Impact of Host–Emitter Interactions on Light Amplification in Laser Dyes

Masashi Mamada , Ayano Abe , Takashi Fujihara , Tatsuya Yoshida , Kenichi Goushi , Kiyoshi Miyata , Ken Onda , Chihaya Adachi

Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70030

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70030 DOI: 10.1002/agt2.70030
RESEARCH ARTICLE

Impact of Host–Emitter Interactions on Light Amplification in Laser Dyes

Author information +
History +
PDF

Abstract

Organic lasers hold great promise for enabling a new class of future optoelectronics. Consequently, the development of new organic semiconductors as gain media has recently been the subject of significant interest. The molecular design principle based on Einstein coefficients has been validated for achieving high gain, with para-phenylene-vinylene scaffolds recognized as one of the most crucial frameworks. In this study, we develop a stilbene tetramer derivative, QSBCz, which has significantly increased conjugation compared to the highly efficient laser material, BSBCz, resulting in a remarkably high radiative decay rate and a large gain cross-section. However, we find that the optical losses play a significant role in the light amplification of QSBCz. Indeed, a comprehensive understanding and suppression of detrimental optical loss pathways throughout the lasing process are essential, whereas the losses intrinsically associated with molecules have not been well considered. Although host–guest systems are helpful in preventing concentration quenching in aggregated states, this study reveals notable losses when using common host molecules such as 4,4′-bis(9H-carbazol-9-yl)biphenyl (CBP) and mCBP. In contrast, a BSBCz derivative is successfully employed as the host, leading to improved stimulated emission amplification. These findings indicate the importance of host–emitter interactions in lasing properties and highlight the necessity to optimize host materials for developing new laser dyes.

Keywords

amplified spontaneous emission threshold / host–guest / organic laser dye / phenylene-vinylene / stilbene

Cite this article

Download citation ▾
Masashi Mamada, Ayano Abe, Takashi Fujihara, Tatsuya Yoshida, Kenichi Goushi, Kiyoshi Miyata, Ken Onda, Chihaya Adachi. Impact of Host–Emitter Interactions on Light Amplification in Laser Dyes. Aggregate, 2025, 6(5): e70030 DOI:10.1002/agt2.70030

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Baldo, R. J. Holmes, and S. R. Forrest, “Prospects for Electrically Pumped Organic Lasers,” Physical Review B 66 (2002): 035321.

[2]

I. D. W. Samuel and G. A. Turnbull, “Organic Semiconductor Lasers,” Chemical Reviews 107 (2007): 1272-1295.

[3]

S. Chénais and S. Forget, “Recent Advances in Solid-State Organic Lasers,” Polymer International 61 (2012): 390-406.

[4]

A. J. C. Kuehne and M. C. Gather, “Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques,” Chemical Reviews 116 (2016): 12823-12864.

[5]

Y. Jiang, Y.-Y. Liu, X. Liu, et al., “Organic Solid-State Lasers: A Materials View and Future Development,” Chemical Society Reviews 49 (2020): 5885-5944.

[6]

W. B. Gunnarsson, K. R. L. Zhao, J. P. Murphy, A. J. Grede, N. C. Giebink, and B. P. Rand, “Toward Nonepitaxial Laser Diodes,” Chemical Reviews 123 (2023): 7548-7584.

[7]

X. Tang, C. A. M. Senevirathne, T. Matsushima, A. S. D. Sandanayaka, and C. Adachi, “Progress and Perspective Toward Continuous-Wave Organic Solid-State Lasers,” Advanced Materials 36 (2024): 2211873.

[8]

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing From conjugated-polymer microcavities,” Nature 382 (1996): 695-697.

[9]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273 (1996): 1833-1836.

[10]

F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, “White Light From InGaN/Conjugated Polymer Hybrid Light-Emitting Diodes,” Applied Physics Letters 70 (1997): 2664-2666.

[11]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid Optoelectronics: A Polymer Laser Pumped by a Nitride Light-Emitting Diode,” Applied Physics Letters 92 (2008): 163306.

[12]

K. Yoshida, J. Gong, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “Electrically Driven Organic Laser Using Integrated OLED Pumping,” Nature 621 (2023): 746-752.

[13]

A. S. D. Sandanayaka, T. Matsushima, S. T. F. Bencheikh, et al., “Indication of Current-Injection Lasing From an Organic Semiconductor,” Applied Physics Express 12 (2019): 061010.

[14]

K. S. Daskalakis, S. A. Maier, R. Murray, and S. Kéna-Cohen, “Nonlinear Interactions in an Organic Polariton Condensate,” Nature Materials 13 (2014): 271-278.

[15]

M. Wei, M. Fang, S. K. Rajendran, W.-Y. Lai, G. A. Turnbull, and I. D. W. Samuel, “Room Temperature Polariton Lasing in Ladder-Type Oligo(p -Phenylene)s With Different π-Conjugation Lengths,” Advanced Photonics Research 2 (2020): 2000044.

[16]

M. Wei, A. Ruseckas, V. T. N. Mai, et al., “Low Threshold Room Temperature Polariton Lasing From Fluorene-Based Oligomers,” Laser & Photonics Reviews 15 (2021): 2100028.

[17]

T. Ishii, K. Miyata, M. Mamada, et al., “Low-Threshold Exciton-Polariton Condensation Via Fast Polariton Relaxation in Organic Microcavities,” Advanced Optical Materials 10 (2022): 2102034.

[18]

S. Park, O.-H. Kwon, S. Kim, et al., “Imidazole-Based Excited-State Intramolecular Proton-Transfer Materials:  Synthesis and Amplified Spontaneous Emission From a Large Single Crystal,” Journal of the American Chemical Society 127 (2005): 10070-10074.

[19]

F. Laquai, A. K. Mishra, K. Müllen, and R. H. Friend, “Amplified Spontaneous Emission of Poly(Ladder-Type Phenylene)s—The Influence of Photophysical Properties on ASE Thresholds,” Advanced Functional Materials 18 (2008): 3265-3275.

[20]

M. Uchimura, Y. Watanabe, F. Araoka, J. Watanabe, H. Takezoe, and G. Konishi, “Development of Laser Dyes to Realize Low Threshold in Dye-Doped Cholesteric Liquid Crystal Lasers,” Advanced Materials 22 (2010): 4473-4478.

[21]

S. Hotta and T. Yamao, “The Thiophene/Phenylene Co-Oligomers: Exotic Molecular Semiconductors Integrating High-Performance Electronic and Optical Functionalities,” Journal of Materials Chemistry 21 (2011): 1295-1304.

[22]

W. Zhang, Y. Yan, J. Gu, J. Yao, and Y. S. Zhao, “Low-Threshold Wavelength-Switchable Organic Nanowire Lasers Based on Excited-State Intramolecular Proton Transfer,” Angewandte Chemie International Edition 54 (2015): 7125-7129.

[23]

X. Cheng, K. Wang, S. Huang, H. Zhang, H. Zhang, and Y. Wang, “Organic Crystals With Near-Infrared Amplified Spontaneous Emissions Based on 2′-Hydroxychalcone Derivatives: Subtle Structure Modification but Great Property Change,” Angewandte Chemie International Edition 54 (2015): 8369-8373.

[24]

J. Gierschner, S. Varghese, and S. Y. Park, “Organic Single Crystal Lasers: A Materials View,” Advanced Optical Materials 4 (2016): 348-364.

[25]

D.-H. Kim, A. D'Aléo, X.-K. Chen, et al., “High-Efficiency Electroluminescence and Amplified Spontaneous Emission From a Thermally Activated Delayed Fluorescent Near-Infrared Emitter,” Nature Photonics 12 (2018): 98-104.

[26]

V. T. N. Mai, A. Shukla, M. Mamada, et al., “Low Amplified Spontaneous Emission Threshold and Efficient Electroluminescence From a Carbazole Derivatized Excited-State Intramolecular Proton Transfer Dye,” ACS Photonics 5 (2018): 4447-4455.

[27]

V. Bonal, R. Muñoz-Mármol, F. G. Gámez, et al., “Solution-Processed Nanographene Distributed Feedback Lasers,” Nature Communications 10 (2019): 3327.

[28]

X. Tang, Y.-T. Lee, Z. Feng, et al., “Color-Tunable Low-Threshold Amplified Spontaneous Emission From Yellow to Near-Infrared (NIR) Based on Donor-Spacer-Acceptor-Spacer-Donor Linear Dyes,” ACS Materials Letters 2 (2020): 1567-1574.

[29]

B. S. B. Karunathilaka, U. Balijapalli, C. A. M. Senevirathne, et al., “An Organic Laser Dye having a Small Singlet-Triplet Energy Gap Makes the Selection of a Host Material Easier,” Advanced Functional Materials 30 (2020): 2001078.

[30]

Y. Zou, V. Bonal, S. M. Quintero, et al., “Perylene-Fused, Aggregation-Free Polycyclic Aromatic Hydrocarbons for Solution-Processed Distributed Feedback Lasers,” Angewandte Chemie International Edition 59 (2020): 14927-14934.

[31]

Z. Zhou, C. Qiao, K. Wang, et al., “Experimentally Observed Reverse Intersystem Crossing-Boosted Lasing,” Angewandte Chemie International Edition 59 (2020): 21677-21682.

[32]

Y. Li, K. Wang, Q. Liao, et al., “Tunable Triplet-Mediated Multicolor Lasing From Nondoped Organic TADF Microcrystals,” Nano Letters 21 (2021): 3287-3294.

[33]

R. Aoki, R. Komatsu, K. Goushi, et al., “Realizing Near-Infrared Laser Dyes Through a Shift in Excited-State Absorption,” Advanced Optical Materials 9 (2021): 2001947.

[34]

R. Muñoz-Mármol, F. Gordillo, V. Bonal, et al., “Near-Infrared Lasing in Four-Zigzag Edged Nanographenes by 1D versus 2D Electronic π-Conjugation,” Advanced Functional Materials 31 (2021): 2105073.

[35]

G. M. Paternò, Q. Chen, R. Muñoz-Mármol, et al., “Excited States Engineering Enables Efficient Near-Infrared Lasing in Nanographenes,” Materials Horizons 9 (2022): 393-402.

[36]

B. Donoso, V. Bonal, I. Torres-Moya, et al., “Donor-Acceptor Naphthalimides and Peryleneimides for All-Solution-Processed Thin Film Lasers,” Journal of Materials Chemistry C 10 (2022): 16004-16015.

[37]

A. Shukla, V. T. N. Mai, V. V. Divya, et al., “Amplified Spontaneous Emission From Zwitterionic Excited-State Intramolecular Proton Transfer,” Journal of the American Chemical Society 144 (2022): 13499-13510.

[38]

M. Mamada, S. Maedera, S. Oda, et al., “A Very Low Lasing Threshold of DABNA Derivatives With DFB Structures,” Materials Chemistry Frontiers 7 (2023): 259-266.

[39]

X. Tang, M. Xie, Z. Lin, et al., “A Rigid Multiple Resonance Thermally Activated Delayed Fluorescence Core Toward Stable Electroluminescence and Lasing,” Angewandte Chemie International Edition 63 (2024): e202315210.

[40]

L. Cui, A. Horioka, R. Ishimatsu, et al., “Advanced Molecular Design for Efficient Multicolor Electrochemiluminescence and Amplified Spontaneous Emission Based on Tetra-BF 2 Complexes,” Advanced Optical Materials 12 (2024): 2302803.

[41]

N. R. Wallwork, A. Shukla, R. B. Roseli, et al., “A New Organic Laser Material Design Toward Ultra-Low Amplified Spontaneous Red Emission and Ultra-Bright Electroluminescence,” Small 20 (2024): 2406817.

[42]

F. Strieth-Kalthoff, H. Hao, V. Rathore, et al., “Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters,” Science 384 (2024): eadk9227.

[43]

A. V. Deshpande, A. Beidoun, A. Penzkofer, and G. Wagenblast, “Absorption and Emission Spectroscopic Investigation of Cyanovinyldiethylaniline Dye Vapors,” Chemical Physics 142 (1990): 123-131.

[44]

X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-Threshold Amplified Spontaneous Emission and Laser Emission in a Polyfluorene Derivative,” Applied Physics Letters 84 (2004): 2727-2729.

[45]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, and I. D. W. Samuel, “Nanoimprinted Organic Semiconductor Laser Pumped by a Light-Emitting Diode,” Advanced Materials 25 (2013): 2826-2830.

[46]

M. Morales-Vidal, P. G. Boj, J. M. Villalvilla, et al., “Carbon-Bridged Oligo(p-Phenylenevinylene)s for Photostable and Broadly Tunable, Solution-Processable Thin Film Organic Lasers,” Nature Communications 6 (2015): 8458.

[47]

D.-H. Kim, A. S. D. Sandanayaka, L. Zhao, et al., “Extremely Low Amplified Spontaneous Emission Threshold and Blue Electroluminescence From a Spin-Coated Octafluorene Neat Film,” Applied Physics Letters 110 (2017): 023303.

[48]

M. Mamada, R. Komatsu, and C. Adachi, “F8BT Oligomers for Organic Solid-State Lasers,” ACS Applied Materials & Interfaces 12 (2020): 28383-28391.

[49]

A. Shukla, V. T. N. Mai, A. M. C. Senevirathne, et al., “Low Amplified Spontaneous Emission and Lasing Thresholds From Hybrids of Fluorenes and Vinylphenylcarbazole,” Advanced Optical Materials 8 (2020): 2000784.

[50]

M. Mamada, H. Nakanotani, and C. Adachi, “Amplified Spontaneous Emission From Oligo(p -Phenylenevinylene) Derivatives,” Materials Advances 2 (2021): 3906-3914.

[51]

Q. Wei, Y. Li, J. Liu, et al., “A High Performance Deep Blue Organic Laser Gain Material,” Advanced Optical Materials 5 (2017): 1601003.

[52]

V. Bonal, M. Morales-Vidal, P. G. Boj, et al., “Kinetically Protected Carbon-Bridged Oligo(p-Phenylenevinylene) Derivatives for Blue Color Amplified Spontaneous Emission,” Bulletin of the Chemical Society of Japan 93 (2020): 751-758.

[53]

Y. Sugai, V. P. Rahane, I. Gale, et al., “End Cap Effect on Solution-Processable Deep Blue Lasing Materials With Low-Amplified Spontaneous Emission Thresholds,” ACS Applied Materials & Interfaces 16 (2024): 46506-46515.

[54]

T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, and C. Adachi, “100% Fluorescence Efficiency of 4,4′-bis[(N-Carbazole)Styryl]biphenyl in a Solid Film and the Very Low Amplified Spontaneous Emission Threshold,” Applied Physics Letters 86 (2005): 071110.

[55]

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, et al., “Toward Continuous-Wave Operation of Organic Semiconductor Lasers,” Science Advances 3 (2017): e1602570.

[56]

H. Nakanotani, S. Akiyama, D. Ohnishi, et al., “Extremely Low-Threshold Amplified Spontaneous Emission of 9,9′-Spirobifluorene Derivatives and Electroluminescence From Field-Effect Transistor Structure,” Advanced Functional Materials 17 (2007): 2328-2335.

[57]

T. Xu, M. J. Wei, H. Zhang, Y. Q. Zheng, G. Chen, and B. Wei, “Concentration-Dependent, Simultaneous Multi-Wavelength Amplified Spontaneous Emission in Organic Thin Films Using Förster Resonance Energy Transfer,” Applied Physics Letters 107 (2015): 123301.

[58]

V. T. N. Mai, A. Shukla, A. M. C. Senevirathne, et al., “Lasing Operation Under Long-Pulse Excitation in Solution-Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors,” Advanced Optical Materials 8 (2020): 2001234.

[59]

Y. Oyama, M. Mamada, A. Kondo, and C. Adachi, “Advantages of Naphthalene as a Building Block for Organic Solid State Laser Dyes: Smaller Energy Gaps and Enhanced Stability,” Journal of Materials Chemistry C 9 (2021): 4112-4118.

[60]

S. K. M. McGregor, C. Govind, M. K. R. Wood, et al., “Structural Integration of Carbazole and Tetraphenylethylene: Ultrafast Excited-State Relaxation Dynamics and Efficient Electroluminescence,” Advanced Photonics Research 2 (2021): 2000144.

[61]

Y. Oyama, M. Mamada, A. Shukla, et al., “Design Strategy for Robust Organic Semiconductor Laser Dyes,” ACS Materials Letters 2 (2020): 161-167.

[62]

M. Mamada, T. Fukunaga, F. Bencheikh, A. S. D. Sandanayaka, and C. Adachi, “Low Amplified Spontaneous Emission Threshold From Organic Dyes Based on Bis-Stilbene,” Advanced Functional Materials 28 (2018): 1802130.

[63]

R. Muñoz-Mármol, N. Zink-Lorre, J. M. Villalvilla, et al., “Influence of Blending Ratio and Polymer Matrix on the Lasing Properties of Perylenediimide Dyes,” Journal of Physical Chemistry C 122 (2018): 24896-24906.

[64]

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of Doped Organic Thin Films,” Journal of Applied Physics 65 (1989): 3610-3616.

[65]

R. Iwai, S. Suzuki, S. Sasaki, et al., “Bridged Stilbenes: AIEgens Designed Via a Simple Strategy to Control the Non-Radiative Decay Pathway,” Angewandte Chemie International Edition 59 (2020): 10566-10573.

[66]

S. S. Babu, J. Aimi, H. Ozawa, et al., “Solvent-Free Luminescent Organic Liquids,” Angewandte Chemie International Edition 51 (2012): 3391-3395.

[67]

P. J. Low, M. A. J. Paterson, D. S. Yufit, et al., “Towards an Understanding of Structure-Property Relationships in Hole-Transport Materials: The Influence of Molecular Conformation on Oxidation Potential in Poly(aryl)amines,” Journal of Materials Chemistry 15 (2005): 2304-2315.

[68]

C. J. Gleason, J. M. Cox, I. M. Walton, and J. B. Benedict, “Polymorphism and the Influence of Crystal Structure on the Luminescence of the Opto-Electronic Material 4,4′-bis(9-carbazolyl)Biphenyl,” Crystal Engineering Communications 16 (2014): 7621-7625.

[69]

N. Van den Brande, A. Gujral, C. Huang, et al., “Glass Structure Controls Crystal Polymorph Selection in Vapor-Deposited Films of 4,4′-Bis(N-Carbazolyl)-1,1′-Biphenyl,” Crystal Growth & Design 18 (2018): 5800.

[70]

H. Hirayama, Y. Sugawara, Y. Miyashita, M. Mitsuishi, and T. Miyashita, “Direct Observation of Back Energy Transfer in Blue Phosphorescent Materials for Organic Light Emitting Diodes by Time-Resolved Optical Waveguide Spectroscopy,” Applied Physics Letters 102 (2013): 081124.

[71]

X. Wu, B.-K. Su, D.-G. Chen, et al., “The Role of Host-Guest Interactions in Organic Emitters Employing MR-TADF,” Nature Photonics 15 (2021): 780-786.

[72]

V. T. N. Mai, V. Ahmad, M. Mamada, et al., “Solid Cyclooctatetraene-Based Triplet Quencher Demonstrating Excellent Suppression of Singlet-Triplet Annihilation in Optical and Electrical Excitation,” Nature Communications 11 (2020): 5623.

[73]

J.-X. Wang, Y.-G. Fang, C.-X. Li, et al., “Time-Dependent Afterglow Color in a Single-Component Organic Molecular Crystal,” Angewandte Chemie International Edition 59 (2020): 10032-10036.

[74]

Y. Kawamura, H. Yamamoto, K. Goushi, H. Sasabe, C. Adachi, and H. Yoshizaki, “Ultraviolet Amplified Spontaneous Emission From thin Films of 4,4′-bis(9-Carbazolyl)-2,2′-Biphenyl and the Derivatives,” Applied Physics Letters 84 (2004): 2724-2726.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/