PDF
Abstract
Chirality is a fundamental property in molecules and biological systems, characterized by asymmetric configurational features. Circularly polarized luminescence (CPL) materials have gained significant attention due to their unique optical activities, with applications in 3D displays, chiral sensors, asymmetric catalysis, and more. Chiral transfer and amplification typically involve the generation of chirality in the excited state, facilitated by interactions like energy transfer, electron transfer, or chiral induction. Supramolecular self-assembly strategies, particularly macrocyclic compounds, enable chiral amplification by linking chiral and achiral luminescent units through intermolecular interactions. Macrocyclic hosts—cyclodextrins, calix[n]arenes, pillar[n]arenes, chiral cyclophanes, and cucurbit[n]urils—are especially promising due to their stable structures and adjustable cavities for guest encapsulation. These compounds induce unique photophysical properties through host–guest complexation, making them ideal for constructing chiral transfer, amplification, and CPL-active materials. This review summarizes their advancements in multicolor CPL materials, chiral sensing, induction, asymmetric catalysis, and separation, highlighting their potential in supramolecular chiral material design. The challenges and future directions of this field are also discussed, aiming to guide further research and application in supramolecular chiral systems.
Keywords
chiral amplification
/
chiral transfer
/
circularly polarized luminescence
/
macrocyclic compounds
/
supramolecular assembly
Cite this article
Download citation ▾
Wei Zhang, Mao-Qin Liu, Yang Luo.
Chiral Amplification and Regulation: Design and Applications of Circularly Polarized Luminescence-Active Materials Derived From Macrocyclic Compounds.
Aggregate, 2025, 6(6): e70039 DOI:10.1002/agt2.70039
| [1] |
H. Wagnière Georges, On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image[M]. (John Wiley & Sons, 2007).
|
| [2] |
L. V. Ulbricht Tilo, “Chirality and the Origin of Life,” Nature 258, no. 5534 (1975): 383-384.
|
| [3] |
H. Engelkamp, S. Middelbeek, R. JM, et al., “Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates With Tunable Helicity,” Science 284, no. 5415 (1999): 785-788.
|
| [4] |
G. Lebreton, C. Géminard, F. Lapraz, et al., “Molecular to Organismal Chirality Is Induced by the Conserved Myosin 1d,” Science 362, no. 6417 (2018): 949-952.
|
| [5] |
L. Zhang, J. Gao, K. Luo, et al., “Protein Synergistic Action-Based Development and Application of a Molecularly Imprinted Chiral Sensor for Highly Stereoselective Recognition of S-Fluoxetine,” Biosensors and Bioelectronics 223 (2023): 115027.
|
| [6] |
Z. Zong, A. Hao, P. Xing, et al., “Chiral Molecular Nanosilicas,” Chemical Science 13, no. 14 (2022): 4029-4040.
|
| [7] |
S. Ghorai and R. Natarajan, “Chiral Self-Sorting, Spontaneous Resolution, and Hierarchical Self-Assembly in Metal-Organic Cages,” Small 20, no. 36 (2024): 2400842.
|
| [8] |
W. Li, Y. Shao, Z. Xu, et al., “Heterochiral Π-Stacking Dimerization of Helical Secondary Structures With Emerging Supramolecular Chirality,” Angewandte Chemie International Edition 64, no. 2 (2025): e202414317.
|
| [9] |
W.-X. Song, Y.-Y. Cai, Y.-J. Liu, et al., “Cation-Driven Assembly of Gold (I) Tweezers towards Lighted Circularly Polarized Phosphorescence,” Chinese Chemical Letters (2024): 110326.
|
| [10] |
M. Liu, L. Zhang, and T. Wang, “Supramolecular Chirality in Self-Assembled Systems,” Chemical Reviews 115, no. 15 (2015): 7304-7397.
|
| [11] |
N. Liang, J. Liu, Y. Lin, et al., “Construction of Circular Polarized Luminescence Molecules for Intense Near Infrared Oleds,” Advanced Optical Materials 12, no. 16 (2024): 2303155.
|
| [12] |
S. E. Penty, R. F. Orton Georgia, D. J. Black, et al., “A Chirally Locked Bis-Perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence,” Journal of the American Chemical Society 146, no. 8 (2024): 5470-5479.
|
| [13] |
X.-Y. Wang, P. Luo, X.-Y. Dong, et al., “Transcription of Customized Circularly Polarized Luminescence From Enantiomeric Metal-Organic Framework to Carbon Dots,” Advanced Optical Materials 12, no. 34 (2024): 2401713.
|
| [14] |
C. Yan, Q. Li, K. Wang, et al., ““Gear-Driven”-Type Chirality Transfer of Tetraphenylethene-Based Supramolecular Organic Frameworks for Peptides in Water,” Chemical Science 15, no. 10 (2024): 3758-3766.
|
| [15] |
J.-M. Lehn, “Supramolecular Chemistry,” Science 260, no. 5115 (1993): 1762-1763.
|
| [16] |
D. Kundu, N. Del Rio, and J. Crassous, “Chiral Organometallic Complexes Derived From Helicenic N-Heterocyclic Carbenes (Nhcs): Design, Structural Diversity, and Chiroptical and Photophysical Properties,” Accounts of Chemical Research 57, no. 20 (2024): 2941-2952.
|
| [17] |
D. Bukharina, L. Southard, B. Dimitrov, et al., “Left and Right-Handed Light Reflection and Emission in Ultrathin Cellulose Nanocrystals Films With Printed Helicity,” Advanced Functional Materials 34, no. 42 (2024): 2404857.
|
| [18] |
S. Mishra, G. Bowes Eric, S. Majumder, et al., “Inducing Circularly Polarized Single-Photon Emission via Chiral-Induced Spin Selectivity,” ACS Nano 18, no. 12 (2024): 8663-8672.
|
| [19] |
Y. Sang, J. Han, T. Zhao, et al., “Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application,” Advanced Materials 32, no. 41 (2020): 1900110.
|
| [20] |
Y. Zhang, S. Yu, B. Han, et al., “Circularly Polarized Luminescence in Chiral Materials,” Matter 5, no. 3 (2022): 837-875.
|
| [21] |
J. Ahn, S. Ma, J.-Y. Kim, et al., “Chiral 2d Organic Inorganic Hybrid Perovskite With Circular Dichroism Tunable Over Wide Wavelength Range,” Journal of the American Chemical Society 142, no. 9 (2020): 4206-4212.
|
| [22] |
M. Zhou, P. Lu, Z. Xu, et al., “Circularly Polarized Luminescent Liquid Crystal Copolymers Constructed by Triplet-Singlet Förster-Resonance Energy Transfer: Achieving Large Glum Values, Long Lifetime, and High Photoluminescence Quantum Yield,” Advanced Optical Materials 12, no. 28 (2024): 2401208.
|
| [23] |
S. Lin, S. Zeng, Z. Li, et al., “Turn-on Mode Circularly Polarized Luminescence in Self-Organized Cholesteric Superstructure for Active Photonic Applications,” ACS Applied Materials & Interfaces 14, no. 26 (2022): 30362-30370.
|
| [24] |
L.-Y. Li, D. Li, X. Dong, et al., “A Confined Self-Assembly Approach towards Chiral Photonic Materials With Circularly Polarized Structural Colors for Information Storage and Encryption,” Chemical Engineering Journal 479 (2024): 147669.
|
| [25] |
Q. Wang, J. Bao, Y. Zhang, et al., “High-Performance Organic Narrow Dual-Band Circular Polarized Light Detection for Encrypted Communications and Color Imaging,” Advanced Materials 36, no. 16 (2024): 2312396.
|
| [26] |
L. Ai, H. Wang, B. Wang, et al., “Concentration-Switchable Assembly of Carbon Dots for Circularly Polarized Luminescent Amplification in Chiral Logic Gates and Deep-Red Light-Emitting Diodes,” Advanced Materials 36, no. 48 (2024): 2410094.
|
| [27] |
Y. Zhang, G. Tian, D. Li, et al., “Color-Tunable White Circularly Polarized Electroluminescence Triggered Using Chiral Co-Assembly-Sensitized Strategy,” Laser & Photonics Reviews 18, no. 11 (2024): 2400223.
|
| [28] |
A. Qu, M. Sun, J.-Y. Kim, et al., “Stimulation of Neural Stem Cell Differentiation by Circularly Polarized Light Transduced by Chiral Nanoassemblies,” Nature Biomedical Engineering 5, no. 1 (2021): 103-113.
|
| [29] |
D. Kong, Q. Tian, Z. Chen, et al., “Discovery of Novel Macrocyclic Mertk/Axl Dual Inhibitors,” Journal of Medicinal Chemistry 67, no. 7 (2024): 5866-5882.
|
| [30] |
S. Song, H. Zhang, and Y. Liu, “Light-Controlled Macrocyclic Supramolecular Assemblies and Luminescent Behaviors,” Accounts of Materials Research 5, no. 9 (2024): 1109-1120.
|
| [31] |
K. Fu and G. Liu, “Full-Color Circularly Polarized Luminescence of Supramolecular Polymers With Handedness Inversion Regulated by Anion and Temperature,” ACS Nano 18, no. 3 (2024): 2279-2289.
|
| [32] |
Q. Wang, H. Xu, Z. Qi, et al., “Dynamic near-Infrared Circularly Polarized Luminescence Encoded by Transient Supramolecular Chiral Assemblies,” Angewandte Chemie International Edition 63, no. 32 (2024): e202407385.
|
| [33] |
Y. Zhan, N. Li, T. Qin, et al., “A Smartphone-Based Supramolecular Biosensor for Portable and Rapid Detection of Buprofezin in Real Food Samples,” Food Chemistry 460 (2024): 140779.
|
| [34] |
L. F. T. de Resende, F. C. Basilio, F. P. Alliprandini, et al., “Revisiting the Conformational Transition Model for the Ph Dependence of Bsa Structure Using Photoluminescence, Circular Dichroism, and Ellipsometric Raman Spectroscopy,” International Journal of Biological Macromolecules 259 (2024): 129142.
|
| [35] |
S. Wang, L. Allmendinger, and I. Huc, “Abiotic Foldamer Quaternary Structures,” Angewandte Chemie International Edition 63, no. 48 (2024): e202413252.
|
| [36] |
M. Pan, G. Zhang, H. Ma, et al., “In Situ Thermoresponsive Supramolecular Assembly for Switchable Circularly Polarized Luminescence,” Science China Chemistry 67 (2024): 1-11.
|
| [37] |
H. Gao, C. Zhan, T. Zhao, et al., “Chirality Transfer Induced Circularly Polarized Luminescence of Achiral Dye Molecules by Plasmonic Nanohelicoid,” Nano Research 17, no. 9 (2024): 8408-8414.
|
| [38] |
D. Bai, Z. Wang, L. Xie, et al., “Topical Transdermal Administration of Supramolecular Self-Assembled Carnosine for Anti-Melanin and Anti-Aging,” Advanced Healthcare Materials 13, no. 30 (2024): 2401960.
|
| [39] |
J. Zhou, J. Gu, X. Sun, et al., “Supramolecular Chiral Binding Affinity-Achieved Efficient Synergistic Cancer Therapy,” Advanced Science 11, no. 16 (2024): 2308493.
|
| [40] |
L. Su, W. Zhu, B. Liu, et al., “In Situ Polymerization Through Supramolecular Catalysis: A Convenient Approach to Cationic Polymer Synthesis With Real-Time Visualization,” ACS Materials Letters 6, no. 8 (2024): 3533-3539.
|
| [41] |
Z. Zhao, Y. Liu, and Y. Wang, “Weak Interaction Activates Esters: Reconciling Catalytic Activity and Turnover Contradiction by Tailored Chalcogen Bonding,” Journal of the American Chemical Society 146, no. 19 (2024): 13296-13305.
|
| [42] |
Y. Zhang, Y. Sun, X. Ren, et al., “Chiral Polar Bifunctional Polyimide Enantiomers for Asymmetric Photo-and Piezo-Catalysis,” Angewandte Chemie International Edition 64, no. 4 (2024): e202416221.
|
| [43] |
H. Zhong, B. Zhao, and J. Deng, “Polymer-Based Circularly Polarized Luminescent Materials,” Advanced Optical Materials 11, no. 6 (2023): 2202787.
|
| [44] |
L. Xu, Y.-J. Wu, R.-T. Gao, et al., “Visible Helicity Induction and Memory in Polyallene Toward Circularly Polarized Luminescence, Helicity Discrimination, and Enantiomer Separation,” Angewandte Chemie International Edition 62, no. 13 (2023): e202217234.
|
| [45] |
X.-H. Xu, S.-M. Kang, R.-T. Gao, et al., “Precise Synthesis of Optically Active and Thermo-Degradable Poly (Trifluoromethyl Methylene) With Circularly Polarized Luminescence,” Angewandte Chemie International Edition 62, no. 20 (2023): e202300882.
|
| [46] |
Z.-L. Gong, X. Zhu, Z. Zhou, et al., “Frontiers in Circularly Polarized Luminescence: Molecular Design, Self-Assembly, Nanomaterials, and Applications,” Science China Chemistry 64 (2021): 1-45.
|
| [47] |
L. Yao, G. Niu, J. Li, et al., “Circularly Polarized Luminescence From Chiral Tetranuclear Copper (I) Iodide Clusters,” The Journal of Physical Chemistry Letters 11, no. 4 (2020): 1255-1260.
|
| [48] |
H. Zhong, X. Gao, B. Zhao, et al., “Matching Rule″ for Generation, Modulation and Amplification of Circularly Polarized Luminescence,” Accounts of Chemical Research 57, no. 8 (2024): 1188-1201.
|
| [49] |
M. M. Green, M. P. Reidy, R. D. Johnson, et al., “Macromolecular Stereochemistry: The out-of-Proportion Influence of Optically Active Comonomers on the Conformational Characteristics of Polyisocyanates. The Sergeants and Soldiers Experiment,” Journal of the American Chemical Society 111, no. 16 (1989): 6452-6454.
|
| [50] |
M. M. Green, B. A. Garetz, B. Munoz, et al., “Majority Rules in the Copolymerization of Mirror Image Isomers,” Journal of the American Chemical Society 117, no. 14 (1995): 4181-4182.
|
| [51] |
Z. Zheng, H. Hu, Z. Zhang, et al., “Digital Photoprogramming of Liquid-Crystal Superstructures Featuring Intrinsic Chiral Photoswitches,” Nature Photonics 16, no. 3 (2022): 226-234.
|
| [52] |
B. Sun, Y. Kim, Y. Wang, et al., “Homochiral Porous Nanosheets for Enantiomer Sieving,” Nature Materials 17, no. 7 (2018): 599-604.
|
| [53] |
M. Wehner and F. Würthner, “Supramolecular Polymerization Through Kinetic Pathway Control and Living Chain Growth,” Nature Reviews Chemistry 4, no. 1 (2020): 38-53.
|
| [54] |
L. Xu, X. Wang, W. Wang, et al., “Enantiomer-Dependent Immunological Response to Chiral Nanoparticles,” Nature 601, no. 7893 (2022): 366-373.
|
| [55] |
H.-E. Lee, H.-Y. Ahn, J. Mun, et al., “Amino-Acid-and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles,” Nature 556, no. 7701 (2018): 360-365.
|
| [56] |
C. Zhao, Y. Wang, Y. Jiang, et al., “Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism,” Advanced Materials 36, no. 31 (2024): 2403329.
|
| [57] |
D. Xu, C. Liu, H. Li, et al., “Circularly Polarized Room Temperature Phosphorescence of Chiral Bromoxanthone Using a Chiral Self-Assembled Liquid Crystal Polymer Frameworks,” Advanced Optical Materials 12, no. 15 (2024): 2303019.
|
| [58] |
Q. Zhang, A. Hao, and P. Xing, “Diastereoselective Supramolecular Encapsulation and Chirality Transfer Between Cholesteryl Binaphthyl Conjugates and Polyaromatic Hydrocarbon,” Small 20, no. 35 (2024): 2400089.
|
| [59] |
Y. Xue, C. Zhang, T. Lv, et al., “Amplification of Dissymmetry for Circularly Polarized Photodetection by Cooperative Supramolecular Polymerization,” Angewandte Chemie International Edition 62, no. 18 (2023): e202300972.
|
| [60] |
G. Liu, M. G. Humphrey, C. Zhang, et al., “Self-Assembled Stereomutation With Supramolecular Chirality Inversion,” Chemical Society Reviews 52, no. 13 (2023): 4443-4487.
|
| [61] |
O. Stetsovych, M. Švec, J. Vacek, et al., “From Helical to Planar Chirality by on-Surface Chemistry,” Nature Chemistry 9, no. 3 (2017): 213-218.
|
| [62] |
T. Orlova, F. Lancia, C. Loussert, et al., “Revolving Supramolecular Chiral Structures Powered by Light in Nanomotor-Doped Liquid Crystals,” Nature Nanotechnology 13, no. 4 (2018): 304-308.
|
| [63] |
K. Shimomura, T. Ikai, S. Kanoh, et al., “Switchable Enantioseparation Based on Macromolecular Memory of a Helical Polyacetylene in the Solid State,” Nature Chemistry 6, no. 5 (2014): 429-434.
|
| [64] |
L. Zhang, H.-X. Wang, S. Li, et al., “Supramolecular Chiroptical Switches,” Chemical Society Reviews 49, no. 24 (2020): 9095-9120.
|
| [65] |
J.-M. Lehn, “Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture),” Angewandte Chemie International Edition 27, no. 1 (1988): 89-112.
|
| [66] |
J. F. Stoddart, “Mechanically Interlocked Molecules (Mims)-Molecular Shuttles, Switches, and Machines,” Angewandte Chemie International Edition 56, no. 37 (2017): 11094.
|
| [67] |
Y.-H. Song, Q. Bian, F. Wang, et al., “Water-Soluble Stimuli-Responsive Supramolecular Nanoagrochemicals Based on Macrocycle Compounds,” Coordination Chemistry Reviews 524 (2025): 216299.
|
| [68] |
Z. Liu, W. Lin, and Y. Liu, “Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications,” Accounts of Chemical Research 55, no. 23 (2022): 3417-3429.
|
| [69] |
Y. Xiao, C. Wu, M. Han, et al., “Advanced Supramolecular Self-Assembly for Lifecycle-Optimized Agrochemical Delivery,” Coordination Chemistry Reviews 516 (2024): 215953.
|
| [70] |
Z. Liu and Y. Liu, “Multicharged Cyclodextrin Supramolecular Assemblies,” Chemical Society Reviews 51, no. 11 (2022): 4786-4827.
|
| [71] |
T. Matsunaga, J. Kanazawa, T. Ichikawa, et al., “Α-Cyclodextrin Encapsulation of Bicyclo [1.1. 1] Pentane Derivatives: A Storable Feedstock for Preparation of [1.1. 1] Propellane,” Angewandte Chemie 133, no. 5 (2021): 2610-2614.
|
| [72] |
H. Shigemitsu, K. Kawakami, Y. Nagata, et al., “Cyclodextrins With Multiple Pyrenyl Groups: An Approach to Organic Molecules Exhibiting Bright Excimer Circularly Polarized Luminescence,” Angewandte Chemie 61, no. 8 (2022): e202114700.
|
| [73] |
D. Ikuta, Y. Hirata, S. Wakamori, et al., “Conformationally Supple Glucose Monomers Enable Synthesis of the Smallest Cyclodextrins,” Science 364, no. 6441 (2019): 674-677.
|
| [74] |
W. Qi, C. Ma, Y. Yan, et al., “Chirality Manipulation of Supramolecular Self-Assembly Based on the Host-guest Chemistry of Cyclodextrin,” Current Opinion in Colloid & Interface Science 56 (2021): 101526.
|
| [75] |
G. Ouyang and M. Liu, “Self-Assembly of Chiral Supra-Amphiphiles,” Materials Chemistry Frontiers 4, no. 1 (2020): 155-167.
|
| [76] |
X.-Y. Hu, R. Fu, and D.-S. Guo, “Hypoxia-Responsive Host-guest Drug Delivery System,” Accounts of Materials Research 4, no. 11 (2023): 925-938.
|
| [77] |
M.-J. Gu, X.-N. Han, W.-C. Guo, et al., “Naphth[4]Arene: Synthesis, Conformations, and Application in Color-Tunable Supramolecular Crystalline Assemblies,” Angewandte Chemie International Edition 62, no. 42 (2023): e202305214.
|
| [78] |
H.-W. Tian, Y.-C. Liu, and D.-S. Guo, “Assembling Features of Calixarene-Based Amphiphiles and Supra-Amphiphiles,” Materials Chemistry Frontiers 4, no. 1 (2020): 46-98.
|
| [79] |
R. Nag and C. P. Rao, “Calixarene-Mediated Host-guest Interactions Leading to Supramolecular Assemblies: Visualization by Microscopy,” Chemical Communications 58, no. 41 (2022): 6044-6063.
|
| [80] |
T. Zhao, W. Wu, and C. Yang, “Chiroptical Regulation of Macrocyclic Arenes With Flipping-Induced Inversion of Planar Chirality,” Chemical Communications 59, no. 77 (2023): 11469-11483.
|
| [81] |
J.-Q. Wang, X.-N. Han, Y. Han, et al., “Advances in Circularly Polarized Luminescence Materials Based on Chiral Macrocycles,” Chemical Communications 59, no. 88 (2023): 13089-13106.
|
| [82] |
T. Kakuta, T.-A. Yamagishi, and T. Ogoshi, “Stimuli-Responsive Supramolecular Assemblies Constructed From Pillar[n]Arenes,” Accounts of Chemical Research 51, no. 7 (2018): 1656-1666.
|
| [83] |
X.-Y. Dai, M. Huo, and Y. Liu, “Phosphorescence Resonance Energy Transfer From Purely Organic Supramolecular Assembly,” Nature Reviews Chemistry 7, no. 12 (2023): 854-874.
|
| [84] |
Y. Zhang, G. Zhang, X. Xiao, et al., “Cucurbit[n]Uril-Based Supramolecular Separation Materials,” Coordination Chemistry Reviews 514 (2024): 215889.
|
| [85] |
H. Nie, Z. Wei, X.-L. Ni, et al., “Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions From Cucurbiturils,” Chemical Reviews 122, no. 9 (2022): 9032-9077.
|
| [86] |
S. P. Hui, H. J. Hang, M. Liu, et al., “Progress in Host-guest Macrocycle/Pesticide Research: Recognition, Detection, Release and Application,” Coordination Chemistry Reviews 467 (2022): 214580.
|
| [87] |
Y. Zhang, Y. Chen, J.-Q. Li, et al., “Mechanical Stretch Α-Cyclodextrin Pseudopolyrotaxane Elastomer With Reversible Phosphorescence Behavior,” Advanced Science 11, no. 14 (2024): 2307777.
|
| [88] |
H. Nie, D. Hu, Z. Zeng, et al., “Cucurbit[8]uril-Regulated Face-to-Face Dimerization Assembly Enhanced Photosensitization and Photocatalysis,” Science China Chemistry 67, no. 5 (2024): 1605-1612.
|
| [89] |
S. Ohtani, S. Akine, K. Kato, et al., “Silapillar[n]arenes: Their Enhanced Electronic Conjugation and Conformational Versatility,” Journal of the American Chemical Society 146, no. 7 (2024): 4695-4703.
|
| [90] |
J. Zhao, K. Zeng, T. Jin, et al., “Circularly Polarized Luminescence in Macrocycles and Cages: Design, Preparation, and Application,” Coordination Chemistry Reviews 502 (2024): 215598.
|
| [91] |
S. Yang, S. Zhang, F. Hu, et al., “Circularly Polarized Luminescence Polymers: From Design to Applications,” Coordination Chemistry Reviews 485 (2023): 215116.
|
| [92] |
G. Sun, X. Zhang, Z. Zheng, et al., “Chiral Macrocycles for Enantioselective Recognition,” Journal of the American Chemical Society 146, no. 38 (2024): 26233-26242.
|
| [93] |
Y. Wang, H. Zhao, C. Yang, et al., “Chiral Recognition of Chiral (Hetero) Cyclic Derivatives Probed by Tetraaza Macrocyclic Chiral Solvating Agents Via 1 h Nmr Spectroscopy,” Analytical Chemistry 96, no. 13 (2024): 5188-5194.
|
| [94] |
X. Liang, T. Zhao, Y. Shen, et al., “Nitrogen-Oxidized Tröger's Base Macrocyclic Arenes: Unprecedented Enantioselective Recognition in Water,” Angewandte Chemie International Edition 64, no. 5 (2025): e202416975.
|
| [95] |
L. Zhu, W. Zeng, M. Li, et al., “A Novel Conformationally Adaptive Macrocyclic Tetramaleimide With Flipping Pyrene Sidewalls,” Chinese Chemical Letters 33, no. 1 (2022): 229-233.
|
| [96] |
T. Li, S. Jiang, T. Li, et al., “Exploring the Potential of Cyclic Peptidyl Antitumor Agents Derived From Natural Macrocyclic Peptide Phakellistatin 13,” Journal of Medicinal Chemistry 67, no. 14 (2024): 11789-11813.
|
| [97] |
X.-N. Sun, A. Liu, K. Xu, et al., “Low-Entropy-Penalty Synthesis of Giant Macrocycles for Good Self-Assembly and Emission Enhancement,” Aggregate 5, no. 6 (2024): e607.
|
| [98] |
C.-Y. Lin, C.-H. Lu, K.-H. Kuo, et al., “Highly Efficient Blue Thermally Activated Delayed Fluorescence Emitters With a Triphenylamine-Based Macrocyclic Donor,” Advanced Optical Materials 11, no. 5 (2023): 2202292.
|
| [99] |
H. Zhai, K. Lv, J. Li, et al., “Rhodium (Iii)-Catalyzed Atroposelective Indolization to Access Planar-Chiral Macrocycles,” Journal of the American Chemical Society 146, no. 42 (2024): 29214-29223.
|
| [100] |
Y.-K. Jiang, Y.-L. Tian, J. Feng, et al., “Organocatalytic Enantioselective Synthesis of Inherently Chiral Calix[4]Arenes,” Angewandte Chemie International Edition 63, no. 39 (2024): e202407752.
|
| [101] |
P. Wu, A. Pietropaolo, M. Fortino, et al., “Amplified Chirality Transfer to Aromatic Molecules Through Non-Specific Inclusion by Amorphous, Hyperbranched Poly (Fluorenevinylene) Derivatives,” Angewandte Chemie International Edition 62, no. 29 (2023): e202305747.
|
| [102] |
K. Harata and H. Uedaira, “The Circular Dichroism Spectra of the Β-Cyclodextrin Complex With Naphthalene Derivatives,” Bulletin of the Chemical Society of Japan 48, no. 2 (1975): 375-378.
|
| [103] |
K. Harata, “Induced Circular Dichroism of Cycloamylose Complexes With Meta-and Para-Disubstituted Benzenes,” Bioorganic Chemistry 10, no. 3 (1981): 255-265.
|
| [104] |
G. Pescitelli, L. Di Bari, and N. Berova, “Application of Electronic Circular Dichroism in the Study of Supramolecular Systems,” Chemical Society Reviews 43, no. 15 (2014): 5211-5233.
|
| [105] |
Y. Zhang, D. Yang, J. Han, et al., “Circularly Polarized Luminescence From a Pyrene-Cyclodextrin Supra-Dendron,” Langmuir 34, no. 20 (2018): 5821-5830.
|
| [106] |
L. Chen, Y. Chen, Y. Zhang, et al., “Photo-Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives,” Angewandte Chemie 133, no. 14 (2021): 7732-7736.
|
| [107] |
C. Yang, D. Yang, X. Zhu, et al., “Circularly Polarized Luminescence of Langmuir-Schaefer Films of Amphiphilic Stilbene Enhanced Via Interfacial Reaction With Cyclodextrins,” Langmuir 36, no. 41 (2020): 12366-12374.
|
| [108] |
L. Ji, Q. He, D. Niu, et al., “Host-guest Interaction Enabled Chiroptical Photo-Switching and Enhanced Circularly Polarized Luminescence,” Chemical Communications 55, no. 78 (2019): 11747-11750.
|
| [109] |
L. Hu, K. Li, W. Shang, et al., “Emerging Cubic Chirality in Γcd-Mof for Fabricating Circularly Polarized Luminescent Crystalline Materials and the Size Effect,” Angewandte Chemie 132, no. 12 (2020): 4983-4988.
|
| [110] |
N. Xia, J. Zhao, G. Gong, et al., “Chiral Supramolecular 2d Halogen-Bonded Organic Frameworks Constructed by Post-Synthetic Modified Cross-Linking Strategy,” Science China Chemistry 66, no. 11 (2023): 3169-3177.
|
| [111] |
C. Yang, W. Chen, X. Zhu, et al., “Self-Assembly and Circularly Polarized Luminescence From Achiral Pyrene-Adamantane Conjugates by Selective Inclusion With Cyclodextrins,” The Journal of Physical Chemistry Letters 12, no. 31 (2021): 7491-7496.
|
| [112] |
F. Zhang, C. Lu, M. Wang, et al., “A Chiral Sensor Array for Peptidoglycan Biosynthesis Monitoring Based on Mos2 Nanosheet-Supported Host-guest Recognitions,” ACS Sensors 3, no. 2 (2018): 304-312.
|
| [113] |
Y.-X. Yan, Y. Zhang, Y. Chen, et al., “Cyclodextrin-Based Supramolecular Hydrogel as a Selective Chiral Adsorption/Separation Platform for Tryptophan Enantiomers,” ACS Applied Polymer Materials 2, no. 12 (2020): 5641-5645.
|
| [114] |
J. Muñoz, M. Urso, and M. Pumera, “Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for ″Enantiorecognition-on-the-Fly,” Angewandte Chemie International Edition 61, no. 14 (2022): e202116090.
|
| [115] |
J.-H. Huang, Y.-J. Liu, Y. Si, et al., “Carborane-Cluster-Wrapped Copper Cluster With Cyclodextrin-Like Cavities for Chiral Recognition,” Journal of the American Chemical Society 146, no. 24 (2024): 16729-16736.
|
| [116] |
G. Guo, H. Li, Y. Yan, et al., “A Dynamic H-Bonding Network Enables Stimuli-Responsive Color-Tunable Chiral Afterglow Polymer for 4d Encryption,” Advanced Materials 36, no. 47 (2024): 2412100.
|
| [117] |
X. Wang, M. Li, P. Song, et al., “Reversible Manipulation of Supramolecular Chirality Using Host-guest Dynamics Between β-Cyclodextrin and Alkyl Amines,” Chemistry-A European Journal 24, no. 52 (2018): 13734-13739.
|
| [118] |
Q. Wang, W. Liang, X. Wei, et al., “A Supramolecular Strategy for Enhancing Photochirogenic Performance Through Host/Guest Modification: Dicationic γ-Cyclodextrin-Mediated Photocyclodimerization of 2, 6-Anthracenedicarboxylate,” Organic Letters 22, no. 24 (2020): 9757-9761.
|
| [119] |
W. Zhi, Z. Pu, C. Ma, et al., “α-Cyclodextrin-Catalyzed Symmetry Breaking and Precise Regulation of Supramolecular Self-Assembly Handedness With Harata-Kodaka's Rule,” ACS Nano 15, no. 12 (2021): 19621-19628.
|
| [120] |
G. Rivero-Barbarroja, C. Fernández-Clavero, C. García-Iriepa, et al., “Reversible Light-Induced Dimerization of Secondary Face Azobenzene-Functionalized Β-Cyclodextrin Derivatives,” The Journal of Organic Chemistry 88, no. 13 (2023): 8674-8689.
|
| [121] |
X. Song, X. Zhu, S. Wu, et al., “Chiroptical Switching in the Azobenzene-Based Self-Locked [1]Rotaxane by Solvent and Photoirradiation,” Chirality 35, no. 10 (2023): 692-699.
|
| [122] |
S. P. Della, V. Iuliano, M. De Rosa, et al., “Deep-Cavity Calix[4]Naphth[4]arene Macrocycles: Synthesis, Conformational Features, and Solid-State Structures,” Molecules 29, no. 17 (2024): 4142.
|
| [123] |
Y. Fang, Y. Han, J. Wang, et al., “Calix[4]arene-Decorated Polymers of Intrinsic Microporosity for Lithium Isotopes Separation,” Chemical Engineering Journal 500 (2024): 156916.
|
| [124] |
A. Llamosí, M. P. Szymański, and A. Szumna, “Molecular Vessels From Preorganised Natural Building Blocks,” Chemical Society Reviews 53 (2024): 4434-4462.
|
| [125] |
K. Iizuka, H. Takezawa, and M. Fujita, “Chemical Site-Differentiation of Calix[4]Arenes Through Enforced Conformations by Confinement in a Cage,” Journal of the American Chemical Society 145, no. 48 (2023): 25971-25975.
|
| [126] |
W. Zhu, Y. Cheng, S. Tong, et al., “Synthesis of Functionalized Abac-and Abcd-Type Inherently Chiral Heteracalix[4]Aromatics,” Organic Letters 25, no. 27 (2023): 5105-5110.
|
| [127] |
X.-C. Li, Y. Cheng, X.-D. Wang, et al., “De Novo Synthesis of Inherently Chiral Heteracalix[4]Aromatics From Enantioselective Macrocyclization Enabled by Chiral Phosphoric Acid-Catalyzed Intramolecular Sn Ar Reaction,” Chemical Science 15, no. 10 (2024): 3610-3615.
|
| [128] |
S. Tong, J.-T. Li, D.-D. Liang, et al., “Catalytic Enantioselective Synthesis and Switchable Chiroptical Property of Inherently Chiral Macrocycles,” Journal of the American Chemical Society 142, no. 34 (2020): 14432-14436.
|
| [129] |
Y.-Z. Zhang, M.-M. Xu, X.-G. Si, et al., “Enantioselective Synthesis of Inherently Chiral Calix[4]Arenes via Palladium-Catalyzed Asymmetric Intramolecular C-H Arylations,” Journal of the American Chemical Society 144, no. 50 (2022): 22858-22864.
|
| [130] |
E. Ozcelik, F. Temel, S. Erdemir, et al., “Qcm Sensors Coated With Calix[4]arenes Bearing Sensitive Chiral Moieties for Chiral Discrimination of 1-Phenylethylamine Enantiomers,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 95 (2019): 35-48.
|
| [131] |
X. Zhang, Y. Yang, Y. Gu, et al., “Chiral Galactose Responsive S-Phenethylamine Calix[4]arene-Based Sensing Surface,” Sensors and Actuators B: Chemical 297 (2019): 126662.
|
| [132] |
S. J. Nemat, H. Jedrzejewska, A. Prescimone, et al., “Catechol[4]arene: The Missing Chiral Member of the Calix[4]arene Family,” Organic Letters 22, no. 14 (2020): 5506-5510.
|
| [133] |
K. Yang, Z. Ma, H.-X. Tong, et al., “Asymmetric Michael Addition Reactions Catalyzed by a Novel Upper-Rim Functionalized Calix[4]Squaramide Organocatalyst,” Chinese Chemical Letters 31, no. 12 (2020): 3259-3262.
|
| [134] |
A. Malik, P. R. Sharma, and R. K. Sharma, “Enantioselective Alkylation of Glycine Imines Using a Cinchona-Functionalized Crown Ether-Strapped Calixarene Phase-Transfer Catalyst,” The Journal of Organic Chemistry 88, no. 11 (2023): 7498-7503.
|
| [135] |
P.-F. Qian, G. Zhou, J.-H. Hu, et al., “Asymmetric Synthesis of Chiral Calix[4]arenes With Both Inherent and Axial Chirality via Cobalt-Catalyzed Enantioselective Intermolecular C- H Annulation,” Angewandte Chemie International Edition 63, no. 52 (2024): e202412459.
|
| [136] |
X.-Y. Zhang, D. Zhu, R.-F. Cao, et al., “Enantioselective Synthesis of Inherently Chiral Sulfur-Containing Calix[4]arenes via Chiral Sulfide Catalyzed Desymmetrizing Aromatic Sulfenylation,” Nature Communications 15, no. 1 (2024): 9929.
|
| [137] |
D. Zhu, T. Mu, Z.-L. Li, et al., “Enantioselective Synthesis of Planar-Chiral Sulfur-Containing Cyclophanes by Chiral Sulfide Catalyzed Electrophilic Sulfenylation of Arenes,” Angewandte Chemie International Edition 63, no. 10 (2024): e202318625.
|
| [138] |
T. Li, Y. Zhang, C. Du, et al., “Simultaneous Construction of Inherent and Axial Chirality by Cobalt-Catalyzed Enantioselective Ch Activation of Calix[4]arenes,” Nature Communications 15, no. 1 (2024): 7673.
|
| [139] |
L. Zhang, C. Yang, X. Wang, et al., “Enantioselective Electrosynthesis of Inherently Chiral Calix[4]arenes via a Cobalt-Catalyzed Aryl C-H Acyloxylation,” Green Chemistry 26, no. 19 (2024): 10232-10239.
|
| [140] |
A. S. Pires, M. K. Droguett, V. de Freitas, et al., “Host-guest Chemosensor Ensembles Based on Water-Soluble Sulfonated Calix[n]Arenes and a Pyranoflavylium Dye for the Optical Detection of Biogenic Amines,” Journal of Agricultural and Food Chemistry 72, no. 7 (2024): 3719-3729.
|
| [141] |
A. Tetenoire, A. Omelchuk, V. Malytskyi, et al., “Multipodal Au-C Grafting of Calix[4]arene Molecules on Gold Nanorods,” Chemical Science 15, no. 36 (2024): 14677-14684.
|
| [142] |
R.-P. Wang, W. Liu, X. Wang, et al., “Supramolecular Assembly Based on Calix[4]arene and Aggregation-Induced Emission Photosensitizer for Phototherapy of Drug-Resistant Bacteria and Skin Flap Transplantation,” Advanced Healthcare Materials 13, no. 9 (2024): 2303336.
|
| [143] |
J.-Y. Kang, X.-B. Zhao, and Y.-P. Shi, “Azophenyl Calix[4]arene Porous Organic Polymer for Extraction and Analysis of Triphenylmethane Dyes From Seafood,” ACS Applied Materials & Interfaces 15, no. 36 (2023): 42981-42991.
|
| [144] |
X.-H. Zhou, X. Zhang, Y.-R. Song, et al., “Catalytic Enantioselective Synthesis of Planar Chiral Pillar[5]arenes via Asymmetric Sonogashira Coupling,” Angewandte Chemie International Edition 64, no. 3 (2024): e202415190.
|
| [145] |
D.-H. Tuo, S. Fa, S. Tanaka, et al., “Helical-Sense Matching Facilitates Supramolecular Copolymerization of Helical-Chiral Pillar[5]arenes,” Journal of the American Chemical Society 146, no. 46 (2024): 31816-31824.
|
| [146] |
K. Kato, S. Fa, and T. Ogoshi, “Alignment and Dynamic Inversion of Planar Chirality in Pillar[n]Arenes,” Angewandte Chemie International Edition 62, no. 47 (2023): e202308316.
|
| [147] |
T. Ogoshi, S. Azuma, K. Wada, et al., “Exciplex Formation by Complexation of an Electron-Accepting Guest in an Electron-Donating Pillar[5]arene Host Liquid,” Journal of the American Chemical Society 146, no. 14 (2024): 9828-9835.
|
| [148] |
L. Zhou, Y. Zhou, L. Fang, et al., “Pillar[5]arene Based Artificial Light-Harvesting Supramolecular Polymer for Efficient and Recyclable Photocatalytic Applications,” Chinese Chemical Letters 35, no. 9 (2024): 109509.
|
| [149] |
W. Xu, E. B. Noruzi, G. Li, et al., “Controlled Release of La3+ Ions for Enhanced Wheat Seed Germination Based on Phosphate Pillar[5]arene Nanogating,” Journal of Agricultural and Food Chemistry 72, no. 46 (2024): 25500-25508.
|
| [150] |
X.-Y. Lou, K. Zhang, Y. Bai, et al., “Self-Assembled Nanohelixes Driven by Host-Guest Interactions and Metal Coordination,” Angewandte Chemie International Edition 64, no.2 (2024): e202414611.
|
| [151] |
X.-Y. Lou and Y.-W. Yang, “Pyridine-Conjugated Pillar[5]arene: From Molecular Crystals of Blue Luminescence to Red-Emissive Coordination Nanocrystals,” Journal of the American Chemical Society 143, no. 31 (2021): 11976-11981.
|
| [152] |
Y. Guo, Y. Han, X.-S. Du, et al., “Chiral Bishelic[6]Arene-Based Supramolecular Gels With Circularly Polarized Luminescence Property,” ACS Applied Polymer Materials 4, no. 5 (2022): 3473-3481.
|
| [153] |
J.-F. Chen, X. Yin, K. Zhang, et al., “Pillar[5]arene-Based Dual Chiral Organoboranes With Allowed Host-guest Chemistry and Circularly Polarized Luminescence,” The Journal of Organic Chemistry 86, no. 18 (2021): 12654-12663.
|
| [154] |
J.-F. Chen, G. Tian, K. Liu, et al., “Pillar[5]arene-Based Neutral Radicals With Doublet Red Emissions and Stable Chiroptical Properties,” Organic Letters 24, no. 10 (2022): 1935-1940.
|
| [155] |
X. Wang, B. Zhao, and J. Deng, “Liquid Crystals Doped With Chiral Fluorescent Polymer: Multi-Color Circularly Polarized Fluorescence and Room-Temperature Phosphorescence With High Dissymmetry Factor and Anti-Counterfeiting Application,” Advanced Materials 35, no. 49 (2023): 2304405.
|
| [156] |
Y. Wu, C. Yan, X.-S. Li, et al., “Circularly Polarized Fluorescence Resonance Energy Transfer (C-Fret) for Efficient Chirality Transmission Within an Intermolecular System,” Angewandte Chemie 133, no. 46 (2021): 24754-24762.
|
| [157] |
K. Yang, S. Ma, Y. Wu, et al., “Circularly Polarized Fluorescence Energy Transfer for Constructing Multicolor Circularly Polarized Luminescence Films With Controllable Handedness,” Chemistry of Materials 35, no. 3 (2023): 1273-1282.
|
| [158] |
Y.-X. Yuan, J.-H. Jia, Y.-P. Song, et al., “Fluorescent Tpe Macrocycle Relayed Light-Harvesting System for Bright Customized-Color Circularly Polarized Luminescence,” Journal of the American Chemical Society 144, no. 12 (2022): 5389-5399.
|
| [159] |
K. Velmurugan, A. Murtaza, A. Saeed, et al., “Supramolecular Nanohelix Fabricated by Pillararene-Based Host-guest System for Chirality Amplification, Transfer, and Circularly Polarized Luminescence in Water,” CCS Chemistry 4, no. 10 (2022): 3426-3439.
|
| [160] |
X. Wan, S. Li, Y. Tian, et al., “Twisted Pentagonal Prisms: Agnl2 Metal-Organic Pillars,” Chem 8, no. 8 (2022): 2136-2147.
|
| [161] |
Y. Xu, F. Steudel, M.-Y. Leung, et al., “[n]Cycloparaphenylene-Pillar[5]arene Bismacrocycles: Their Circularly Polarized Luminescence and Multiple Guest Recognition Properties,” Angewandte Chemie International Edition 62, no. 24 (2023): e202302978.
|
| [162] |
K. Kato, R. Iwano, S. Tokuda, et al., “Circularly Polarized Luminescence From a Common Alkoxy Pillar[5]arene and Its Co-Aggregates With Π-Conjugated Rods,” Aggregate 5, no. 3 (2024): e482.
|
| [163] |
Y. Chen, L. Fu, B. Sun, et al., “Competitive Selection of Conformation Chirality of Water-Soluble Pillar[5]arene Induced by Amino Acid Derivatives,” Organic Letters 22, no. 6 (2020): 2266-2270.
|
| [164] |
H. Zhu, Q. Li, Z. Gao, et al., “Pillararene Host-guest Complexation Induced Chirality Amplification: A New Way to Detect Cryptochiral Compounds,” Angewandte Chemie International Edition 59, no. 27 (2020): 10868-10872.
|
| [165] |
G. Liu, S. Guo, L. Liu, et al., “Shape-Persistent Triptycene-Derived Pillar[6]Arenes: Synthesis, Host-guest Complexation, and Enantioselective Recognitions of Chiral Ammonium Salts,” The Journal of Organic Chemistry 88, no. 14 (2023): 10171-10179.
|
| [166] |
J.-F. Chen, Q.-X. Gao, L. Liu, et al., “A Pillar[5]arene-Based Planar Chiral Charge-Transfer Dye With Enhanced Circularly Polarized Luminescence and Multiple Responsive Chiroptical Changes,” Chemical Science 14, no. 4 (2023): 987-993.
|
| [167] |
X. Liang, Y. Shen, D. Zhou, et al., “Chiroptical Induction With Prism[5]arene Alkoxy-Homologs,” Chemical Communications 58, no. 98 (2022): 13584-13587.
|
| [168] |
M. Cheng, F. Zhu, W. Xu, et al., “Chiral Nanochannels of Ordered Mesoporous Silica Constructed by a Pillar[5]arene-Based Host-guest System,” ACS Applied Materials & Interfaces 13, no. 23 (2021): 27305-27312.
|
| [169] |
Y. Sun, F. Zhang, J. Quan, et al., “A Biomimetic Chiral-Driven Ionic Gate Constructed by Pillar[6]Arene-Based Host-guest Systems,” Nature Communications 9, no. 1 (2018): 2617.
|
| [170] |
F. Feng, S. Zhang, L. Yang, et al., “Highly Chiral Selective Resolution in Pillar[6]Arenes Functionalized Microchannel Membranes,” Analytical Chemistry 94, no. 15 (2022): 6065-6070.
|
| [171] |
T.-H. Shi, S. Fa, Y. Nagata, et al., “Discrete Chiral Organic Nanotubes by Stacking Pillar[5]arenes Using Covalent Linkages,” Cell Reports Physical Science 3, no. 12 (2022): 101173.
|
| [172] |
Y. Chao, T. U. Thikekar, W. Fang, et al., “Rim-Differentiated″ Pillar[6]Arenes,” Angewandte Chemie International Edition 61, no. 31 (2022): e202204589.
|
| [173] |
T. Zhao, J. Yi, C. Liu, et al., ““First Come, First Served” and Threshold Effects in a Central-to-Planar-to-Helical Hierarchical Chiral Induction,” Angewandte Chemie International Edition 62, no. 22 (2023): e202302232.
|
| [174] |
J. Park, Y. Choi, S. S. Lee, et al., “Critical Role of Achiral Guest Molecules in Planar Chirality Inversion of Alanine-Appended Pillar[5]arenes,” Organic Letters 21, no. 4 (2019): 1232-1236.
|
| [175] |
J. Ji, Y. Li, C. Xiao, et al., “Supramolecular Enantiomeric and Structural Differentiation of Amino Acid Derivatives With Achiral Pillar[5]arene Homologs,” Chemical Communications 56, no. 1 (2020): 161-164.
|
| [176] |
S. Fa, T. Tomita, K. Wada, et al., “Cpl on/off Control of an Assembled System by Water-Soluble Macrocyclic Chiral Sources With Planar Chirality,” Chemical Science 13, no. 20 (2022): 5846-5853.
|
| [177] |
Y. Hou, C. Mu, Y. Shi, et al., “Host-guest Complexation-Induced Chirality Switching of Pillararenes by Perylene Diimide-Based Hexagonal Metallacages,” Aggregate 5, no. 6 (2024): e628.
|
| [178] |
C. Xiao, W. Wu, W. Liang, et al., “Redox-Triggered Chirality Switching and Guest-Capture/Release With a Pillar[6]Arene-Based Molecular Universal Joint,” Angewandte Chemie International Edition 59, no. 21 (2020): 8094-8098.
|
| [179] |
Y. Chen, B. Sun, R. Wang, et al., “Redox-Driven Chiral Inversion of Water-Soluble Pillar[5]arene With L-Cystine Derivative in the Aqueous Medium,” Organic Letters 23, no. 19 (2021): 7423-7427.
|
| [180] |
Y. Sun, L. Liu, L. Jiang, et al., “Unimolecular Chiral Stepping Inversion Machine,” Journal of the American Chemical Society 145, no. 30 (2023): 16711-16717.
|
| [181] |
T. Ogoshi, T. Furuta, and T.-A. Yamagishi, “Chiral Supramolecular Polymers Consisting of Planar-Chiral Pillar[5]arene Enantiomers,” Chemical Communications 52, no. 71 (2016): 10775-10778.
|
| [182] |
J. Ji, W. Wu, X. Wei, et al., “Synergetic Effects in the Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by Β-Cyclodextrin-Pillar[5]arene-Hybridized Hosts,” Chemical Communications 56, no. 46 (2020): 6197-6200.
|
| [183] |
H. Zheng, L. Fu, R. Wang, et al., “Cation Controlled Rotation in Anionic Pillar[5]arenes and Its Application for Fluorescence Switch,” Nature Communications 14, no. 1 (2023): 590.
|
| [184] |
L. Fu, R. Wang, Q. Zhu, et al., “Planar Chirality for Acid/Base Responsive Macrocyclic Pillararenes Induced by Amino Acid Derivatives: Molecular Dynamics Simulations and Machine Learning,” Journal of Chemical Theory and Computation 19, no. 14 (2023): 4364-4376.
|
| [185] |
J. Yao, H. Mizuno, C. Xiao, et al., “Pressure-Driven, Solvation-Directed Planar Chirality Switching of Cyclophano-Pillar[5]arenes (Molecular Universal Joints),” Chemical Science 12, no. 12 (2021): 4361-4366.
|
| [186] |
S. Fa, K. Egami, K. Adachi, et al., “Sequential Chiral Induction and Regulator-Assisted Chiral Memory of Pillar[5]arenes,” Angewandte Chemie 132, no. 46 (2020): 20533-20536.
|
| [187] |
K. Wada, K. Yasuzawa, S. Fa, et al., “Diastereoselective Rotaxane Synthesis With Pillar[5]arenes via Co-Crystallization and Solid-State Mechanochemical Processes,” Journal of the American Chemical Society 145, no. 28 (2023): 15324-15330.
|
| [188] |
S. Kim, I.-H. Park, E. Lee, et al., “Metallosupramolecules of Pillar[5]arene With Two Flexible Thiopyridyl Arms: A Heterochiral Cyclic Dimer and Organic Guest-Assisted Homochiral Poly-Pseudo-Rotaxanes,” Inorganic Chemistry 61, no. 18 (2022): 7069-7074.
|
| [189] |
K. Kato, T. Kaneda, S. Ohtani, et al., “Per-Arylation of Pillar[n]Arenes: An Effective Tool to Modify the Properties of Macrocycles,” Journal of the American Chemical Society 145, no. 12 (2023): 6905-6913.
|
| [190] |
Y. Chen, S. Pangannaya, B. Sun, et al., “Stoichiometry-Controlled Chirality Induced by Co-Assembly of Tetraphenylethylene Derivative, Γ-Cd, and Water-Soluble Pillar[5]arene,” ACS Applied Bio Materials 4, no. 3 (2020): 2066-2072.
|
| [191] |
S. Fa, T.-H. Shi, S. Akama, et al., “Real-Time Chirality Transfer Monitoring From Statistically Random to Discrete Homochiral Nanotubes,” Nature Communications 13, no. 1 (2022): 7378.
|
| [192] |
J.-L. Song, C. Chen, X. Li, et al., “Boosting the Circularly Polarized Luminescence of Pyrene-Tiaraed Pillararenes Through Mechanically Locking,” Nature Communications 15, no. 1 (2024): 1-10.
|
| [193] |
X. Li, W.-T. Xu, X.-Q. Xu, et al., “Lighting up Bispyrene-Functionalized Chiral Molecular Muscles With Switchable Circularly Polarized Excimer Emissions,” Angewandte Chemie International Edition 64, no. 1 (2025): e202412548.
|
| [194] |
X. Niu, X. Ou, S. Ren, et al., “Circularly Polarized Luminescence Inversion in Aie-Active Crystal Enabled by Solvent-Induced Transition Dipole Moment Regulation,” Aggregate (2025): e70003, https://doi.org/10.1002/agt2.70003.
|
| [195] |
Q. Li, S. Zheng, W. Gao, et al., “Circularly Polarized Ultraviolet Light-Activated Asymmetric Photopolymerization for the Synthesis of CPL-Active Materials,” Angewandte Chemie International Edition (2025): e202503197, https://doi.org/10.1002/anie.202503197.
|
| [196] |
T. Li, X. Zhu, G. Ouyang, et al., “Circularly Polarized Luminescence From Chiral Macrocycles and Their Supramolecular Assemblies,” Materials Chemistry Frontiers 7, no. 18 (2023): 3879-3903.
|
| [197] |
Z. Sun, H. Tang, L. Wang, et al., “Advances in Chiral Macrocycles: Molecular Design and Applications,” Chemistry-A European Journal 31, no. 9 (2025): e202404217.
|
| [198] |
Z. Dong, J. Li, and C. Zhao, “Catalytic Enantioselective Macrocyclization for the Synthesis of Planar-Chiral Cyclophanes: Recent Updates,” European Journal of Organic Chemistry 27, no. 47 (2024): e202400841.
|
| [199] |
N. Ousaka, S. Yamamoto, H. Iida, et al., “Water-Mediated Deracemization of a Bisporphyrin Helicate Assisted by Diastereoselective Encapsulation of Chiral Guests,” Nature Communications 10, no. 1 (2019): 1457.
|
| [200] |
I. Stroia, M. E. Moisă, A. Pop, et al., “Planar Chiral P, P′-Terphenyl-Based Cyclophanes With Remarkable Enantiomer Stability: Synthesis, Theoretical Investigations, and Complexation Studies,” The Journal of Organic Chemistry 88, no. 22 (2023): 15647-15657.
|
| [201] |
M. Weh, J. Rühe, B. Herbert, et al., “Deracemization of Carbohelicenes by a Chiral Perylene Bisimide Cyclophane Template Catalyst,” Angewandte Chemie International Edition 60, no. 28 (2021): 15323-15327.
|
| [202] |
G. Ouyang, J. Rühe, Y. Zhang, et al., “Intramolecular Energy and Solvent-Dependent Chirality Transfer Within a Binol-Perylene Hetero-Cyclophane,” Angewandte Chemie International Edition 61, no. 31 (2022): e202206706.
|
| [203] |
Y. Wang, W.-L. Zhao, Z. Gao, et al., “Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence,” Angewandte Chemie International Edition 64, no. 5 (2025): e202417458.
|
| [204] |
J. Seibert, Y. Xu, H. Hafeez, et al., “A Novel Carbazolophane: A Comparison of the Performance of Two Planar Chiral Cp-Tadf Emitters,” Advanced Functional Materials 34, no. 47 (2024): 2401956.
|
| [205] |
J. Krämer, R. Kang, L. M. Grimm, et al., “Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids,” Chemical Reviews 122, no. 3 (2022): 3459-3636.
|
| [206] |
H. Wang, K.-F. Xue, Y. Yang, et al., “In Situ Hypoxia-Induced Supramolecular Perylene Diimide Radical Anions in Tumors for Photothermal Therapy With Improved Specificity,” Journal of the American Chemical Society 144, no. 5 (2022): 2360-2367.
|
| [207] |
R. Rabbani, S. Saeedi, M. Nazimuddin, et al., “Enhanced Photoreduction of Water Catalyzed by a Cucurbit[8]Uril-Secured Platinum Dimer,” Chemical Science 12, no. 46 (2021): 15347-15352.
|
| [208] |
Z. Gao, J. Zhang, N. Sun, et al., “Hyperbranched Supramolecular Polymer Constructed From Twisted Cucurbit[14]uril and Porphyrin via Host-Guest Interactions,” Organic Chemistry Frontiers 3, no. 9 (2016): 1144-1148.
|
| [209] |
Q. Li, J. Sun, J. Zhou, et al., “Barium Cation-Responsive Supra-Amphiphile Constructed by a New Twisted Cucurbit[15]uril/Paraquat Recognition Motif in Water,” Organic Chemistry Frontiers 5, no. 12 (2018): 1940-1944.
|
| [210] |
D. Yang, M. Liu, X. Xiao, et al., “Polymeric Self-Assembled Cucurbit[n]urils: Synthesis, Structures and Applications,” Coordination Chemistry Reviews 434 (2021): 213733.
|
| [211] |
A. Prabodh, D. Bauer, S. Kubik, et al., “Chirality Sensing of Terpenes, Steroids, Amino Acids, Peptides and Drugs With Acyclic Cucurbit[n]urils and Molecular Tweezers,” Chemical Communications 56, no. 34 (2020): 4652-4655.
|
| [212] |
J. Liu and O. A. Scherman, “Cucurbit[n]uril Supramolecular Hydrogel Networks as Tough and Healable Adhesives,” Advanced Functional Materials 28, no. 21 (2018): 1800848.
|
| [213] |
X.-M. Chen, Y. Chen, L. Liang, et al., “Chiral Binaphthylbis (4, 4′-Bipyridin-1-Ium)/Cucurbit[8]uril Supramolecular System and Its Induced Circularly Polarized Luminescence,” Macromolecular Rapid Communications 39, no. 9 (2018): 1700869.
|
| [214] |
R. Liu, Y. Zhang, W. Wu, et al., “Temperature-Driven Braking of Γ-Cyclodextrin-Curcubit[6]uril-Cowheeled[4]Rotaxanes,” Chinese Chemical Letters 30, no. 3 (2019): 577-581.
|
| [215] |
X. Chen, N. Hu, H. Wei, et al., “Chiral Fluorescent Recognition by Naphthalimide,” Journal of Fluorescence 30, no. 3 (2020): 679-685.
|
| [216] |
Y. Li, Q. Li, X. Miao, et al., “Adaptive Chirality of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework for Chirality Induction in Water,” Angewandte Chemie 133, no. 12 (2021): 6818-6825.
|
| [217] |
C. Yan, Q. Li, X. Miao, et al., “Chiral Adaptive Induction of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework by Dipeptides in Water,” Angewandte Chemie 62, no. 37 (2023): e202308029.
|
| [218] |
J. Yu, J. Niu, X. Xu, et al., “Configurationally Stepping Confinement Achieved Tunable Chiral near-Infrared Luminescence Supramolecular Phenothiazine Organic Framework,” Advanced Science 11, no. 42 (2024): 2408107.
|
| [219] |
W. Wu, M. P. Cronin, L. Wallace, et al., “An Exploration of Induced Supramolecular Chirality Through Association of Chiral Ammonium Ions and Tartrates With the Achiral Host Cucurbit[7]uril,” Israel Journal of Chemistry 58, no. 3-4 (2018): 479-486.
|
| [220] |
E. Y. Chernikova, D. V. Berdnikova, A. S. Peregudov, et al., “Encapsulation-Controlled Photoisomerization of a Styryl Derivative: Stereoselective Formation of the Anti Z-Isomer in the Cucurbit[7]uril Cavity,” Chemphyschem 21, no. 5 (2020): 442-449.
|
| [221] |
D. E. Clarke, G. Wu, C. Wu, et al., “Host-Guest Induced Peptide Folding With Sequence-Specific Structural Chirality,” Journal of the American Chemical Society 143, no. 17 (2021): 6323-6327.
|
| [222] |
J. Krämer, L. M. Grimm, C. Zhong, et al., “A Supramolecular Cucurbit[8]uril-Based Rotaxane Chemosensor for the Optical Tryptophan Detection in Human Serum and Urine,” Nature Communications 14, no. 1 (2023): 518.
|
| [223] |
G. Liu, C. Tian, X. Fan, et al., “Photocontrolled Reversibly Chiral-Ordered Assembly Based on Cucurbituril,” JACS Au 3, no. 9 (2023): 2550-2556.
|
| [224] |
H. Xu, H. Lu, Q. Zhang, et al., “Surfactant-Induced Chirality Transfer, Amplification and Inversion in a Cucurbit[8]uril-Viologen Host-Guest Supramolecular System,” Journal of Materials Chemistry C 10, no. 7 (2022): 2763-2774.
|
| [225] |
C. Xu, C. Yin, W. Wu, et al., “Tunable Room-Temperature Phosphorescence and Circularly Polarized Luminescence Encoding Helical Supramolecular Polymer,” Science China Chemistry 65, no. 1 (2022): 75-81.
|
| [226] |
W.-H. Huang, S. Liu, P. Y. Zavalij, et al., “Nor-Seco-Cucurbit[10]uril Exhibits Homotropic Allosterism,” Journal of the American Chemical Society 128, no. 46 (2006): 14744-14745.
|
| [227] |
I. El-Barghouthi Musa, M. Abdel-Halim Hamzeh, J. Haj-Ibrahim Feryal, et al., “Molecular Dynamics of Nor-Seco-Cucurbit[10]uril Complexes,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 82 (2015): 323-333.
|
| [228] |
W.-H. Huang, Y. Zavalij Peter, and L. Isaacs, “Metal-Ion-Induced Folding and Dimerization of a Glycoluril Decamer in Water,” Organic Letters 11, no. 17 (2009): 3918-3921.
|
| [229] |
X.-J. Cheng, L.-L. Liang, K. Chen, et al., “Twisted Cucurbit[14]uril,” Angewandte Chemie International Edition 52, no. 28 (2013): 7252-7255.
|
| [230] |
Q. Li, S.-C. Qiu, J. Zhang, et al., “Twisted Cucurbit[n]urils,” Organic Letters 18, no. 16 (2016): 4020-4023.
|
| [231] |
W. Zhang, M.-Q. Liu, and Y. Luo, “Supramolecular Light-Harvesting Systems Based on Cucurbit[n]urils: SS-FRET and TS-FRET Mechanisms and Functional Applications,” Coordination Chemistry Reviews 533 (2025): 216555.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.