Helically Assembled Rare Earth Fluoride Nanoparticles with Multicolor Circularly Polarized Luminescence for High-Security Anti-Counterfeiting

Wen Yuan , Shan Lu , Xingjun Li , Zhuo Li , Xiaobo Gu , Xingyang Liu , Zhixiao Ren , Fei Wang , Xueyuan Chen

Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70042

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70042 DOI: 10.1002/agt2.70042
RESEARCH ARTICLE

Helically Assembled Rare Earth Fluoride Nanoparticles with Multicolor Circularly Polarized Luminescence for High-Security Anti-Counterfeiting

Author information +
History +
PDF

Abstract

Multicolor circularly polarized luminescence (CPL) materials show considerable potential in the field of advanced anti-counterfeiting. However, it remains challenging to achieve stable inorganic materials with multicolor CPL. In this work, for the first time, chiroptical rare earth (RE) fluoride nanoparticles induced by helical silica are obtained through a facile in situ assembly strategy. The influence of assembly ratio and morphological structure on the luminescence dissymmetry factor (glum) has been systematically investigated, leading to an optimized glum value of 4.7 × 10−3. By adjusting the types and concentrations of RE dopants (Ce3+, Tb3+, Eu3+), the nanocomposites exhibit multicolor CPL and time-resolved photoluminescence characteristics. Remarkably, these nanocomposites retain their CPL activity even after calcination at 400°C. Leveraging the visible multicolor emissions, along with the hidden dynamic and chiroptical signals, the nanocomposites are successfully applied in high-security anti-counterfeiting patterns and multilevel optical encryption codes.

Keywords

anti-counterfeiting / chiral assembly / circularly polarized luminescence / helical silica / rare earth fluoride / time-resolved photoluminescence

Cite this article

Download citation ▾
Wen Yuan, Shan Lu, Xingjun Li, Zhuo Li, Xiaobo Gu, Xingyang Liu, Zhixiao Ren, Fei Wang, Xueyuan Chen. Helically Assembled Rare Earth Fluoride Nanoparticles with Multicolor Circularly Polarized Luminescence for High-Security Anti-Counterfeiting. Aggregate, 2025, 6(7): e70042 DOI:10.1002/agt2.70042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, and S. Abbate, “Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects,” Chirality 28 (2016): 696-707.

[2]

W. R. Kitzmann, J. Freudenthal, A. P. M. Reponen, Z. A. Vanorman, and S. Feldmann, “Fundamentals, Advances, and Artifacts in Circularly Polarized Luminescence (CPL) Spectroscopy,” Advanced Materials 35 (2023): 2302279.

[3]

Y. He, S. Lin, J. Guo, and Q. Li, “Circularly Polarized Luminescent Self-Organized Helical Superstructures: From Materials and Stimulus-Responsiveness to Applications,” Aggregate 2 (2021): e141.

[4]

L. E. MacKenzie and R. Pal, “Circularly Polarized Lanthanide Luminescence for Advanced Security Inks,” Nature Reviews Chemistry 5 (2021): 109-124.

[5]

S. Lin, Y. Tang, W. Kang, H. K. Bisoyi, J. Guo, and Q. Li, “Photo-Triggered Full-Color Circularly Polarized Luminescence Based on Photonic Capsules for Multilevel Information Encryption,” Nature Communications 14 (2023): 3005.

[6]

X. Gao, K. Pan, B. Zhao, and J. Deng, “Generation, Inversion, and Amplification of Intrinsic Circularly Polarized Room Temperature Phosphorescence in Chiral Carbon Dots,” Advanced Functional Materials 35 (2024): 2413569.

[7]

X. Wang, S. Ma, B. Zhao, and J. Deng, “Frontiers in Circularly Polarized Phosphorescent Materials,” Advanced Functional Materials 33 (2023): 2214364.

[8]

J. Liu, X. Zhou, X. Tang, et al., “Circularly Polarized Organic Ultralong Room-Temperature Phosphorescence: Generation, Enhancement, and Application,” Advanced Functional Materials 35 (2024): 2414086.

[9]

X. Zhang, Y. Xu, C. Valenzuela, et al., “Liquid Crystal-Templated Chiral Nanomaterials: From Chiral Plasmonics to Circularly Polarized Luminescence,” Light: Science & Applications 11 (2022): 223.

[10]

J. Liu, Z. P. Song, L. Y. Sun, B. X. Li, Y. Q. Lu, and Q. Li, “Circularly Polarized Luminescence in Chiral Orientationally Ordered Soft Matter Systems,” Responsive Materials 1 (2023): e20230005.

[11]

C. Zhang, S. Li, X. Y. Dong, and S. Q. Zang, “Circularly Polarized Luminescence of Agglomerate Emitters,” Aggregate 2 (2021): e48.

[12]

S. Zhao, G. Li, Q. Guo, et al., “Visualizing Circularly Polarized Long Afterglow for Information Security,” Advanced Optical Materials 11 (2023): 2202933.

[13]

W. Ren, G. Lin, C. Clarke, J. Zhou, and D. Jin, “Optical Nanomaterials and Enabling Technologies for High-Security-Level Anticounterfeiting,” Advanced Materials 32 (2020): 1901430.

[14]

J. Xue, Y. Wang, G. Yang, and Y. Wang, “Energy Transfer, Anticounterfeiting, White Light Emission and Sensing in Fine-Regulating Series of Lanthanide Metal-Organic Frameworks,” Journal of Rare Earths 42 (2024): 446-454.

[15]

W. Chen, K. Ma, P. Duan, et al., “Circularly Polarized Luminescence of Nanoassemblies via Multi-Dimensional Chiral Architecture Control,” Nanoscale 12 (2020): 19497-19515.

[16]

Y. Chen, K. Zhang, and J. Wang, “Nanoparticles With Chiroptical Responses,” Advanced Optical Materials 11 (2023): 2301532.

[17]

P. T. Probst, Y. Dong, Z. Zhou, O. Aftenieva, and A. Fery, “Bottom-Up Assembly of Inorganic Particle-Based Chiroptical Materials,” Advanced Optical Materials 12 (2024): 2301834.

[18]

Y. Duan and S. Che, “Chiral Mesostructured Inorganic Materials With Optical Chiral Response,” Advanced Materials 35 (2023): 2205088.

[19]

X. Liu and R.-H. Jin, “Recent Advances in Circularly Polarized Luminescence Generated by Inorganic Materials,” Chemical Synthesis 2 (2022): 7, https://doi.org/10.20517/cs.2022.01.

[20]

Q. Gao, L. Tan, Z. Wen, D. Fan, J. Hui, and P. Wang, “Chiral Inorganic Nanomaterials: Harnessing Chirality-Dependent Interactions With Living Entities for Biomedical Applications,” Nano Research 16 (2023): 11107-11124.

[21]

D. Han, C. Li, C. Jiang, et al., “Endowing Inorganic Nanomaterials With Circularly Polarized Luminescence,” Aggregate 3 (2022): e148.

[22]

Y. Xing, H. Li, Y. Liu, and W. Jiang, “Chiral Assembly of Nanoparticles in Functional Inorganic Materials,” MRS Bulletin 49 (2024): 340-351.

[23]

Y. Zhang, S. Yu, B. Han, et al., “Circularly Polarized Luminescence in Chiral Materials,” Matter 5 (2022): 837-875.

[24]

T. Delclos, C. Aime, E. Pouget, et al., “Individualized Silica Nanohelices and Nanotubes: Tuning Inorganic Nanostructures Using Lipidic Self-Assemblies,” Nano Letters 8 (2008): 1929-1935.

[25]

N. Wang, R. Lin, M. Xue, Y. Duan, and S. Che, “Handedness Inversion of Chiral Mesoporous Silica: A Diffuse-Reflectance Circular Dichroism Study,” Chinese Chemical Letters 30 (2019): 139-142.

[26]

Y. Wang, W. Li, Z. He, et al., “Multichiral Mesoporous Silica Screws With Chiral Differential Mucus Penetration and Mucosal Adhesion for Oral Drug Delivery,” ACS Nano 18 (2024): 16166-16183.

[27]

H. Matsukizono and R.-H. Jin, “High-Temperature-Resistant Chiral Silica Generated on Chiral Crystalline Templates at Neutral pH and Ambient Conditions,” Angewandte Chemie International Edition 51 (2012): 5862-5865.

[28]

Y. Wang, W. Li, T. Liu, et al., “Design and Preparation of Mesoporous Silica Carriers With Chiral Structures for Drug Release Differentiation,” Materials Science and Engineering C 103 (2019): 109737.

[29]

L. Xu, M. Guo, C.-T. Hung, et al., “Chiral Skeletons of Mesoporous Silica Nanospheres to Mitigate Alzheimer's β-Amyloid Aggregation,” Journal of the American Chemical Society 145 (2023): 7810-7819.

[30]

P. Liu, Y. Battie, T. Kimura, et al., “Chiral Perovskite Nanocrystal Growth inside Helical Hollow Silica Nanoribbons,” Nano Letters 23 (2023): 3174-3180.

[31]

M. Sugimoto, X.-L. Liu, S. Tsunega, et al., “Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts,” Chemistry: A European Journal 24 (2018): 6519-6524.

[32]

S. Tsunega, R.-H. Jin, T. Nakashima, and T. Kawai, “Transfer of Chiral Information from Silica Hosts to Achiral Luminescent Guests: A Simple Approach to Accessing Circularly Polarized Luminescent Systems,” ChemPlusChem 85 (2020): 619-626.

[33]

Z. Li, Y. Yan, W. Ma, J. Zhao, Y. Fan, and Y. Wang, “Chirality Transfer from Chiral Mesoporous Silica to Perovskite CsPbBr3 Nanocrystals: The Role of Chiral Confinement,” CCS Chemistry 4 (2022): 3447-3454.

[34]

P. Liu, W. Chen, Y. Okazaki, et al., “Optically Active Perovskite CsPbBr3 Nanocrystals Helically Arranged on Inorganic Silica Nanohelices,” Nano Letters 20 (2020): 8453-8460.

[35]

X. Y. Zhu, X. H. Wang, H. X. Zhang, and F. Zhang, “Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles,” Angewandte Chemie International Edition 61 (2022): e202209378.

[36]

A. G. Bispo-Jr, N. A. Oliveira, I. M. S. Diogenis, and F. A. Sigoli, “Perspectives and Challenges in Circularly Polarized Luminescence of Lanthanide(III) Complexes: From Solution-Based Systems to Solid-State Applications,” Coordination Chemistry Reviews 523 (2024): 216279.

[37]

W. Yang, Z. Zhang, T. Zhang, et al., “White Light Emission and Fluorescence Enhancement of Rare Earth RE3+ (Tb, Eu, Dy) Doped CeF3 Nanoparticles,” Journal of Luminescence 242 (2022): 118535.

[38]

Y. Okazaki, J. J. Cheng, D. Dedovets, et al., “Chiral Colloids: Homogeneous Suspension of Individualized SiO2 Helical and Twisted Nanoribbons,” ACS Nano 8 (2014): 6863-6872.

[39]

R. Oda, F. Artzner, M. Laguerre, and I. Huc, “Molecular Structure of Self-Assembled Chiral Nanoribbons and Nanotubules Revealed in the Hydrated State,” Journal of the American Chemical Society 130 (2008): 14705-14712.

[40]

D. González-Mancebo, A. I. Becerro, T. C. Rojas, et al., “Room Temperature Synthesis of Water-dispersible Ln3+:CeF3 (Ln = Nd, Tb) Nanoparticles With Different Morphology as Bimodal Probes for Fluorescence and CT Imaging,” Journal of Colloid and Interface Science 520 (2018): 134-144.

[41]

A. A. Ansari and M. A. M. Khan, “Citric Acid Assisted Synthesis of Luminescent CeF3 and CeF3:Tb3+ Nanoparticles: Luminescent & Optical Properties,” Ceramics International 49 (2023): 41167-41174.

[42]

S. Chong and B. J. Riley, “Thermal Conversion in Air of Rare-Earth Fluorides to Rare-Earth Oxyfluorides and Rare-Earth Oxides,” Journal of Nuclear Materials 561 (2022): 153538.

[43]

L. Yang, N. Su, J. Huang, X. Dou, C. Zhao, and C. Feng, “Chiral Helical Supramolecular Hydrogels With Adjustable Pitch and Diameter Towards High-Performance Chiroptical Detecting,” Giant 8 (2021): 100077.

[44]

Y. Zhang, D. Yang, J. Han, et al., “Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron,” Langmuir 34 (2018): 5821-5830.

[45]

X. Zhou, Q. Jin, L. Zhang, Z. Shen, L. Jiang, and M. Liu, “Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers,” Small 12 (2016): 4743-4752.

[46]

X. Jin, Y. Sang, Y. Shi, et al., “Optically Active Upconverting Nanoparticles With Induced Circularly Polarized Luminescence and Enantioselectively Triggered Photopolymerization,” ACS Nano 13 (2019): 2804-2811.

[47]

T. Guan, Y. Liu, J. Li, et al., “Near-Infrared-Triggered Chirality-Dependent Photodynamic Therapy Based on Hybrid Upconversion Nanoparticle Hydrogels,” Chemical Engineering Journal 474 (2023): 145429.

[48]

M. Zhou, Y. Sang, X. Jin, et al., “Steering Nanohelix and Upconverted Circularly Polarized Luminescence by Using Completely Achiral Components,” ACS Nano 15 (2021): 2753-2761.

[49]

T. Zhao, J. Han, X. Jin, et al., “Dual-Mode Induction of Tunable Circularly Polarized Luminescence From Chiral Metal-Organic Frameworks,” Research 2020 (2020): 6452123.

[50]

T. Zhao, J. Han, Y. Shi, J. Zhou, and P. Duan, “Multi-Light-Responsive Upconversion-and-Downshifting-Based Circularly Polarized Luminescent Switches in Chiral Metal-Organic Frameworks,” Advanced Materials 33 (2021): 2101797.

[51]

A. Zheng, T. Zhao, C. Xiao, X. Jin, and P. Duan, “Dual-Mode Multi-Color Circularly Polarized Luminescent MOFs from a Facile Approach of Chiral Induction,” Journal of Materials Chemistry C 10 (2022): 13084-13092.

[52]

T. Zhao and P. Duan, “Photon Upconversion Cooperates With Downshifting in Chiral Systems: Modulation, Amplification, and Applications of Circularly Polarized Luminescence,” Angewandte Chemie International Edition 136 (2024): e202406524.

[53]

J. Liang, T. Fan, J. , T. Guan, T. Deng, and B. Xiong, “Dual-Mode Luminescence Anti-Counterfeiting and White Light Emission of NaGdF4:Ce,Eu,Tb/Carbon Dot Hydrophilic Nanocomposite Ink,” RSC Advances 13 (2023): 25681-25690.

[54]

K. L. R. Baldivia and G. A. Hirata, “Physicochemical Properties of Li3Ba2La3(MoO4)8:Eu,Tb Red-Emitting Phosphor for Solid State White Lamps,” Journal of Rare Earths 41 (2023): 1279-1287.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/