De Novo Design of Modular Peptide-Binding Proteins by Superhelical Matching,” Nature 616, no. 7957 (2023): 581-589, https://doi.org/10.1038/s41586-023-05909-9.

[6]

M. J. Mitchell, M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer, “Engineering Precision Nanoparticles for Drug Delivery,” Nature Reviews Drug Discovery 20, no. 2 (2021): 101-124, https://doi.org/10.1038/s41573-020-0090-8.

[7]

P. Jin, R. Sha, Y. Zhang, et al., “Blood Circulation-Prolonging Peptides for Engineered Nanoparticles Identified via Phage Display,” Nano Letters 19, no. 3 (2019): 1467-1478, https://doi.org/10.1021/acs.nanolett.8b04007.

[8]

A. Accardo, D. Tesauro, and G. Morelli, “Peptide-Based Targeting Strategies for Simultaneous Imaging and Therapy With Nanovectors,” Polymer Journal 45, no. 5 (2013): 481-493, https://doi.org/10.1038/pj.2012.215.

[9]

L. Wang, N. Wang, W. Zhang, et al., “Therapeutic Peptides: Current Applications and Future Directions,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 48, https://doi.org/10.1038/s41392-022-00904-4.

[10]

A. Acunzo, E. Scardapane, M. De Luca, D. Marra, R. Velotta, and A. Minopoli, “Plasmonic Nanomaterials for Colorimetric Biosensing: A Review,” Chemosensors 10 (2022): 136, https://doi.org/10.3390/chemosensors10040136.

[11]

Y. Wang, Z. Gao, Z. Han, et al., “Aggregation Affects Optical Properties and Photothermal Heating of Gold Nanospheres,” Scientific Reports 11, no. 1 (2021): 898, https://doi.org/10.1038/s41598-020-79393-w.

[12]

R. C. Triulzi, Q. Dai, J. Zou, et al., “Photothermal Ablation of Amyloid Aggregates by Gold Nanoparticles,” Colloids and Surfaces B: Biointerfaces 63, no. 2 (2008): 200-208, https://doi.org/10.1016/j.colsurfb.2007.12.006.

[13]

E. Petretto, Q. K. Ong, F. Olgiati, et al., “Monovalent Ion-Mediated Charge-Charge Interactions Drive Aggregation of Surface-Functionalized Gold Nanoparticles,” Nanoscale 14, no. 40 (2022): 15181-15192, https://doi.org/10.1039/d2nr02824g.

[14]

B. R. Holstein, “The Van Der Waals Interaction,” American Journal of Physics 69, no. 4 (2001): 441-449, https://doi.org/10.1119/1.1341251.

[15]

D. J. Lipomi, Introduction to Nanoengineering (Royal Society of Chemistry, 2024).

[16]

J. E. Lennard-Jones, “Cohesion,” Proceedings of the Physical Society 43, no. 5 (1931): 461-482, https://doi.org/10.1088/0959-5309/43/5/301.

[17]

J. Lenhard, S. Stephan, and H. Hasse, “On the History of the Lennard-Jones Potential,” Annalen Der Physik 536, no. 6 (2024): 2400115, https://doi.org/10.1002/andp.202400115.

[18]

X. Wu and B. R. Brooks, “A Double Exponential Potential for Van Der Waals Interaction,” AIP Advances 9, no. 6 (2019): 065304, https://doi.org/10.1063/1.5107505.

[19]

B. Derjaguin, “Untersuchungen über die Reibung und Adhäsion, IV,” Kolloid-Zeitschrift 69, no. 2 (1934): 155-164, https://doi.org/10.1007/BF01433225.

[20]

B. W. Ninham, “On Progress in Forces Since the DLVO Theory,” Advances in Colloid and Interface Science 83, no. 1 (1999): 1-17, https://doi.org/10.1016/S0001-8686(99)00008-1.

[21]

P. Moscato and M. N. Haque, “New Alternatives to the Lennard-Jones Potential,” Scientific Reports 14, no. 1 (2024): 11169, https://doi.org/10.1038/s41598-024-60835-8.

[22]

X. Wang, S. Ramírez-Hinestrosa, J. Dobnikar, and D. Frenkel, “The Lennard-Jones Potential: When (Not) to Use It,” Physical Chemistry Chemical Physics 22, no. 19 (2020): 10624-10633, https://doi.org/10.1039/C9CP05445F.

[23]

M. Retout, Z. Jin, J. Tsujimoto, et al., “Di-Arginine Additives for Dissociation of Gold Nanoparticle Aggregates: A Matrix-Insensitive Approach With Applications in Protease Detection,” ACS Applied Materials & Interfaces 14, no. 46 (2022): 52553-52565, https://doi.org/10.1021/acsami.2c17531.

[24]

W. Yim, M. Retout, A. A. Chen, et al., “Goldilocks Energy Minimum: Peptide-Based Reversible Aggregation and Biosensing,” ACS Applied Materials & Interfaces 15, no. 36 (2023): 42293-42303, https://doi.org/10.1021/acsami.3c09627.

[25]

B. Lam, M. Retout, A. E. Clark, A. F. Garretson, A. F. Carlin, and J. V. Jokerst, “Silver Nanoparticle Sensor Array for the Detection of SARS-CoV-2,” ACS Applied Nano Materials 7, no. 8 (2024): 9136-9146, https://doi.org/10.1021/acsanm.4c00654.

[26]

M. Retout, Y. Mantri, Z. Jin, et al., “Peptide-Induced Fractal Assembly of Silver Nanoparticles for Visual Detection of Disease Biomarkers,” ACS Nano 16, no. 4 (2022): 6165-6175, https://doi.org/10.1021/acsnano.1c11643.

[27]

M. Retout, L. Amer, W. Yim, et al., “A Protease-Responsive Polymer/Peptide Conjugate and Reversible Assembly of Silver Clusters for the Detection of Porphyromonas Gingivalis Enzymatic Activity,” ACS Nano 17, no. 17 (2023): 17308-17319, https://doi.org/10.1021/acsnano.3c05268.

[28]

B. Lam, L. Amer, E. Thompson, et al., “Matrix-Insensitive Sensor Arrays via Peptide-Coated Nanoparticles: Rapid Saliva Screening for Pathogens in Oral and Respiratory Diseases,” ACS Applied Materials & Interfaces 16, no. 49 (2024): 67362-67372, https://doi.org/10.1021/acsami.4c15662.

[29]

J. Dong, P. L. Carpinone, G. Pyrgiotakis, P. Demokritou, and B. M. Moudgil, “Synthesis of Precision Gold Nanoparticles Using Turkevich Method,” Kona 37 (2020): 224-232, https://doi.org/10.14356/kona.2020011.

[30]

C. Moore, R. Wing, T. Pham, and J. V. Jokerst, “Multispectral Nanoparticle Tracking Analysis for the Real-Time and Label-Free Characterization of Amyloid-β Self-Assembly In Vitro,” Analytical Chemistry 92, no. 17 (2020): 11590-11599, https://doi.org/10.1021/acs.analchem.0c01048.

[31]

H. T. S. Britton and R. A. Robinson, “CXCVIII.—Universal Buffer Solutions and the Dissociation Constant of Veronal,” Journal of the Chemical Society (Resumed) (1931): 1456-1462, https://doi.org/10.1039/JR9310001456.

[32]

P. Pracht, S. Grimme, C. Bannwarth, et al., “CREST—A Program for the Exploration of Low-Energy Molecular Chemical Space,” Journal of Chemical Physics 160 (2024): 114110, https://doi.org/10.1063/5.0197592.

[33]

C. Bannwarth, E. Caldeweyher, S. Ehlert, et al., “Extended Tight-Binding Quantum Chemistry Methods,” WIREs Computational Molecular Science 11, no. 2 (2021): e1493, https://doi.org/10.1002/wcms.1493.

[34]

Y. Shao, Z. Gan, E. Epifanovsky, et al., “Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package,” Molecular Physics 113, no. 2 (2015): 184-215, https://doi.org/10.1080/00268976.2014.952696.

[35]

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu,” The Journal of Chemical Physics 132, no. 15 (2010): 154104, https://doi.org/10.1063/1.3382344.

[36]

J. Tomasi, B. Mennucci, and R. Cammi, “Quantum Mechanical Continuum Solvation Models,” Chemical Reviews 105, no. 8 (2005): 2999-3094, https://doi.org/10.1021/cr9904009.

[37]

J. A. Tullman, W. F. Finney, Y. J. Lin, and S. W. Bishnoi, “Tunable Assembly of Peptide-Coated Gold Nanoparticles,” Plasmonics 2, no. 3 (2007): 119-127, https://doi.org/10.1007/s11468-007-9033-z.

[38]

J. W. Park and J. S. Shumaker-Parry, “Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles,” Journal of the American Chemical Society 136, no. 5 (2014): 1907-1921, https://doi.org/10.1021/ja4097384.

[39]

A. Pantos, I. Tsogas, and C. M. Paleos, “Guanidinium Group: A Versatile Moiety Inducing Transport and Multicompartmentalization in Complementary Membranes,” Biochimica Et Biophysica Acta (BBA)—Biomembranes 1778, no. 4 (2008): 811-823, https://doi.org/10.1016/j.bbamem.2007.12.003.

[40]

K. Hristova and W. C. Wimley, “A Look at Arginine in Membranes,” Journal of Membrane Biology 239, no. 1-2 (2011): 49-56, https://doi.org/10.1007/s00232-010-9323-9.

[41]

H. M. Zakaria, A. Shah, M. Konieczny, J. A. Hoffmann, A. J. Nijdam, and M. E. Reeves, “Small Molecule- and Amino Acid-Induced Aggregation of Gold Nanoparticles,” Langmuir 29, no. 25 (2013): 7661-7673, https://doi.org/10.1021/la400582v.

[42]

M. Doyen, J. Goole, K. Bartik, and G. Bruylants, “Amino Acid Induced Fractal Aggregation of Gold Nanoparticles: Why and How,” Journal of Colloid & Interface Science 464 (2016): 160-166, https://doi.org/10.1016/j.jcis.2015.11.017.

[43]

Á. Martínez and P. Scrimin, “Gold Nanoparticles Crosslinking by Peptides and Amino Acids: A Tool for the Colorimetric Identification of Amino Acids,” Biopolymers 109, no. 10 (2018): e23111, https://doi.org/10.1002/bip.23111.

[44]

Y. C. Chang, Z. Jin, K. Li, et al., “Peptide Valence-Induced Breaks in Plasmonic Coupling,” Chemical Science 14, no. 10 (2023): 2659-2668, https://doi.org/10.1039/D2SC05837E.

[45]

J. P. Hsu and Y. C. Kuo, “An Extension of the Schulze-Hardy Rule to Asymmetric Electrolytes,” Journal of Colloid and Interface Science 171, no. 1 (1995): 254-255, https://doi.org/10.1006/jcis.1995.1176.

[46]

D. Hanaor, M. Michelazzi, C. Leonelli, and C. C. Sorrell, “The Effects of Carboxylic Acids on the Aqueous Dispersion and Electrophoretic Deposition of ZrO2,” Journal of the European Ceramic Society 32, no. 1 (2012): 235-244, https://doi.org/10.1016/j.jeurceramsoc.2011.08.015.

[47]

R. G. Acres, V. Feyer, N. Tsud, E. Carlino, and K. C. Prince, “Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles,” Journal of Physical Chemistry C 118, no. 19 (2014): 10481-10487, https://doi.org/10.1021/jp502401w.

[48]

T. T. Thuy Nguyen, O. A. Han, et al., “The Effect of pH and Transition Metal Ions on Cysteine-Assisted Gold Aggregation for a Distinct Colorimetric Response,” RSC Advances 11, no. 16 (2021): 9664-9674, https://doi.org/10.1039/D1RA00013F.

[49]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Letters 3, no. 8 (2003): 1087-1090, https://doi.org/10.1021/nl034197f.

[50]

H. K. Ganguly and G. Basu, “Conformational Landscape of Substituted Prolines,” Biophysical Reviews 12, no. 1 (2020): 25-39, https://doi.org/10.1007/s12551-020-00621-8.

[51]

M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, and P. Meakin, “Universality in Colloid Aggregation,” Nature 339, no. 6223 (1989): 360-362, https://doi.org/10.1038/339360a0.

[52]

I. Ostolska and M. Wiśniewska, “Application of the Zeta Potential Measurements to Explanation of Colloidal Cr2O3 Stability Mechanism in the Presence of the Ionic Polyamino Acids,” Colloid and Polymer Science 292, no. 10 (2014): 2453-2464, https://doi.org/10.1007/s00396-014-3276-y.

[53]

Z. Németh, I. Csóka, R. Semnani Jazani, et al., “Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes With Charge Imparting Membrane Additives,” Pharmaceutics 14, no. 9 (2022): 1798, https://doi.org/10.3390/pharmaceutics14091798.

[54]

N. Pozzi, A. D. Vogt, D. W. Gohara, and E. Di Cera, “Conformational Selection in Trypsin-Like Proteases,” Current Opinion in Structural Biology 22, no. 4 (2012): 421-431, https://doi.org/10.1016/j.sbi.2012.05.006.

[55]

M. E. Guerin, G. Stirnemann, and D. Giganti, “Conformational Entropy of a Single Peptide Controlled Under Force Governs Protease Recognition and Catalysis,” Proceedings National Academy of Science of the United States of America 115, no. 45 (2018): 11525-11530, https://doi.org/10.1073/pnas.1803872115.

[56]

Y. Ke, J. Zhao, U. H. Verkerk, A. C. Hopkinson, and K. W. M. Siu, “Histidine, Lysine, and Arginine Radical Cations:  Isomer Control via the Choice of Auxiliary Ligand (L) in the Dissociation of [CuII(L)(Amino Acid)]2+ Complexes,” Journal of Physical Chemistry B 111, no. 51 (2007): 14318-14328, https://doi.org/10.1021/jp0746648.

[57]

M. Lambros, T. H. Tran, Q. Fei, and M. Nicolaou, “Citric Acid: A Multifunctional Pharmaceutical Excipient,” Pharmaceutics 14, no. 5 (2022): 972, https://doi.org/10.3390/pharmaceutics14050972.

[58]

I. Ojea-Jiménez and V. Puntes, “Instability of Cationic Gold Nanoparticle Bioconjugates: The Role of Citrate Ions,” Journal of the American Chemical Society 131, no. 37 (2009): 13320-13327, https://doi.org/10.1021/ja902894s.

[59]

C. T. Armstrong, P. E. Mason, J. L. R. Anderson, and C. E. Dempsey, “Arginine Side Chain Interactions and the Role of Arginine as a Gating Charge Carrier in Voltage Sensitive Ion Channels,” Scientific Reports 6, no. 1 (2016): 21759, https://doi.org/10.1038/srep21759.

[60]

N. Gorczak, M. Swart, and F. C. Grozema, “Energetics of Charges in Organic Semiconductors and at Organic Donor-Acceptor Interfaces,” Journal of Materials Chemistry C 2, no. 17 (2014): 3467-3475, https://doi.org/10.1039/C3TC32475C.

[61]

C. A. Fitch, G. Platzer, M. Okon, E. Garcia-Moreno, and L. P. McIntosh, “Arginine: Its pKa Value Revisited,” Protein Science 24 (2015): 752-761, https://doi.org/10.1002/pro.2647.

[62]

Z. Tu, A. Young, C. Murphy, and J. F. Liang, “The pH Sensitivity of Histidine-Containing Lytic Peptides,” Journal of Peptide Science 15, no. 11 (2009): 790-795, https://doi.org/10.1002/psc.1180.

[63]

D. L. Nelson, M. M. Cox, and A. A. Hoskins, Lehninger Principles of Biochemistry (Macmillan Learning, 2021).

[64]

T. K. Harris and G. J. Turner, “Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites,” IUBMB Life 53, no. 2 (2002): 85-98, https://doi.org/10.1080/15216540211468.

[65]

Z. Jin, W. Yim, M. Retout, et al., “Colorimetric Sensing for Translational Applications: From Colorants to Mechanisms,” Chemical Society Reviews 53, no. 15 (2024): 7681-7741, https://doi.org/10.1039/D4CS00328D.

[66]

V. Kesler, B. Murmann, and H. T. Soh, “Going Beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors,” ACS Nano 14, no. 12 (2020): 16194-16201, https://doi.org/10.1021/acsnano.0c08622.

[67]

A. R. Tao, Chemial Principles of Nanoengineering (Wiley-VCH, 2024).

[68]

H. Zhou, M. Sharma, O. Berezin, D. Zuckerman, and M. Y. Berezin, “Nanothermometry: From Microscopy to Thermal Treatments,” ChemPhysChem 17, no. 1 (2016): 27-36, https://doi.org/10.1002/cphc.201500753.

[69]

T. P. Gustafson, Q. Cao, S. T. Wang, and M. Y. Berezin, “Design of Irreversible Optical Nanothermometers for Thermal Ablations,” Chemical Communications 49, no. 7 (2013): 680-682, https://doi.org/10.1039/C2CC37271A.

[70]

S. L. Fiedler, S. Izvekov, and A. Violi, “The Effect of Temperature on Nanoparticle Clustering,” Carbon 45, no. 9 (2007): 1786-1794, https://doi.org/10.1016/j.carbon.2007.05.001.

[71]

“Intermolecular Forces,” Chemistry LibreTexts, 2019, https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Foundations_of_Introductory_Chemistry-1/14%3A_Solids_and_Liquids/14.2%3A_Intermolecular_Forces.

[72]

M. S. Shell, Thermodynamics and Statistical Mechanics: An Integrated Approach (Cambridge University Press, 2015).

[73]

R. Zhang, B. Lee, C. M. Stafford, et al., “Entropy-Driven Segregation of Polymer-Grafted Nanoparticles Under Confinement,” Proceedings National Academy of Science of the United States of America 114, no. 10 (2017): 2462-2467, https://doi.org/10.1073/pnas.1613828114.

[74]

J. E. Blume, W. C. Manning, G. Troiano, et al., “Rapid, Deep and Precise Profiling of the Plasma Proteome With Multi-Nanoparticle Protein Corona,” Nature Communications 11, no. 1 (2020): 3662, https://doi.org/10.1038/s41467-020-17033-7.

[75]

C. Zhu, X. Wang, Y. Xia, P. Wang, and Y. Li, “A pH-Triggered Reversible Aggregation of Gold Nanorods Modified With Denatured Bovine Serum Albumin,” Chemistry Letters 37, no. 10 (2008): 1060-1061, https://doi.org/10.1246/cl.2008.1060.

[76]

A. Umar and S. M. Choi, “Aggregation Behavior of Oppositely Charged Gold Nanorods in Aqueous Solution,” Journal of Physical Chemistry C 117, no. 22 (2013): 11738-11743, https://doi.org/10.1021/jp3102095.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/