Nozzle Jamming Granularized Blood-Derived Proteins for Bioprinting Cell-Instructive Architectures

Lucas S. Ribeiro , João Rocha Maia , Vítor M. Gaspar , Catarina A. Custódio , Emerson R. Camargo , Rita Sobreiro-Almeida , João F. Mano

Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70041

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (7) : e70041 DOI: 10.1002/agt2.70041
RESEARCH ARTICLE

Nozzle Jamming Granularized Blood-Derived Proteins for Bioprinting Cell-Instructive Architectures

Author information +
History +
PDF

Abstract

Exploring the natural availability and intrinsic bioactivity of blood-derived proteins opens new avenues for fabricating bioactive and patient-specific solutions for biomedical applications. Despite their several advantages, their use as inks for 3D printing is limited due to suboptimal rheological properties. To address this, we propose a dual-step strategy based on the initial generation of blood protein-based bulk hydrogels encompassing pristine and photo-responsive protein mixtures to allow their mechanical granularization followed by jamming, establishing injectable and printable granular inks. In this study, two globular-based protein matrices—human platelet lysates (PL) and bovine serum albumin (BSA)—were used as granular inks for 3D printing. We hypothesize that nozzle jamming—in contrast to the typically employed centrifugal jamming—would render optimized results for the granular protein inks’ processability. Printability was evaluated in filaments, scaffold grids, and convoluted structures. Taking advantage of the previously introduced photocurable moieties, post-printing photocrosslinking was used for the annealing of the microgels, leading to increased scaffold mechanical stability and robustness. The nozzle jamming methodology imparted the best print performance and reproducibility, where PLMA-based inks outperformed the BSAMA-based. In addition, the microgel granular constructs allowed primary human-derived adipose stem cells to adhere and proliferate, whereas the PLMA-based ink demonstrated higher cell affinity and enhanced biological performance. We further demonstrated that bioinks could be developed from PLMA-based inks, showcasing high viability without compromising 3D printing performance. Overall, this study gives clear insights into the importance of the jamming process as well as the granularization outcome requirements for the obtention of highly reproducible granular inks for 3D printing.

Keywords

3D printing / granular inks / human platelet lysates / human-derived / microgels

Cite this article

Download citation ▾
Lucas S. Ribeiro, João Rocha Maia, Vítor M. Gaspar, Catarina A. Custódio, Emerson R. Camargo, Rita Sobreiro-Almeida, João F. Mano. Nozzle Jamming Granularized Blood-Derived Proteins for Bioprinting Cell-Instructive Architectures. Aggregate, 2025, 6(7): e70041 DOI:10.1002/agt2.70041

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Kuang, “Self-Enhancing Sono-Inks Enable Deep-Penetration Acoustic Volumetric Printing,” Science 382 (2023): 1148-1156.

[2]

L. Gonçalves, P. Lavrador, A. J. R. Amaral, L. P. Ferreira, V. M. Gaspar, and J. F. Mano, “Double-Interlinked Colloidal Gels for Programable Fabrication of Supraparticle Architectures,” Advanced Functional Materials 33 (2023): 2304628.

[3]

Y. S. Zhang, G. Haghiashtiani, T. Hübscher, et al., “3D Extrusion Bioprinting,” Nature Reviews Methods Primers 1 (2021): 75.

[4]

J. W. Tashman, D. J. Shiwarski, and A. W. Feinberg, “Development of a High-Performance Open-Source 3D Bioprinter,” Scientific Reports 12, (2022): 22652.

[5]

J. D. Weiss, A. Mermin-Bunnell, F. S. Solberg, et al., “A Low-Cost, Open-Source 3D Printer for Multimaterial and High-Throughput Direct Ink Writing of Soft and Living Materials,” Advanced Materials 37 (2025): 2414971.

[6]

Z. Jiang, B. Diggle, M. L. Tan, J. Viktorova, C. W. Bennett, and L. A. Connal, “Extrusion 3D Printing of Polymeric Materials With Advanced Properties,” Advanced Science 7 (2020): 2001379.

[7]

G. Cedillo-Servin, O. Dahri, J. Meneses, et al., “3D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models,” Small 20 (2024): 2307178.

[8]

F. Bono, S. H. Strässle Zuniga, and E. Amstad, “3D Printable κ-Carrageenan-Based Granular Hydrogels,” Advanced Functional Materials 35 (2025): 2413368.

[9]

A. C. Daly, M. D. Davidson, and J. A. Burdick, “3D bioprinting of High Cell-Density Heterogeneous Tissue Models Through Spheroid Fusion Within Self-Healing Hydrogels,” Nature Communications 12 (2021): 753.

[10]

P. P. Stankey, K. T. Kroll, A. J. Ainscough, et al., “Embedding Biomimetic Vascular Networks via Coaxial Sacrificial Writing Into Functional Tissue,” Advanced Materials 36 (2024): 2401528.

[11]

S. Padilla-Lopategui, C. Ligorio, W. Bu, et al., “Biocooperative Regenerative Materials by Harnessing Blood-Clotting and Peptide Self-Assembly,” Advanced Materials 36 (2024): 2407156.

[12]

L. B. Bebiano, R. Presa, I. V. Silva, A. L. Oliveira, J. B. Costa, and R. F. Pereira, “Design and Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Skin Tissue Engineering,” Journal of 3D Printing in Medicine 7 (2023): 3DP15.

[13]

L. Rijns, M. B. Baker, and P. Y. W. Dankers, “Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions,” Journal of the American Chemical Society 146 (2024): 17539-17558.

[14]

A. C. Daly, “Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives,” Advanced Healthcare Materials 13 (2023): 2301388.

[15]

L. S. Ribeiro, V. M. Gaspar, R. Sobreiro-Almeida, E. R. Camargo, and J. F. Mano, “Programmable Granular Hydrogel Inks for 3D Bioprinting Applications,” Advanced Materials Technology 8 (2023): 2300209.

[16]

V. G. Muir, S. Weintraub, A. P. Dhand, H. Fallahi, L. Han, and J. A. Burdick, “Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties,” Advanced Science 10 (2023): 2206117.

[17]

D. B. Emiroglu, A. Bekcic, D. Dranseike, et al., “Building Block Properties Govern Granular Hydrogel Mechanics Through Contact Deformations,” Science Advances 8 (2022): eadd8570.

[18]

W. Jiang, M. Li, Z. Chen, and K. W. Leong, “Cell-Laden Microfluidic Microgels for Tissue Regeneration,” Lab on A Chip Journal 16 (2016): 4482-4506.

[19]

H. Alzanbaki, M. Moretti, and C. A. E. Hauser, “Engineered Microgels—Their Manufacturing and Biomedical Applications,” Micromachines 12 (2021): 45.

[20]

V. Guarino, R. Altobelli, and L. Ambrosio, “Chitosan Microgels and Nanoparticles via Electrofluidodynamic Techniques for Biomedical Applications,” Gels 2 (2016): 2.

[21]

D. J. Hornbaker, R. Albert, I. Albert, A.-L. Barabási, and P. Schiffer, “What Keeps Sandcastles Standing?,” Nature 387 (1997): 765.

[22]

P. Menut, S. Seiffert, J. Sprakel, and D. A. Weitz, “Does Size Matter? Elasticity of Compressed Suspensions of Colloidal- and Granular-Scale Microgels,” Soft Matter 8 (2011): 156-164.

[23]

T. H. Qazi and J. A. Burdick, “Granular Hydrogels for Endogenous Tissue Repair,” Biomaterials and Biosystems 1 (2021): 100008.

[24]

S. Xin, K. A. Deo, J. Dai, et al., “Generalizing Hydrogel Microparticles Into a New Class of Bioinks for Extrusion Bioprinting,” Science Advances 7 (2021): 3087-3102.

[25]

W. Cheng, J. Zhang, J. Liu, and Z. Yu, “Granular Hydrogels for 3D Bioprinting Applications,” View 1 (2020): 20200060.

[26]

T. H. Qazi, V. G. Muir, and J. A. Burdick, “Methods to Characterize Granular Hydrogel Rheological Properties, Porosity, and Cell Invasion,” ACS Biomaterials Science & Engineering 8 (2022): 1427-1442.

[27]

Z. Mahdieh, M. D. Cherne, J. P. Fredrikson, et al., “Granular Matrigel: Restructuring a Trusted Extracellular Matrix Material for Improved Permeability,” Biomedical Materials 17 (2022): 045020.

[28]

Y. E. Song, N. Eckman, S. Sen, C. K. Jons, O. M. Saouaf, and E. A. Appel, “Highly Extensible Physically Crosslinked Hydrogels for High-Speed 3D Bioprinting,” Advanced Healthcare Materials (2025): 2404988, https://doi.org/10.1002/ADHM.202404988.

[29]

I. Kratchmarova, B. Blagoev, M. Haack-Sorensen, M. Kassem, and M. Mann, “Cell Signalling: Mechanism of Divergent Growth Factor Effects in Mesenchymal Stem Cell Differentiation,” Science 308 (2005): 1472-1477.

[30]

A. Sinclair, M. B. O'kelly, T. Bai, H.-C. Hung, P. Jain, and S. Jiang, “Self-Healing Zwitterionic Microgels as a Versatile Platform for Malleable Cell Constructs and Injectable Therapies,” Advanced Materials 30 (2018): 1803087.

[31]

Q. Feng, D. Li, Q. Li, et al., “Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting,” ACS Applied Materials and Interfaces 14 (2022): 15653-15666.

[32]

S. H. Hwang, J. Kim, C. Heo, et al., “3D Printed Multi-Growth Factor Delivery Patches Fabricated Using Dual-Crosslinked Decellularized Extracellular Matrix-Based Hybrid Inks to Promote Cerebral Angiogenesis,” Acta Biomaterialia 157 (2023): 137-148.

[33]

V. G. Muir, T. H. Qazi, S. Weintraub, B. O. Torres Maldonado, P. E. Arratia, and J. A. Burdick, “Sticking Together: Injectable Granular Hydrogels With Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking,” Small 18 (2022): 2201115.

[34]

R. Henschler, C. Gabriel, K. Schallmoser, T. Burnouf, and M. B. C. Koh, “Human Platelet Lysate Current Standards and Future Developments,” Transfusion 59 (2019): 1407-1413.

[35]

C. F. Monteiro, S. C. Santos, C. A. Custódio, and J. F. Mano, “Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment,” Advanced Science 7 (2020): 1902398.

[36]

S. C. Santos, C. A. Custódio, and J. F. Mano, “Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms,” Advanced Healthcare Materials 7 (2018): 1800849.

[37]

N. Seidelmann, D. F. Duarte Campos, M. Rohde, et al., “Human Platelet Lysate as a Replacement for Fetal Bovine Serum in Human Corneal Stromal Keratocyte and Fibroblast Culture,” Journal of Cellular and Molecular Medicine 25 (2021): 9647-9659.

[38]

S. C. Santos, C. A. Custódio, and J. F. Mano, “Human Protein-Based Porous Scaffolds as Platforms for Xeno-Free 3D Cell Culture,” Advanced Healthcare Materials 11 (2022): 2102383.

[39]

S. Freeman, R. Ramos, P. Alexis Chando, et al., “A Bioink Blend for Rotary 3D Bioprinting Tissue Engineered Small-Diameter Vascular Constructs,” Acta Biomaterialia 95 (2019): 152-164.

[40]

S. England, A. Rajaram, D. J. Schreyer, and X. Chen, “Bioprinted Fibrin-Factor XIII-Hyaluronate Hydrogel Scaffolds With Encapsulated Schwann Cells and Their In Vitro Characterization for Use in Nerve Regeneration,” Bioprinting 5 (2017): 1-9.

[41]

T. Ahlfeld, N. Cubo-Mateo, S. Cometta, et al., “A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs,” ACS Applied Materials and Interfaces 12 (2020): 12557-12572.

[42]

B. B. Mendes, A. C. Daly, R. L. Reis, R. M. A. Domingues, M. E. Gomes, and J. A. Burdick, “Injectable Hyaluronic Acid and Platelet Lysate-Derived Granular Hydrogels for Biomedical Applications,” Acta Biomaterialia 119 (2021): 101-113.

[43]

N. Cubo, M. Garcia, J. F. Del Cañizo, D. Velasco, and J. L. Jorcano, “3D bioprinting of Functional Human Skin: Production and In Vivo Analysis,” Biofabrication 9 (2016): 015006.

[44]

J. Rocha Maia, R. Sobreiro-Almeida, F. Cleymand, and J. F. Mano, “Biomaterials of Human Source for 3D Printing Strategies,” Journal of Physics: Materials 6 (2022): 012002.

[45]

L. Y. Daikuara, Z. Yue, D. Skropeta, and G. G. Wallace, “In Vitro Characterisation of 3D Printed Platelet Lysate-Based Bioink for Potential Application in Skin Tissue Engineering,” Acta Biomaterialia 123 (2021): 286-297.

[46]

S. J. Min, J. S. Lee, H. Nah, et al., “Development of Photo-Crosslinkable Platelet Lysate-Based Hydrogels for 3D Printing and Tissue Engineering,” Biofabrication 13 (2021): 044102.

[47]

R. Sobreiro-Almeida, S. C. Santos, M. C. Decarli, et al., “Leveraging Blood Components for 3D Printing Applications Through Programmable Ink Engineering Approaches,” Advanced Science 11 (2024): 2406569.

[48]

M. Caiado Decarli, H. P. Ferreira, R. Sobreiro-Almeida, et al., “Embedding Bioprinting of Low Viscous, Photopolymerizable Blood-Based Bioinks in a Crystal Self-Healing Transparent Supporting Bath,” Small Methods 9 (2025): 2400857.

[49]

P. T. Smith, G. Altin, S. C. Millik, et al., “Methacrylated Bovine Serum Albumin and Tannic Acid Composite Materials for Three-Dimensional Printing Tough and Mechanically Functional Parts,” ACS Applied Materials and Interfaces 14 (2022): 21418-21425.

[50]

A. C. Daly, L. Riley, T. Segura, and J. A. Burdick, “Hydrogel Microparticles for Biomedical Applications,” Nature Reviews Materials 5 (2019): 20-43.

[51]

G. Ferracci, M. Zhu, M. S. Ibrahim, et al., “Photocurable Albumin Methacryloyl Hydrogels as a Versatile Platform for Tissue Engineering,” ACS Applied Bio Materials Journal 3 (2020): 920-934.

[52]

V. G. Muir, T. H. Qazi, J. Shan, J. Groll, and J. A. Burdick, “Influence of Microgel Fabrication Technique on Granular Hydrogel Properties,” ACS Biomaterials Science & Engineering 7 (2021): 4269-4281.

[53]

A. Ding, O. Jeon, D. Cleveland, et al., “Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting,” Advanced Materials 34 (2022): 2109394.

[54]

B. Kessel, M. Lee, A. Bonato, Y. Tinguely, E. Tosoratti, and M. Zenobi-Wong, “3D Bioprinting of Macroporous Materials Based on Entangled Hydrogel Microstrands,” Advanced Science 7 (2020): 2001419.

[55]

L. Riley, L. Schirmer, and T. Segura, “Granular Hydrogels: Emergent Properties of Jammed Hydrogel Microparticles and Their Applications in Tissue Repair and Regeneration,” Current Opinion in Biotechnology 60 (2019): 1-8.

[56]

S. Yi, Q. Liu, Z. Luo, et al., “Micropore-Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications,” Small 18 (2022): 2106357.

[57]

L. Riley, G. Wei, Y. Bao, et al., “Void Volume Fraction of Granular Scaffolds,” Small 19 (2023): 2303466.

[58]

M. Sweeney, L. L. Campbell, J. Hanson, M. L. Pantoya, and G. F. Christopher, “Characterizing the Feasibility of Processing Wet Granular Materials to Improve Rheology for 3D Printing,” Journal of Materials Science 52 (2017): 13040-13053.

[59]

A. Charlet, F. Bono, and E. Amstad, “Mechanical Reinforcement of Granular Hydrogels,” Chemical Science 13 (2022): 3082-3093.

[60]

J. Zhang, W. Xin, Y. Qin, et al., ““All-In-One” Zwitterionic Granular Hydrogel Bioink for Stem Cell Spheroids Production and 3D Bioprinting,” Chemical Engineering Journal 430 (2022): 132713.

[61]

N. Higashi and I. Sumita, “Experiments on Granular Rheology: Effects of Particle Size and Fluid Viscosity,” Journal of Geophysical Research, Solid Earth 114 (2009): 4413.

[62]

C. Loebel, C. B. Rodell, M. H. Chen, and J. A. Burdick, “Shear-Thinning and Self-Healing Hydrogels as Injectable Therapeutics and for 3D-Printing,” Nature Protocols 12 (2017): 1521-1541.

[63]

S. Budday, T. C. Ovaert, G. A. Holzapfel, P. Steinmann, and E. Kuhl, “Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue,” Archives of Computational Methods in Engineering 27 (2020): 1187-1230.

[64]

A. M. Teixeira and P. Martins, “A Review of Bioengineering Techniques Applied to Breast Tissue: Mechanical Properties, Tissue Engineering and Finite Element Analysis,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1161815.

[65]

S. Camarero-Espinosa, I. Beeren, H. Liu, et al., “3D Niche-Inspired Scaffolds as a Stem Cell Delivery System for the Regeneration of the Osteochondral Interface,” Advanced Materials 36 (2024): 2310258.

[66]

R. Levato, T. Jungst, R. G. Scheuring, T. Blunk, J. Groll, and J. Malda, “From Shape to Function: The Next Step in Bioprinting,” Advanced Materials 32 (2020).

[67]

H.-P. Lee, R. Davis, T.-C. Wang, et al., “Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery,” ACS Applied Bio Materials Journal 6 (2023): 3683-3695.

[68]

C. B. Highley, K. H. Song, A. C. Daly, and J. A. Burdick, “Jammed Microgel Inks for 3D Printing Applications,” Advanced Science 6 (2019): 1801076.

[69]

S. Y. Lunt and M. G. Vander Heiden, “Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation,” Annual Review of Cell and Developmental Biology 27 (2011): 441-464.

[70]

A. J. Seymour, S. Shin, and S. C. Heilshorn, “3D Printing of Microgel Scaffolds With Tunable Void Fraction to Promote Cell Infiltration,” Advanced Healthcare Materials 10 (2021): 2100644.

[71]

V. T. Nguyen, M. Nardini, A. Ruggiu, R. Cancedda, F. Descalzi, and M. Mastrogiacomo, “Platelet Lysate Induces in Human Osteoblasts Resumption of Cell Proliferation and Activation of Pathways Relevant for Revascularization and Regeneration of Damaged Bone,” International Journal of Molecular Sciences 21 (2020): 5123.

[72]

S. C. Santos, C. A. Custódio, and J. F. Mano, “Human Protein-Based Porous Scaffolds as Platforms for Xeno-Free 3D Cell Culture,” Advanced Healthcare Materials 11 (2022): 2102383.

[73]

B. B. Mendes, M. Gómez-Florit, A. G. Hamilton, et al., “Human Platelet Lysate-Based Nanocomposite Bioink for Bioprinting Hierarchical Fibrillar Structures,” Biofabrication 12 (2020): 015012.

[74]

S. C. Santos, C. A. Custódio, and J. F. Mano, “Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms,” Advanced Healthcare Materials 7 (2018): 1800849.

[75]

M. Xie, Y. Shi, C. Zhang, et al., “In Situ 3D Bioprinting With Bioconcrete Bioink,” Nature Communications 13 (2022): 3597.

[76]

S. Boularaoui, G. Al Hussein, K. A. Khan, N. Christoforou, and C. Stefanini, “An Overview of Extrusion-Based Bioprinting With a Focus on Induced Shear Stress and Its Effect on Cell Viability,” Bioprinting 20 (2020): e00093.

[77]

Z. Ataie, S. Kheirabadi, J. W. Zhang, et al., “Nanoengineered Granular Hydrogel Bioinks With Preserved Interconnected Microporosity for Extrusion Bioprinting,” Small 18 (2022): 2202390.

[78]

K. A. Deo, A. Murali, J. J. Tronolone, et al., “Granular Biphasic Colloidal Hydrogels for 3D Bioprinting,” Advanced Healthcare Materials 13 (2024): 2303810.

[79]

J. Li, “Solid Multifunctional Granular Bioink for Constructing Chondroid Basing on Stem Cell Spheroids and Chondrocytes,” Biofabrication 14 (2022): 035003.

[80]

S. Xin, D. Chimene, J. E. Garza, A. K. Gaharwar, and D. L. Alge, “Clickable PEG Hydrogel Microspheres as Building Blocks for 3D Bioprinting,” Biomaterials Science 7 (2019): 1179-1187.

[81]

D. R. Griffin, W. M. Weaver, P. O. Scumpia, D. Di Carlo, and T. Segura, “Accelerated Wound Healing by Injectable Microporous Gel Scaffolds Assembled From Annealed Building Blocks,” Nature Materials 14 (2015): 737-744.

[82]

K. Flégeau, A. Puiggali-Jou, and M. Zenobi-Wong, “Cartilage Tissue Engineering by Extrusion Bioprinting Utilizing Porous Hyaluronic Acid Microgel Bioinks,” Biofabrication 14 (2022): 034105.

[83]

Y. Ou, S. Cao, Y. Zhang, et al., “Bioprinting Microporous Functional Living Materials From Protein-Based Core-Shell Microgels,” Nature Communications 14 (2023): 322.

[84]

K. S. Iyer, “Microgel-Based Bioink for Extrusion-Based 3D Bioprinting and Its Applications in Tissue Engineering,” Bioactive Materials 48 (2025): 273-293.

[85]

J. M. de Rutte, J. Koh, and D. Di Carlo, “Scalable High-Throughput Production of Modular Microgels for in Situ Assembly of Microporous Tissue Scaffolds,” Advanced Functional Materials 29 (2019): 1900071.

[86]

P. Lavrador, V. M. Gaspar, and J. F. Mano, “Bioinstructive Naringin-Loaded Micelles for Guiding Stem Cell Osteodifferentiation,” Advanced Healthcare Materials 8 (2019): 1800890.

[87]

P. Lavrador, V. M. Gaspar, and J. F. Mano, “Bioinspired Bone Therapies Using Naringin: Applications and Advances,” Drug Discovery Today 23 (2018): 1293-1304.

[88]

L. A. Krattiger, D. B. Emiroglu, S. Pravato, et al., “Microfluidic Platforms to Screen Granular Hydrogel Microenvironments for Tissue Regeneration,” Advanced Functional Materials 34 (2024): 2310507.

[89]

D. R. Griffin, M. M. Archang, C.-H. Kuan, et al., “Activating an Adaptive Immune Response From a Hydrogel Scaffold Imparts Regenerative Wound Healing,” Nature Materials 20 (2020): 560-569.

[90]

K. Zhang, Y. Zhu, T. Wang, et al., “Lubricating Micro-Interface Assisted General Strategy for Preparing dECM-Microparticle-Based Heterogeneous Granular Inks Toward 3D Printing,” Advanced Functional Materials 34 (2024): 2307886.

[91]

J. R. Maia, E. Castanheira, J. M. M. Rodrigues, R. Sobreiro-Almeida, and J. F. Mano, “Engineering Natural Based Nanocomposite Inks via Interface Interaction for Extrusion 3D Printing,” Methods 212 (2023): 39-57.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/