Designed Biomaterial-Enhanced Cell Transplantation for Neural Tissue Engineering

Yun Tang , Alice Le Friec , Menglin Chen , Di Sun

Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70022

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70022 DOI: 10.1002/agt2.70022
REVIEW

Designed Biomaterial-Enhanced Cell Transplantation for Neural Tissue Engineering

Author information +
History +
PDF

Abstract

Cell transplantation therapy in the central nervous system is hindered by limited survival and integration of grafted cells. Biomaterials have emerged as an attractive solution to this problem by providing a protective microenvironment to deliver cells to injured tissues. The design of biomaterials compatible with nervous tissues to promote tissue repair and functional recovery is a focus of neural tissue engineering. A wealth of research has explored different materials and architectures in combination with bioactive cues to promote neural and glial cell growth and maturation. After a brief presentation of biomaterial strategies and cell sources, we review the in vivo evidences about the efficacy of biomaterial and stem cell cotransplantation in (i) enhancing trophic effects, (ii) increasing cell integration, and (iii) achieving functional recovery in preclinical models of stroke, traumatic brain injury, Parkinson's disease, and spinal cord injury. Furthermore, a comprehensive perspective was offered regarding the specific implementation tactics, obstacles, and development orientations of employing biomaterials as critical support to promote cell transplantation.

Keywords

biomaterial-enhanced cell transplantation / central nervous system repair / neural tissue engineering / trophic effects / functional recovery

Cite this article

Download citation ▾
Yun Tang, Alice Le Friec, Menglin Chen, Di Sun. Designed Biomaterial-Enhanced Cell Transplantation for Neural Tissue Engineering. Aggregate, 2025, 6(5): e70022 DOI:10.1002/agt2.70022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. L. Feigin, M. S. Bannick, et al., “Global, Regional, and National Burden of Neurological Disorders, 1990-2016: a Systematic Analysis for the Global Burden of Disease Study 2016,” The Lancet Neurology 18 (2019): 459-480, https://doi.org/10.1016/S1474-4422(18)30499-X.

[2]

M. Modo, R. P. Stroemer, E. Tang, S. Patel, and H. Hodge, “Effects of Implantation Site of Dead Stem Cells in Rats With Stroke Damage,” Neuroreport 14 (2003): 39-42, https://journals.lww.com/neuroreport/fulltext/2003/01200/effects_of_implantation_site_of_dead_stem_cells_in.7.aspx.

[3]

R. Ye, Z. Zhu, T. Gu, et al., “Neutrophil Extracellular Traps-inspired DNA Hydrogel for Wound Hemostatic Adjuvant,” Nature Communications 15 (2024): 5557, https://doi.org/10.1038/s41467-024-49933-3.

[4]

J. S. Liu, R. J. Yan, B. X. Wang, et al., “Decellularized Extracellular Matrix Enriched With GDNF Enhances Neurogenesis and Remyelination for Improved Motor Recovery After Spinal Cord Injury,” Acta Biomaterialia 180 (2024): 308-322, https://doi.org/10.1016/j.actbio.2024.04.015.

[5]

S. Maharjan, C. Ma, B. Singh, et al., “Advanced 3D Imaging and Organoid Bioprinting for Biomedical Research and Therapeutic Applications,” Advanced Drug Delivery Reviews 208 (2024): 115237, https://doi.org/10.1016/j.addr.2024.115237.

[6]

A. K. Podder, M. A. Mohamed, R. A. Seidman, et al., “Injectable Shear-Thinning Hydrogels Promote Oligodendrocyte Progenitor Cell Survival and Remyelination in the central Nervous System,” Science Advances 10 (2024): eadk9918, https://www.science.org/doi/10.1126/sciadv.adk9918.

[7]

D. M. Hoang, P. T. Pham, T. Q. Bach, et al., “Stem Cell-Based Therapy for Human Diseases,” Signal Transduction and Targeted Therapy 7 (2022): 272, https://doi.org/10.1038/s41392-022-01134-4.

[8]

A. Uccelli, F. Benvenuto, A. Laroni, and D. Giunti, “Neuroprotective Features of Mesenchymal Stem Cells,” Best Practice & Research Clinical Haematology 24 (2011): 59-64, https://doi.org/10.1016/j.beha.2011.01.004.

[9]

U. Ben-David, O. Kopper, and N. Benvenisty, “Expanding the Boundaries of Embryonic Stem Cells,” Cell Stem Cell 10 (2012): 666-677, https://doi.org/10.1016/j.stem.2012.05.003.

[10]

J. Yang, S. Li, X. B. He, C. Chen, and W. Le, “Induced Pluripotent Stem Cells in Alzheimer's Disease: Applications for Disease Modeling and Cell-replacement Therapy,” Molecular Neurodegeneration 11 (2016): 39, https://doi.org/10.1186/s13024-016-0106-3.

[11]

E. Cook, L. Langenberg, N. Luebbering, et al., “Oxidative Stress Early after Hematopoietic Stem Cell Transplant,” Transplantation and Cellular Therapy (2025): 2666-6367, https://doi.org/10.1016/j.jtct.2025.01.880.

[12]

W. Gao, M. W. Kim, T. Dykstra, et al., “Engineered T Cell Therapy for central Nervous System Injury,” Nature 634 (2024): 693-701, https://doi.org/10.1038/s41586-024-07906-y.

[13]

A. Genchi, E. Brambilla, F. Sangalli, et al., “Neural Stem Cell Transplantation in Patients With Progressive Multiple Sclerosis: an Open-label, Phase 1 Study,” Nature Medicine 29 (2023): 75-85, https://doi.org/10.1038/s41591-022-02097-3.

[14]

R. Tashiro, J. Bautista-Garrido, D. Ozaki, et al., “Transplantation of Astrocytic Mitochondria Modulates Neuronal Antioxidant Defense and Neuroplasticity and Promotes Functional Recovery After Intracerebral Hemorrhage,” Journal of Neuroscience 42 (2022): 7001-7014, https://doi.org/10.1523/JNEUROSCI.2222-21.2022.

[15]

Y. R. Nam, M. Kang, M. Kim, et al., “Preparation of human Astrocytes With Potent Therapeutic Functions From human Pluripotent Stem Cells Using Ventral Midbrain Patterning,” Journal of Advanced Research (2024), https://doi.org/10.1016/j.jare.2024.03.012.

[16]

S. Liu, H. Yang, D. Chen, et al., “Three-dimensional Bioprinting Sodium Alginate/Gelatin Scaffold Combined With Neural Stem Cells and Oligodendrocytes Markedly Promoting Nerve Regeneration After Spinal Cord Injury,” Regenerative Biomaterials 9 (2022): rbac038, https://doi.org/10.1093/rb/rbac038.

[17]

N. Rouleau, N. J. Murugan, and D. L. Kaplan, “Functional Bioengineered Models of the central Nervous System,” Nature Reviews Bioengineering 1 (2023): 252-270, https://doi.org/10.1038/s44222-023-00027-7.

[18]

P. Y. Xu, R. K. Kankala, S. B. Wang, and A. Z. Chen, “Decellularized Extracellular Matrix-Based Composite Scaffolds for Tissue Engineering and Regenerative Medicine,” Regenerative Biomaterials 11 (2024): rbad107, https://doi.org/10.1093/rb/rbad107.

[19]

D. Koser, A. Thompson, S. Foster, et al., “Mechanosensing is Critical for Axon Growth in the Developing Brain,” Nature Neuroscience 19 (2016): 1592-1598, https://doi.org/10.1038/nn.4394.

[20]

E. Moeendarbary, I. Weber, G. Sheridan, et al., “The Soft Mechanical Signature of Glial Scars in the Central Nervous System,” Nature Communications 8 (2017): 14787, https://doi.org/10.1038/ncomms14787.

[21]

Z. J. Chen, G. T. Gillies, W. C. Broaddus, et al., “A Realistic Brain Tissue Phantom for Intraparenchymal Infusion Studies,” Journal of Neurosurgery 101 (2004): 314-322, https://doi.org/10.3171/jns.2004.101.2.0314.

[22]

R. D. Bartlett, D. Eleftheriadou, J. B. Phillips, et al., “Mechanical Properties of the Spinal Cord and Brain: Comparison With Clinical-Grade Biomaterials for Tissue Engineering and Regenerative Medicine,” Biomaterials 258 (2020): 120303, https://doi.org/10.1016/j.biomaterials.2020.120303.

[23]

J. J. Xue, T. Wu, Y. Q. Dai, and Y. N. Xia, “Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications,” Chemical Reviews 119 (2019): 5298-5415, https://doi.org/10.1021/acs.chemrev.8b00593.

[24]

Z. Chen, L. Wang, C. Chen, et al., “NSC-derived Extracellular Matrix-modified GelMA Hydrogel Fibrous Scaffolds for Spinal Cord Injury Repair,” NPG Asia Materials 14 (2022): 20, https://doi.org/10.1038/s41427-022-00368-6.

[25]

M. Zhou, M. Huang, H. Zhong, et al., “Contact Separation Triboelectric Nanogenerator Based Neural Interfacing for Effective Sciatic Nerve Restoration,” Advanced Functional Materials 32 (2022): 2200269, https://doi.org/10.1002/adfm.202200269.

[26]

J. Q. Qian, Z. Lin, Y. Y. Liu, et al., “Functionalization Strategies of Electrospun Nanofibrous Scaffolds for Nerve Tissue Engineering”, Smart Materials in Medicine 2 (2021): 260-279, https://doi.org/10.1016/j.smaim.2021.07.006.

[27]

S.-C. Huang, Y.-J. Zhu, X.-Y. Huang, X.-X. Xia, and Z.-G. Qian, “Programmable Adhesion and Morphing of Protein Hydrogels for Underwater Robots,” Nature Communications 15 (2024): 195, https://doi.org/10.1038/s41467-023-44564-6.

[28]

P. Silvia, I. Genta, T. Modena, R. Dorati, M. Benazzo, and B. Conti, “Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers”. International Journal of Molecular Sciences 23 (2022): 1290, https://doi.org/10.3390/ijms23031290.

[29]

F. Tettey, S. Saudi, D. Davies, et al., “Fabrication and Characterization of Zn Particle Incorporated Fibrous Scaffolds for Potential Application in Tissue Healing and Regeneration,” ACS Applied Materials & Interfaces 15 (2023): 48913-48929, https://doi.org/10.1021/acsami.3c09793.

[30]

Z. Ataie, S. Horchler, A. Jaberi, et al., “Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture,” Small 20 (2024): 2307928, https://doi.org/10.1002/smll.202307928.

[31]

J. Amagat, C. A. Müller, B. N. Jensen, et al., “Injectable 2D Flexible Hydrogel Sheets for Optoelectrical/Biochemical Dual Stimulation of Neurons,” Biomaterials Advances 146 (2023): 213284, https://doi.org/10.1016/j.bioadv.2023.213284.

[32]

J. Ye, S. Jin, W. Cai, et al., “Rationally Designed, Self-Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury,” Advanced Healthcare Materials 10 (2021): 2100242, https://doi.org/10.1002/adhm.202100242.

[33]

W. Eom, E. Lee, S. H. Lee, et al., “Carbon Nanotube-reduced Graphene Oxide fiber With High Torsional Strength From Rheological Hierarchy Control,” Nature Communications 12 (2021): 396, https://doi.org/10.1038/s41467-020-20518-0.

[34]

Z. Zhang, L. H. Klausen, M. Chen, and M. Dong, “Electroactive Scaffolds for Neurogenesis and Myogenesis: Graphene-Based Nanomaterials,” Small 14 (2018): 1801983, https://doi.org/10.1002/smll.201801983.

[35]

Z. Y. Zhang, R. D. Xu, Z. G. Wang, M. D. Dong, B. X. Cui, and M. Chen, “Visible-Light Neural Stimulation on Graphitic-Carbon Nitride/Graphene Photocatalytic Fibers,” ACS Applied Materials & Interfaces 2017 9 (2017): 34736-34743, https://doi.org/10.1021/acsami.7b12733.

[36]

J. Amagat, Y. C. Su, F. H. Svejsø, et al., “Self-snapping Hydrogel-based Electroactive Microchannels as Nerve Guidance Conduits,” Materials Today Bio 16 (2022): 100437, https://doi.org/10.1016/j.mtbio.2022.100437.

[37]

C. A. Müller, P. Li, Y. Wang, M. Dong, B. Tian, and M. Chen, “Bionic Opto-responsive fiber for Directing Neurite Growth,” Materials Today Nano 22 (2023): 100311, https://doi.org/10.1016/j.mtnano.2023.100311.

[38]

N. Wang, S. Zhang, A. F. Zhang, Z. Y. Yang, and X. G. Li, “Sodium Hyaluronate-CNTF Gelatinous Particles Promote Axonal Growth, Neurogenesis and Functional Recovery After Spinal Cord Injury,” Spinal Cord 52 (2014): 517-523, https://doi.org/10.1038/sc.2014.54.

[39]

B. Zhang, H. Zhang, Y. Hu, et al., “Decellularized Umbilical Cord Wrapped With Conductive Hydrogel for Peripheral Nerve Regeneration,” Aggregate 5 (2024): e674, https://doi.org/10.1002/agt2.674.

[40]

R S. Hsu, S J. Li, J H. Fang, et al., “Wireless Charging-Mediated Angiogenesis and Nerve Repair by Adaptable Microporous Hydrogels From Conductive Building Blocks,” Nature Communications 13 (2022): 5172, https://doi.org/10.1038/s41467-022-32912-x.

[41]

A. Carlson, N. Bennett, N. Francis, et al., “Generation and Transplantation of Reprogrammed Human Neurons in the Brain Using 3D Microtopographic Scaffolds,” Nature Communications 7 (2016): 10862, https://doi.org/10.1038/ncomms10862.

[42]

N. L. Francis, N. K. Bennett, A. Halikere, Z. P. Pang, and P. V. Moghe, “Self-Assembling Peptide Nanofiber Scaffolds for 3-D Reprogramming and Transplantation of Human Pluripotent Stem Cell-Derived Neurons,” ACS Biomaterials Science & Engineering 2 (2016): 1030-1038, https://doi.org/10.1021/acsbiomaterials.6b00156.

[43]

D. B. Hoban, B. Newland, T. C. Moloney, L. Howard, A. Pandit, and E. Dowd, “The Reduction in Immunogenicity of Neurotrophin Overexpressing Stem Cells After Intra-striatal Transplantation by Encapsulation in an in Situ Gelling Collagen Hydrogel,” Biomaterials 34 (2013): 9420-9429, https://doi.org/10.1016/j.biomaterials.2013.08.073.

[44]

Y. S. Gao, Y. Y. Wang, J. Y. Zhang, et al., “Advancing Neural Regeneration via Adaptable Hydrogels: Enriched With Mg2+ and Silk Fibroin to Facilitate Endogenous Cell Infiltration and Macrophage Polarization,” Bioactive Materials 33 (2024): 100-113, https://doi.org/10.1016/j.bioactmat.2023.10.026.

[45]

A. Carnicer-Lombarte, S. T. Chen, G. G. Malliaras, and D. G. Barone, “Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics,” Frontiers in Bioengineering and Biotechnology 9(2021): 622524, https://doi.org/10.3389/fbioe.2021.622524.

[46]

S. Sharma, A. Carmona, A. Skowronek, et al., “Apoptotic Signalling Targets the Post-Endocytic Sorting Machinery of the Death Receptor Fas/CD95,” Nature Communications 10 (2019): 3105, https://doi.org/10.1038/s41467-019-11025-y.

[47]

C. TRANSEURO and R. A. Barker, “Designing Stem-Cell-Based Dopamine Cell Replacement Trials for Parkinson's Disease,” Nature Medicine 25 (2019): 1045-1053, https://doi.org/10.1038/s41591-019-0507-2.

[48]

S. L. Payne, A. Tuladhar, J. M. Obermeyer, et al., “Initial Cell Maturity Changes Following Transplantation in a Hyaluronan-Based Hydrogel and Impacts Therapeutic Success in the Stroke-Injured Rodent Brain,” Biomaterials 192 (2019): 309-322, https://doi.org/10.1016/j.biomaterials.2018.11.020.

[49]

B. C. V. Campbell, D. A. De Silva, M. R. Macleod, et al., “Ischaemic Stroke,” Nature Reviews Disease Primers 5 (2019): 70, https://doi.org/10.1038/s41572-019-0118-8.

[50]

J. E. Burda and M. V. Sofroniew, “Reactive Gliosis and the Multicellular Response to CNS Damage and Disease,” Neuron 81 (2014): 229-248, https://doi.org/10.1016/j.neuron.2013.12.034.

[51]

S. A. Goldman, “Stem and Progenitor Cell-Based Therapy of the Central Nervous System: Hopes, Hype, and Wishful Thinking,” Cell Stem Cell 18 (2016): 174-188, https://doi.org/10.1016/j.stem.2016.01.012.

[52]

R. E. Hartman, N. H. Nathan, N. Ghosh, et al., “A Biomarker for Predicting Responsiveness to Stem Cell Therapy Based on Mechanism-of-Action: Evidence From Cerebral Injury,” Cell Reports 31 (2020): 107622, https://doi.org/10.1016/j.celrep.2020.107622.

[53]

J. Lam, W. E. Lowry, S. T. Carmichael, and T. Segura, “Delivery of iPS-NPCs to the Stroke Cavity Within a Hyaluronic Acid Matrix Promotes the Differentiation of Transplanted Cells,” Advanced Functional Materials 24 (2014): 7053-7062, https://doi.org/10.1002/adfm.201401483.

[54]

P. Moshayedi, L. R. Nih, I. L. Llorente, et al., “Systematic Optimization of an Engineered Hydrogel Allows for Selective Control of Human Neural Stem Cell Survival and Differentiation After Transplantation in the Stroke Brain,” Biomaterials 105 (2016): 145-155, https://doi.org/10.1016/j.biomaterials.2016.07.028.

[55]

L. Slgirim, S. Yun, K. I. Park, and J. Jang, “Sliding Fibers: Slidable, Injectable, and Gel-Like Electrospun Nanofibers as Versatile Cell Carriers,” ACS Nano 10 (2016): 3282-3294, https://doi.org/10.1021/acsnano.5b06605.

[56]

E. Bible, O. Qutachi, D. Y. S. Chau, M. R. Alexander, K. M. Shakesheff, and M. Modo, “Neo-Vascularization of the Stroke Cavity by Implantation of Human Neural Stem Cells on VEGF-Releasing PLGA Microparticles,” Biomaterials 33 (2012): 7435-7446, https://doi.org/10.1016/j.biomaterials.2012.06.085.

[57]

H. Ghuman, R. Matta, A. Tompkins, et al., “ECM Hydrogel Improves the Delivery of PEG Microsphere-Encapsulated Neural Stem Cells and Endothelial Cells Into Tissue Cavities Caused by Stroke,” Brain Research Bulletin 168 (2021): 120-137, https://doi.org/10.1016/j.brainresbull.2020.12.004.

[58]

P. Capetian, M. Döbrössy, C. Winkler, M. Prinz, and G. Nikkhah, “To Be or Not to Be Accepted: the Role of Immunogenicity of Neural Stem Cells Following Transplantation Into the Brain in Animal and Human Studies,” Seminars in Immunopathology 33 (2011): 619-626, https://doi.org/10.1007/s00281-011-0272-x.

[59]

R. A. Badin, A. Bugi, S. Williams, et al., “MHC Matching Fails to Prevent Long-Term Rejection of IPSC-Derived Neurons in Non-Human Primates,” Nature Communications 10 (2019): 4357, https://doi.org/10.1038/s41467-019-12324-0.

[60]

C. S. Qu, A. Mahmood, X. S. Liu, et al., “The Treatment of TBI With Human Marrow Stromal Cells Impregnated Into Collagen Scaffold: Functional Outcome and Gene Expression Profile,” Brain Research 1371 (2011): 129-139, https://doi.org/10.1016/j.brainres.2010.10.088.

[61]

C. C. Tate, D. A. Shear, M. C. Tate, D. R. Archer, D. G. Stein, and M. C. LaPlaca, “Laminin and Fibronectin Scaffolds Enhance Neural Stem Cell Transplantation Into the Injured Brain,” Journal of Tissue Engineering and Regenerative Medicine 3 (2009): 208-217, https://doi.org/10.1002/term.154.

[62]

M. I. Betancur, H. D. Mason, M. Alvarado-Velez, P. V. Holmes, R. V. Bellamkonda, and L. Karumbaiah, “Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury,” ACS Biomaterials Science & Engineering 3 (2017): 420-430, https://doi.org/10.1021/acsbiomaterials.6b00805.

[63]

J. C. Frankowski, A. Tierno, S. Pavani, Q. Cao, D. C. Lyon, and R. F. Hunt, “Brain-wide Reconstruction of Inhibitory Circuits After Traumatic Brain Injury,” Nature Communications 13 (2022): 3417, https://doi.org/10.1038/s41467-022-31072-2.

[64]

W. Poewe, K. Seppi, C. Tanner, et al., “Parkinson Disease,” Nature Reviews Disease Primers 3 (2017): 17013, https://doi.org/10.1038/nrdp.2017.13.

[65]

M. Parmar, S. Grealish, and C. Henchcliffe, “The Future of Stem Cell Therapies for Parkinson Disease,” Nature Reviews Neuroscience 21 (2020): 103-115, https://doi.org/10.1038/s41583-019-0257-7.

[66]

S. Polgar, M. Buultjens, T. Wijeratne, D. I. Finkelstein, S. Mohamed, and L. Karimi, “The Placebo Response in Double-Blind Randomised Trials Evaluating Regenerative Therapies for Parkinson's Disease: a Systematic Review and Meta-Analysis,” Journal of Parkinson's Disease 12 (2022): 759-759, https://doi.org/10.3233/JPD-212610.

[67]

J. Blesa and S. Przedborski, “Parkinson’s Disease: Animal Models and Dopaminergic Cell Vulnerability,” Frontiers in Neuroanatomy 8 (2014): 155, https://doi.org/10.3389/fnana.2014.00155.

[68]

T. Y. Wang, K. F. Bruggeman, J. A. Kauhausen, A. L. Rodriguez, D. R. Nisbet, and C. L. Parish, “Functionalized Composite Scaffolds Improve the Engraftment of Transplanted Dopaminergic Progenitors in a Mouse Model of Parkinson's disease,” Biomaterials 74 (2016): 89-98, https://doi.org/10.1016/j.biomaterials.2015.09.039.

[69]

N. Moriarty, A. Pandit, and E. Dowd, “Encapsulation of Primary Dopaminergic Neurons in a GDNF-Loaded Collagen Hydrogel Increases Their Survival, Re-Innervation and Function After Intra-Striatal Transplantation,” Scientific Reports 7 (2017): 16033, https://doi.org/10.1038/s41598-017-15970-w.

[70]

J. P. Harris, L. A. Struzyna, P. L. Murphy, D. O. Adewole, E. Kuo, and D. K. Cullen, “Advanced Biomaterial Strategies to Transplant Preformed Micro-Tissue Engineered Neural Networks Into the Brain,” Journal of Neural Engineering 13 (2016): 016019, https://doi.org/10.1088/1741-2560/13/1/016019.

[71]

K. S. Straley, C. W. Foo, and S. C. Heilshorn, “Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries,” Journal of Neurotrauma 27 (2010): 1-19, https://doi.org/10.1089/neu.2009.0948.

[72]

S. W. Liu, B. Sandner, T. Schackel, et al., “Regulated Viral BDNF Delivery in Combination With Schwann Cells Promotes Axonal Regeneration Through Capillary Alginate Hydrogels After Spinal Cord Injury,” Acta Biomaterialia 60 (2017): 167-180, https://doi.org/10.1016/j.actbio.2017.07.024.

[73]

S. Yi, Y. Yuan, Q. Chen, et al., “Regulation of Schwann Cell Proliferation and Migration by miR-1 Targeting Brain-derived Neurotrophic Factor After Peripheral Nerve Injury,” Scientific Reports 6 (2016): 29121, https://doi.org/10.1038/srep29121.

[74]

M. I. Gunther, N. Weidner, R. Muller, and A. Blesch, “Cell-Seeded Alginate Hydrogel Scaffolds Promote Directed Linear Axonal Regeneration in the Injured Rat Spinal Cord,” Acta Biomaterialia 27 (2015): 140-150, https://doi.org/10.1016/j.actbio.2015.09.001.

[75]

T. Schackel, P. Kumar, M. Günther, et al., “Peptides and Astroglia Improve the Regenerative Capacity of Alginate Gels in the Injured Spinal Cord,” Tissue Engineering Part A 25 (2019): 522-537, https://doi.org/10.1089/ten.tea.2018.0082.

[76]

A. J. Mothe, R. Y. Tam, T. Zahir, C. H. Tator, and M. S. Shoichet, “Repair of the Injured Spinal Cord by Transplantation of Neural Stem Cells in a Hyaluronan-Based Hydrogel,” Biomaterials 34 (2013): 3775-3783, https://doi.org/10.1016/j.biomaterials.2013.02.002.

[77]

F. Laura, P. José, M. Ricardo, et al., “Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals,” Frontiers in Cellular Neuroscience 12 (2018): 296, https://doi.org/10.3389/fncel.2018.00296.

[78]

P. M. George, T. M. Bliss, T. Hua, et al., “Electrical Preconditioning of Stem Cells With a Conductive Polymer Scaffold Enhances Stroke Recovery,” Biomaterials 142 (2017): 31-40, https://doi.org/10.1016/j.biomaterials.2017.07.020.

[79]

M. Quittet, O. Touzani, L. Sindji, et al., “Effects of Mesenchymal Stem Cell Therapy, in Association With Pharmacologically Active Microcarriers Releasing VEGF, in an Ischaemic Stroke Model in the Rat,” Acta Biomaterialia 15 (2015): 77-88, https://doi.org/10.1016/j.actbio.2014.12.017.

[80]

T. Osanai, S. Kuroda, H. Yasuda, et al., “Noninvasive Transplantation of Bone Marrow Stromal Cells for Ischemic Stroke,” Neurosurgery 66 (2010): 1140-1147, https://doi.org/10.1227/01.NEU.0000369610.76181.CF.

[81]

K. L. Wilson, N. I. Joseph, L. A. Onweller, et al., “SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis After Stroke,” Advanced Healthcare Materials 13 (2024): 2302081, https://doi.org/10.1002/adhm.202302081.

[82]

K. l. Jin, X. O. Mao, L. Xie, et al., “Transplantation of Human Neural Precursor Cells in Matrigel Scaffolding Improves Outcome From Focal Cerebral Ischemia After Delayed Postischemic Treatment in Rats,” Journal of Cerebral Blood Flow & Metabolism 30 (2010): 534-544, https://doi.org/10.1038/jcbfm.2009.219.

[83]

H. W. Yu, B. Cao, M. Y. Feng, et al., “Combinated Transplantation of Neural Stem Cells and Collagen Type I Promote Functional Recovery after Cerebral Ischemia in Rats,” The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 293 (2010): 911-917, https://doi.org/10.1002/ar.20941.

[84]

C. Davoust, B. Plas, A. Béduer, et al., “Regenerative Potential of Primary Adult Human Neural Stem Cells on Micropatterned Bio-Implants Boosts Motor Recovery,” Stem Cell Research & Therapy 8 (2017): 253, https://doi.org/10.1186/s13287-017-0702-3.

[85]

L. Vaysse, A. Beduer, J. C. Sol, C. Vieu, and I. Loubinoux, “Micropatterned Bioimplant With Guided Neuronal Cells to Promote Tissue Reconstruction and Improve Functional Recovery After Primary Motor Cortex Insult,” Biomaterials 58 (2015): 46-53, https://doi.org/10.1016/j.biomaterials.2015.04.019.

[86]

A. C. Bolte, A. B. Dutta, M. E. Hurt, et al., “Meningeal Lymphatic Dysfunction Exacerbates Traumatic Brain Injury Pathogenesis,” Nature Communications 11 (2020): 4524, https://doi.org/10.1038/s41467-020-18113-4.

[87]

N. S. Sahab, P. Oliazadeh, J. A. Jahanbazi, et al., “Transplantation of Human Meningioma Stem Cells Loaded on a Self-Assembling Peptide Nanoscaffold Containing IKVAV Improves Traumatic Brain Injury in Rats,” Acta Biomaterialia 92 (2019): 132-144, https://doi.org/10.1016/j.actbio.2019.05.010.

[88]

N. S. Sahab, M. M. Shirzad, G. Biglari, et al., “Transplantation of R-GSIK Scaffold With Mesenchymal Stem Cells Improves Neuroinflammation in a Traumatic Brain Injury Model,” Cell and Tissue Research 382 (2020): 575-583, https://doi.org/10.1007/s00441-020-03247-0.

[89]

J. Guan, Z. H. Zhu, R. C. Zhao, et al., “Transplantation of Human Mesenchymal Stem Cells Loaded on Collagen Scaffolds for the Treatment of Traumatic Brain Injury in Rats,” Biomaterials 34 (2013): 5937-5946, https://doi.org/10.1016/j.biomaterials.2013.04.047.

[90]

N. Moriarty, C. L. Parish, and E. Dowd, “Primary Tissue for Cellular Brain Repair in Parkinson's disease: Promise, Problems and the Potential of Biomaterials,” European Journal of Neuroscience 49 (2019): 472-486, https://doi.org/10.1111/ejn.14051.

[91]

N. L. Francis, N. X. Zhao, H. R. Calvelli, et al., “Peptide-Based Scaffolds for the Culture and Transplantation of Human Dopaminergic Neurons,” Tissue Engineering Part A 26 (2020): 193-205, https://doi.org/10.1089/ten.tea.2019.0094.

[92]

C. S. Ahuja, J. R. Wilson, S. Nori, et al., “Traumatic Spinal Cord Injury,” Nature Reviews Disease Primers 3 (2017): 17018, https://doi.org/10.1038/nrdp.2017.18.

[93]

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats,” Journal of Neurotrauma 12 (1995): 1-21, https://doi.org/10.1089/neu.1995.12.1.

[94]

D. M. Basso, L. C. Fisher, A. J. Anderson, L. B. Jakeman, D. M. Mctigue, and P. G. Popovich, “Basso Mouse Scale for Locomotion Detects Differences in Recovery After Spinal Cord Injury in Five Common Mouse Strains,” Journal of Neurotrauma 23 (2006): 635-659, https://doi.org/10.1089/neu.2006.23.635.

[95]

Y. D. Teng, E. B. Lavik, X. Qu, et al., “Functional Recovery Following Traumatic Spinal Cord Injury Mediated by a Unique Polymer Scaffold Seeded With Neural Stem Cells,” Proceedings of the National Academy of Sciences of the United States of America 99 (2002): 3024-3029, https://doi.org/10.1073/pnas.052678899.

[96]

K. Sugai, S. Nishimura, H. Onoe, et al., “Neural Stem/Progenitor Cell-Laden Microfibers Promote Transplant Survival in a Mouse Transected Spinal Cord Injury Model,” Journal of Neuroscience Research 93 (2015): 1826-1838, https://doi.org/10.1002/jnr.23636.

[97]

H. E. Olson, G. E. Rooney, L. Gross, et al., “Neural Stem Cell- and Schwann Cell-Loaded Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal Cord,” Tissue Engineering Part A 15 (2009): 1797-1805, https://doi.org/10.1089/ten.tea.2008.0364.

[98]

K. Menezes, B. G. Rosa, C. Freitas, et al., “Human Mesenchymal Stromal/Stem Cells Recruit Resident Pericytes and Induce Blood Vessels Maturation to Repair Experimental Spinal Cord Injury in Rats,” Scientific Reports 10 (2020): 19604, https://doi.org/10.1038/s41598-020-76290-0.

[99]

Z. Ayar, Z. Hassannejad, F. Shokraneh, N. Saderi, and V. Rahimi-Movaghar, “Efficacy of Hydrogels for Repair of Traumatic Spinal Cord Injuries: a Systematic Review and Meta-Analysis,” Journal of Biomedial Materials Research 110 (2022): 1460-1478, https://doi.org/10.1002/jbm.b.34993.

[100]

A. E. Ropper, D. K. Thakor, I. Han, et al., “Defining Recovery Neurobiology of Injured Spinal Cord by Synthetic Matrix-Assisted HMSC Implantation,” Proceedings of the National Academy of Sciences of the United States of America 114 (2017): E820-E829, https://doi.org/10.1073/pnas.1616340114.

[101]

N. N. Madigan, B. K. Chen, A. M. Knight, et al., “Comparison of Cellular Architecture, Axonal Growth, and Blood Vessel Formation through Cell-Loaded Polymer Scaffolds in the Transected Rat Spinal Cord,” Tissue Engineering Part A 20 (2014): 2985-2997, https://doi.org/10.1089/ten.tea.2013.0551.

[102]

J. S. Hakim, B. R. Rodysill, B. K. Chen, et al., “Combinatorial Tissue Engineering Partially Restores Function After Spinal Cord Injury,” Journal of Tissue Engineering and Regenerative Medicine 13 (2019): 857-873, https://doi.org/10.1002/term.2840.

[103]

J. E. Shin, K. Jung, M. Kim, et al., “Brain and Spinal Cord Injury Repair by Implantation of Human Neural Progenitor Cells Seeded Onto Polymer Scaffolds,” Experimental & Molecular Medicine 50 (2018): 1-18, https://doi.org/10.1038/s12276-018-0054-9.

[104]

J. Koffler, W. Zhu, X. Qu, et al., “Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair,” Nature Medicine 25 (2019): 263-269, https://doi.org/10.1038/s41591-018-0296-z.

[105]

A. Tuladhar, J. M. Obermeyer, S. L. Payne, et al., “Injectable Hydrogel Enables Local and Sustained Co-Delivery to the Brain: Two Clinically Approved Biomolecules, Cyclosporine and Erythropoietin, Accelerate Functional Recovery in Rat Model of Stroke,” Biomaterials 235 (2020): 119794, https://doi.org/10.1016/j.biomaterials.2020.119794.

[106]

T. Führmann, R. Y. Tam, B. Ballarin, et al., “Injectable Hydrogel Promotes Early Survival of Induced Pluripotent Stem Cell-Derived Oligodendrocytes and Attenuates Longterm Teratoma Formation in a Spinal Cord Injury Model,” Biomaterials 83 (2016): 23-36, https://doi.org/10.1016/j.biomaterials.2015.12.032.

[107]

P. Moshayedi, G. Ng, J. C. F. Kwok, et al., “The Relationship Between Glial Cell Mechanosensitivity and Foreign Body Reactions in the Central Nervous System,” Biomaterials 35 (2014): 3919-3925, https://doi.org/10.1016/j.biomaterials.2014.01.038.

[108]

T. M. OʼShea, A. L. Wollenberg, J. H. Kim, Y. Ao, T. J. Deming, and M. V. Sofroniew, “Foreign Body Responses in Mouse Central Nervous System Mimic Natural Wound Responses and Alter Biomaterial Functions,” Nature Communications 11 (2020): 6203, https://doi.org/10.1038/s41467-020-19906-3.

[109]

K. B. Bjugstad, D. E. Redmond, K. J. Lampe, D. S. Kern, J. R. Sladek, and M. J. Mahoney, “Biocompatibility of PEG-Based Hydrogels in Primate Brain,” Cell Transplantation 17 (2008): 409-415, https://doi.org/10.3727/096368908784423292.

[110]

Y. Zhang, F. Rossi, S. Papa, et al., “Non-Invasive in Vitro and in Vivo Monitoring of Degradation of Fluorescently Labeled Hyaluronan Hydrogels for Tissue Engineering Applications,” Acta Biomaterialia 30 (2016): 188-198, https://doi.org/10.1016/j.actbio.2015.11.053.

[111]

H. J. Zhang, J. Faber, S. Budday, et al., “Monophasic Hyaluronic Acid-silica Hybrid Hydrogels for Articular Cartilage Applications,” Biomaterials Advances 167 (2025): 2772-9508, https://doi.org/10.1016/j.bioadv.2024.214089.

[112]

J. Zuber, P. L. Cascabulho, S. G. Piperni, et al., “Fast, Easy, and Reproducible Fingerprint Methods for Endotoxin Characterization in Nanocellulose and Alginate-Based Hydrogel Scaffolds,” Biomacromolecules 25 (2024): 6762-6772, https://doi.org/10.1021/acs.biomac.4c00989.

[113]

D. Zhu, R. D. White, P. A. Hardy, N. Weerapreeyakul, K. Sutthanut, and M. Jay, “Biocompatible Nanotemplate-engineered Nanoparticles Containing Gadolinium: Stability and Relaxivity of a Potential MRI Contrast Agent,” Journal of Nanoscience and Nanotechnology 6 (2006): 996-1003, https://doi.org/10.1166/jnn.2006.169.

[114]

Z. Z. Zheng, J. B. Wu, M. Liu, et al., “3D Bioprinting of Self-Standing Silk-Based Bioink,” Advanced Healthcare Materials 7 (2018): 1701026, https://doi.org/10.1002/adhm.201701026.

[115]

K. Chen, W. Yu, G. Zheng, et al., “Biomaterial-based Regenerative Therapeutic Strategies for Spinal Cord Injury,” NPG Asia Materials 16 (2024): 5, https://doi.org/10.1038/s41427-023-00526-4.

[116]

Y. Wang, Y. Zhang, Z. Zhang, et al., “An Injectable High-Conductive Bimaterial Scaffold for Neural Stimulation,” Colloids and Surfaces B: Biointerfaces 195 (2020): 111210, https://doi.org/10.1016/j.colsurfb.2020.111210.

[117]

N. Eckman, A. Nejatfard, R. Cavet, A. K. Grosskopf, and E. A. Appel, “Biomaterials to Enhance Adoptive Cell Therapy,” Nature Reviews Bioengineering 2 (2024): 408-424, https://doi.org/10.1038/s44222-023-00148-z.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/