Integrating Aggregate Materials and Machine Learning Algorithms: Advancing Detection of Pathogen-Derived Extracellular Vesicles

Lihan Lai , Yun Su , Cong Hu , Zehong Peng , Wei Xue , Liang Dong , Tony Y. Hu

Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70018

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70018 DOI: 10.1002/agt2.70018
REVIEW

Integrating Aggregate Materials and Machine Learning Algorithms: Advancing Detection of Pathogen-Derived Extracellular Vesicles

Author information +
History +
PDF

Abstract

Extracellular vesicles (EVs) are essential for host–pathogen interactions, mediating processes such as immune modulation and pathogen survival. Pathogen-derived EVs hold significant diagnostic potential because of their unique cargo, offering a wealth of potential biomarkers. In this review, we first discuss the roles of EVs derived from various pathogens in host–pathogen interactions and summarize the latest advancements in pathogen detection based on EVs. Then, we highlight innovative strategies, including novel aggregate materials and machine learning approaches, for enhancing EV detection and analysis. Finally, we discuss challenges in the field and future directions for advancing EV-based diagnostics, aiming to translate these insights into clinical applications.

Keywords

aggregate materials / biomarkers / extracellular vesicles / machine learning / pathogens

Cite this article

Download citation ▾
Lihan Lai, Yun Su, Cong Hu, Zehong Peng, Wei Xue, Liang Dong, Tony Y. Hu. Integrating Aggregate Materials and Machine Learning Algorithms: Advancing Detection of Pathogen-Derived Extracellular Vesicles. Aggregate, 2025, 6(5): e70018 DOI:10.1002/agt2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Harding, J. Heuser, and P. Stahl, “Receptor-Mediated Endocytosis of Transferrin and Recycling of the Transferrin Receptor in Rat Reticulocytes,” Journal of Cell Biology 97, no. 2 (1983): 329-339.

[2]

R. M. Johnstone, M. Adam, J. R. Hammond, L. Orr, and C. Turbide, “Vesicle Formation During Reticulocyte Maturation. Association of Plasma Membrane Activities With Released Vesicles (Exosomes),” Journal of Biological Chemistry 262, no. 19 (1987): 9412-9420.

[3]

F. Cocozza, E. Grisard, L. Martin-Jaular, M. Mathieu, and C. Théry, “SnapShot: Extracellular Vesicles,” Cell 182, no. 1 (2020): 262-262.e1.

[4]

G. Van Niel, G. D'Angelo, and G. Raposo, “Shedding Light on the Cell Biology of Extracellular Vesicles,” Nature Reviews Molecular Cell Biology 19, no. 4 (2018): 213-228.

[5]

L. Brown, J. M. Wolf, R. Prados-Rosales, and A. Casadevall, “Through the Wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi,” Nature Reviews Microbiology 13, no. 10 (2015): 620-630.

[6]

G. Raposo, H. W. Nijman, W. Stoorvogel, et al., “B Lymphocytes Secrete Antigen-Presenting Vesicles,” Journal of Experimental Medicine 183, no. 3 (1996): 1161-1172.

[7]

M. Tkach and C. Théry, “Communication by Extracellular Vesicles: Where We Are and Where We Need to Go,” Cell 164, no. 6 (2016): 1226-1232.

[8]

G. Raposo and W. Stoorvogel, “Extracellular Vesicles: Exosomes, Microvesicles, and Friends,” Journal of Cell Biology 200, no. 4 (2013): 373-383.

[9]

S. Gill, R. Catchpole, and P. Forterre, “Extracellular Membrane Vesicles in the Three Domains of Life and beyond,” Fems Microbiology Review 43, no. 3 (2019): 273-303.

[10]

C. Commisso, S. M. Davidson, R. G. Soydaner-Azeloglu, et al., “Macropinocytosis of Protein Is an Amino Acid Supply Route in Ras-Transformed Cells,” Nature 497, no. 7451 (2013): 633-637.

[11]

I. Parolini, C. Federici, C. Raggi, et al., “Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells,” Journal of Biological Chemistry 284, no. 49 (2009): 34211-34222.

[12]

T. Tian, Y.-L. Zhu, Y.-Y. Zhou, et al., “Exosome Uptake Through Clathrin-Mediated Endocytosis and Macropinocytosis and Mediating miR-21 Delivery,” Journal of Biological Chemistry 289, no. 32 (2014): 22258-22267.

[13]

R. Kalluri and V. S. LeBleu, “The Biology, Function, and Biomedical Applications of Exosomes,” Science 367, no. 6478 (2020): eaau6977.

[14]

P. Kurywchak, J. Tavormina, and R. Kalluri, “The Emerging Roles of Exosomes in the Modulation of Immune Responses in Cancer,” Genome Medicine 10, no. 1 (2018): 23.

[15]

R. Sullivan, F. Saez, J. Girouard, and G. Frenette, “Role of Exosomes in Sperm Maturation During the Transit Along the Male Reproductive Tract,” Blood Cells, Molecules & Diseases 35, no. 1 (2005): 1-10.

[16]

S. Sheller-Miller, J. Trivedi, S. M. Yellon, and R. Menon, “Exosomes Cause Preterm Birth in Mice: Evidence for Paracrine Signaling in Pregnancy,” Scientific Reports 9, no. 1 (2019): 608.

[17]

K. Stefanius, K. Servage, M. de Souza Santos, et al., “Human Pancreatic Cancer Cell Exosomes, But Not Human Normal Cell Exosomes, Act As an Initiator in Cell Transformation,” Elife 8 (2019): e40226 (accessed 2024-10-31).

[18]

A. Stuendl, M. Kunadt, N. Kruse, et al., “Induction of α-Synuclein Aggregate Formation by CSF Exosomes From Patients With Parkinson's Disease and Dementia With Lewy Bodies,” Brain: A Journal of Neurology 139, no. Pt 2 (2016): 481-494.

[19]

J. Wu, Y. Ma, and Y. Chen, “Extracellular Vesicles and COPD: Foe or Friend?,” Journal of Nanobiotechnology 21, no. 1 (2023): 147.

[20]

A. Becker, B. K. Thakur, J. M. Weiss, H. S. Kim, H. Peinado, and D. Lyden, “Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis,” Cancer Cell 30, no. 6 (2016): 836-848.

[21]

G. Zhang, Z. Liu, H. Ding, et al., “Tumor Induces Muscle Wasting in Mice Through Releasing Extracellular Hsp70 and Hsp90,” Nature Communications 8, no. 1 (2017): 589.

[22]

M. Basso, S. Pozzi, M. Tortarolo, et al., “Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes,” Journal of Biological Chemistry 288, no. 22 (2013): 15699-15711.

[23]

Y. Liu, J. Fan, T. Xu, et al., “Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer After concurrent chemoradiation,” Science Advances 6, no. 11 (2020): eaaz6162.

[24]

G. Huang, W. Zheng, Y. Zhou, M. Wan, and T. Hu, “Recent Advances to Address Challenges in Extracellular Vesicle-Based Applications for Lung Cancer,” Acta Pharmaceutica Sinica B 14, no. 9 (2024): 3855-3875.

[25]

S. Das, C. J. Lyon, and T. Hu, “A Panorama of Extracellular Vesicle Applications: From Biomarker Detection to Therapeutics,” American Chemical Society Nano 18, no. 14 (2024): 9784-9797.

[26]

J. Li, Y. Li, Q. Li, et al., “An Aptamer-Based Nanoflow Cytometry Method for the Molecular Detection and Classification of Ovarian Cancers Through Profiling of Tumor Markers on Small Extracellular Vesicles,” Angewandte Chemie International Edition 63, no. 4 (2024): e202314262.

[27]

Y. Cai, T. Chen, Y. Cai, et al., “Surface protein profiling and subtyping of extracellular vesicles in body fluids reveals non-CSF biomarkers of Alzheimer's disease,” Journal of Extracellular Vesicles 13, no. 4 (2024): e12432.

[28]

X. Wu, Y. Zhu, C. Hu, et al., “Extracellular Vesicles Related Gene HSPH1 Exerts Anti-Tumor Effects in Prostate Cancer via Promoting the Stress Response of CD8 + T Cells,” Cellular Oncology Dordr Neth 47, no. 3 (2024): 1059-1064.

[29]

K. Asehnoune, J. Villadangos, and R. S. Hotchkiss, “Understanding host-pathogen interaction,” Intensive Care Medicine 42, no. 12 (2016): 2084-2086.

[30]

A. Casadevall and L. Pirofski, “The Damage-Response Framework of Microbial Pathogenesis,” Nature Reviews Microbiology 1, no. 1 (2003): 17-24.

[31]

Z. Troyer, N. Alhusaini, C. O. Tabler, et al., “Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies,” Journal of Extracellular Vesicles 10, no. 8 (2021): e12112.

[32]

Z. Fan, Y. Liu, Y. Ye, and Y. Liao, “Functional Probes for the Diagnosis and Treatment of Infectious Diseases,” Aggregate 5 (2024): e620.

[33]

M. Rodrigues, J. Fan, C. Lyon, M. Wan, and Y. Hu, “Role of Extracellular Vesicles in Viral and Bacterial Infections: Pathogenesis, Diagnostics, and Therapeutics,” Theranostics 8, no. 10 (2018): 2709-2721.

[34]

B. Ning, Z. Huang, B. M. Youngquist, et al., “Liposome-Mediated Detection of SARS-CoV-2 RNA-Positive Extracellular Vesicles in Plasma,” Nature Nanotechnology 16, no. 9 (2021): 1039-1044.

[35]

R. Suades, M. F. Greco, P. Prieto, et al., “CD66b + /CD68 + circulating extracellular vesicles, lactate dehydrogenase and neutrophil-to-lymphocyte ratio can differentiate coronavirus disease 2019 severity During and After infection,” Journal of Extracellular Vesicles 13, no. 7 (2024): e12456.

[36]

Y. Ofir-Birin, M. Heidenreich, and N. Regev-Rudzki, “Pathogen-Derived Extracellular Vesicles Coordinate Social Behaviour and Host Manipulation,” Seminars in Cell & Developmental Biology 67 (2017): 83-90.

[37]

F. Husnik and J. P. McCutcheon, “Functional Horizontal Gene Transfer From Bacteria to Eukaryotes,” Nature Reviews Microbiology 16, no. 2 (2018): 67-79.

[38]

Y. Qin, Z. Guo, H. Huang, et al., “Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust,” Environmental Science & Technology 56, no. 9 (2022): 5653-5663.

[39]

J. J. Athman, O. J. Sande, S. G. Groft, et al., “Mycobacterium Tuberculosis Membrane Vesicles Inhibit T Cell Activation,” Journal of Immunology 198, no. 5 (2017), 2028-2037.

[40]

S. Benet, C. Gálvez, F. Drobniewski, et al., “Dissemination of Mycobacterium tuberculosis is associated to a SIGLEC1 null variant that limits antigen exchange via trafficking extracellular vesicles,” Journal of Extracellular Vesicles 10, no. 3 (2021): e12046.

[41]

V. D. Alvarez-Jiménez, K. Leyva-Paredes, M. García-Martínez, et al., “Extracellular Vesicles Released From Mycobacterium Tuberculosis-Infected Neutrophils Promote Macrophage Autophagy and Decrease Intracellular Mycobacterial Survival,” Frontiers in Immunology 9 (2018): 272.

[42]

Y. Cheng and J. S. Schorey, “Extracellular Vesicles Deliver Mycobacterium RNA to Promote Host Immunity and Bacterial Killing,” Embo Reports 20, no. 3 (2019): e46613.

[43]

J. Wang, Y. Li, N. Wang, et al., “Functions of Exosomal Non-Coding RNAs to the Infection With Mycobacterium Tuberculosis,” Frontiers in Immunology 14 (2023): 1127214.

[44]

R. Mirzaei, S. Babakhani, P. Ajorloo, et al., “The Emerging Role of Exosomal miRNAs as a Diagnostic and Therapeutic Biomarker in Mycobacterium Tuberculosis Infection,” Molecular Medicine Camb Mass 27, no. 1 (2021): 34.

[45]

H. Okamura, K. Hirota, K. Yoshida, et al., “Outer Membrane Vesicles of Porphyromonas Gingivalis: Novel Communication Tool and Strategy,” Japanese Dental Science Review 57, (2021): 138-146.

[46]

A. J. Fleetwood, M. K. S. Lee, W. Singleton, et al., “Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas Gingivalis and Its Outer Membrane Vesicles,” Frontiers in Cellular and Infection Microbiology 7 (2017): 351.

[47]

J.-W. Choi, S.-C. Kim, S.-H. Hong, and H.-J. Lee, “Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens,” Journal of Dental Research 96, no. 4 (2017): 458-466.

[48]

X. Ma, Y. J. Shin, J. W. Yoo, H. S. Park, and D. H. Kim, “Extracellular Vesicles Derived From Porphyromonas Gingivalis Induce Trigeminal Nerve-Mediated Cognitive Impairment,” Journal of Advanced Research 54 (2023): 293-303.

[49]

G. Gabarrini, R. Heida, N. van Ieperen, M. A. Curtis, A. J. van Winkelhoff, and J. M. van Dijl, “Dropping Anchor: Attachment of Peptidylarginine Deiminase via A-LPS to Secreted Outer Membrane Vesicles of Porphyromonas Gingivalis,” Scientific Reports 8, no. 1 (2018): 8949.

[50]

M. H. Ho, C. H. Chen, J. S. Goodwin, B. Y. Wang, and H. Xie, “Functional Advantages of Porphyromonas Gingivalis Vesicles,” PLoS ONE 10, no. 4 (2015): e0123448.

[51]

Y. He, N. Shiotsu, Y. Uchida-Fukuhara, et al., “Outer Membrane Vesicles Derived From Porphyromonas Gingivalis Induced Cell Death With Disruption of Tight Junctions in Human Lung Epithelial Cells,” Archives of Oral Biology 118 (2020): 104841.

[52]

Y. Lim, H. Y. Kim, D. Han, and B. Choi, “Proteome and Immune Responses of Extracellular Vesicles Derived From Macrophages Infected With the Periodontal Pathogen Tannerella Forsythia,” Journal of Extracellular Vesicles 12, no. 12 (2023): 12381.

[53]

S. Wei, X. Li, J. Wang, et al., “Outer Membrane Vesicles Secreted by Helicobacter Pylori Transmitting Gastric Pathogenic Virulence Factors,” ACS Omega 7, no. 1 (2022): 240-258.

[54]

T. Ito, T. Shiromizu, S. Ohnishi, et al., “Potential role of extracellular vesicle-mediated antigen presentation in Helicobacter pylori hypersensitivity During eradication therapy,” Journal of Allergy and Clinical Immunology 142, no. 2 (2018): 672-676.e12.

[55]

B. Li, Y. Xu, T. Xu, et al., “Disruption of sncRNA Improves the Protective Efficacy of Outer Membrane Vesicles Against Helicobacter Pylori Infection in a Mouse Model,” Infection and Immunity 90, no. 8 (2022): e0026722.

[56]

C. Lu, L. Xie, S. Qiu, et al., “Small Extracellular Vesicles Derived From Helicobacter Pylori -Infected Gastric Cancer Cells Induce Lymphangiogenesis and Lymphatic Remodeling via Transfer of miR-1246,” Small 20, no. 13 (2024): e2308688.

[57]

M. Zoaiter, R. Nasser, R. Hage-Sleiman, F. Abdel-Sater, B. Badran, and Z. Zeaiter, “Helicobacter Pylori Outer Membrane Vesicles Induce Expression and Secretion of Oncostatin M in AGS Gastric Cancer Cells,” Brazilian Journal of Microbiology 52, no. 3 (2021): 1057-1066.

[58]

J. Xie, L. Cools, G. Van Imschoot, et al., “Helicobacter pylori -derived outer membrane vesicles contribute to Alzheimer's disease pathogenesis via C3-C3aR signalling,” Journal of Extracellular Vesicles 12, no. 2 (2023): e12306.

[59]

A. M. Park and I. Tsunoda, “Helicobacter Pylori Infection in the Stomach Induces Neuroinflammation: The Potential Roles of Bacterial Outer Membrane Vesicles in an Animal Model of Alzheimer's Disease,” Inflammation and Regeneration 42, no. 1 (2022), https://doi.org/10.1186/s41232-022-00224-8.

[60]

N. Díaz-Garrido, J. Badia, and L. Baldomà, “Microbiota-derived extracellular vesicles in interkingdom communication in the gut,” Journal of Extracellular Vesicles 10, no. 13 (2021): e12161.

[61]

Z. Ling, C. Dayong, Y. Denggao, W. Yiting, F. Liaoqiong, and W. Zhibiao, “Escherichia Coli Outer Membrane Vesicles Induced DNA Double-Strand Breaks in Intestinal Epithelial Caco-2 Cells,” Medical Science Monitor Basic Research 25 (2019): 45-52.

[62]

A. Larabi, G. Dalmasso, J. Delmas, N. Barnich, and H. T. T. Nguyen, “Exosomes Transfer miRNAs From Cell-to-Cell to Inhibit Autophagy During Infection With Crohn's Disease-Associated Adherent-Invasive E. Coli,” Gut Microbes 11, no. 6 (2020): 1677-1694.

[63]

L. Liu, L. Liang, C. Yang, Y. Zhou, and Y. Chen, “Extracellular Vesicles of Fusobacterium Nucleatum Compromise Intestinal Barrier Through Targeting RIPK1-Mediated Cell Death Pathway,” Gut Microbes 13, no. 1 (2021): 1-20.

[64]

L. Gul, D. Modos, S. Fonseca, et al., “Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease,” Journal of Extracellular Vesicles 11, no. 1 (2022): e12189.

[65]

J. Tulkens, G. Vergauwen, J. Van Deun, et al., “Increased Levels of Systemic LPS-Positive Bacterial Extracellular Vesicles in Patients With Intestinal Barrier Dysfunction,” Gut 69, no. 1 (2020): 191-193.

[66]

Z. Deng, J. Mu, M. Tseng, et al., “Enterobacteria-secreted Particles Induce Production of Exosome-Like S1P-containing Particles by Intestinal Epithelium to Drive Th17-mediated Tumorigenesis,” Nature Communications 6 (2015): 6956 (accessed. PubMed).

[67]

Y. Cao, Z. Wang, Y. Yan, et al., “Enterotoxigenic Bacteroidesfragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p,” Gastroenterology 161, no. 5 (2021): 1552-1566.e12.

[68]

S. P. Ebenberger, F. Cakar, Y.-C. Chen, K. Pressler, L. Eberl, and S. Schild, “The activity of the quorum sensing regulator HapR is modulated by the bacterial extracellular vesicle (BEV)-associated protein ObfA of Vibrio cholerae,” Journal of Extracellular Vesicles 13, no. 9 (2024): e12507.

[69]

M. Kumaraswamy, K. Wiull, B. Joshi, et al., “Bacterial Membrane-Derived Vesicles Attenuate Vancomycin Activity Against Methicillin-Resistant Staphylococcus Aureus,” Microorganisms 9, no. 10 (2021): 2055.

[70]

S. Lima, J. Matinha-Cardoso, J. Giner-Lamia, et al., “Extracellular Vesicles as an Alternative Copper-Secretion Mechanism in Bacteria,” Journal of Hazardous Materials 431 (2022): 128594.

[71]

J. M. Bomberger, D. P. MacEachran, B. A. Coutermarsh, S. Ye, G. A. O'Toole, and B. A. Stanton, “Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas Aeruginosa Outer Membrane Vesicles,” Plos Pathogens 5, no. 4 (2009): e1000382.

[72]

M. A. Fernández-Rojas, S. Vaca, M. Reyes-López, et al., “Outer Membrane Vesicles of Pasteurella Multocida Contain Virulence Factors,” MicrobiologyOpen 3, no. 5 (2014): 711-717.

[73]

B. Armistead, P. Quach, J. M. Snyder, et al., “Hemolytic Membrane Vesicles of Group B Streptococcus Promote Infection,” Journal of Infectious Diseases 223, no. 8 (2021): 1488-1496.

[74]

M. Kang, M. J. Kim, D. Jeong, et al., “A Nanoscale Visual Exploration of the Pathogenic Effects of Bacterial Extracellular Vesicles on Host Cells,” Journal of Nanobiotechnology 22, no. 1 (2024): 548.

[75]

A. Kerviel, M. Zhang, and N. Altan-Bonnet, “A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations,” Annual Review of Cell and Developmental Biology 37, no. 1 (2021): 171-197.

[76]

J. Zhang, Y. Huang, Q. Wang, et al., “Levels of Human Cytomegalovirus miR-US25-1-5p and miR-UL112-3p in Serum Extracellular Vesicles From Infants With HCMV Active Infection Are Significantly Correlated With Liver Damage,” European Journal of Clinical Microbiology Infectious Diseases 39, no. 3 (2020): 471-481.

[77]

Y. Kwon, S. B. Nukala, S. Srivastava, et al., “Detection of Viral RNA Fragments in Human iPSC Cardiomyocytes Following Treatment With Extracellular Vesicles From SARS-CoV-2 Coding Sequence Overexpressing Lung Epithelial Cells,” Stem Cell Research & Therapy 11, no. 1 (2020): 514.

[78]

N. Scheller, S. Herold, R. Kellner, et al., “Proviral MicroRNAs Detected in Extracellular Vesicles From Bronchoalveolar Lavage Fluid of Patients With Influenza Virus-Induced Acute Respiratory Distress Syndrome,” Journal of Infectious Diseases 219, no. 4 (2019): 540-543.

[79]

S. Arora, W. Lim, P. Bist, et al., “Influenza A Virus Enhances Its Propagation Through the Modulation of Annexin-A1 Dependent Endosomal Trafficking and Apoptosis,” Cell Death and Differentiation 23, no. 7 (2016): 1243-1256 (accessed 2024-09-20). PubMed.

[80]

L. Deng, W. Jiang, X. Wang, et al., “Syntenin Regulates hepatitis C Virus Sensitivity to Neutralizing Antibody by Promoting E2 Secretion Through Exosomes,” Journal of Hepatology 71, no. 1 (2019): 52-61 (accessed 2024-09-20). PubMed.

[81]

X. Wu, J. Niu, and Y. Shi, “Exosomes Target HBV-Host Interactions to Remodel the Hepatic Immune Microenvironment,” Journal of Nanobiotechnology 22, no. 1 (2024): 315.

[82]

G. Patman, “Exosomal route of HCV transmission exists in patients,” Nature Reviews Gastroenterology & Hepatology 11, no. 12 (2014): 704.

[83]

S. G. van der Grein, K. A. Y. Defourny, H. H. Rabouw, et al., “The Encephalomyocarditis Virus Leader Promotes the Release of Virions inside Extracellular Vesicles via the Induction of Secretory Autophagy,” Nature Communications 13, no. 1 (2022): 3625.

[84]

T. Wang, L. Zhang, W. Liang, et al., “Extracellular Vesicles Originating From Autophagy Mediate an Antibody-Resistant Spread of Classical Swine Fever Virus in Cell Culture,” Autophagy 18, no. 6 (2022): 1433-1449.

[85]

Y.-W. Wu, C. Mettling, S.-R. Wu, et al., “Autophagy-Associated Dengue Vesicles Promote Viral Transmission Avoiding Antibody Neutralization,” Scientific Reports 6 (2016): 32243.

[86]

C. A. Mosby, S. Bhar, M. B. Phillips, M. J. Edelmann, and M. K. Jones, “Interaction With Mammalian Enteric Viruses Alters Outer Membrane Vesicle Production and Content by Commensal Bacteria,” Journal of Extracellular Vesicles 11, no. 1 (2022): e12172.

[87]

M. Marti and P. J. Johnson, “Emerging Roles for Extracellular Vesicles in Parasitic Infections,” Current Opinion in Microbiology 32 (2016): 66-70.

[88]

R. C. Zauli, I. C. de Souza Perez, A. C. C. de Morais, et al., “Extracellular Vesicles Released by Leishmania (Leishmania) Amazonensis Promastigotes With Distinct Virulence Profile Differently Modulate the Macrophage Functions,” Microorganisms 11, no. 12 (2023): 2973.

[89]

C. M. Sánchez-López, A. González-Arce, C. Soler, et al., “Extracellular vesicles From the trematodes Fasciola hepatica and Dicrocoelium dendriticum trigger different responses in human THP-1 macrophages,” Journal of Extracellular Vesicles 12, no. 4 (2023): e12317.

[90]

M. Kioko, A. Pance, S. Mwangi, et al., “Extracellular Vesicles Could Be a Putative Posttranscriptional Regulatory Mechanism That Shapes Intracellular RNA Levels in Plasmodium Falciparum,” Nature Communications 14, no. 1 (2023): 6447.

[91]

N. G. Sampaio, S. J. Emery, A. L. Garnham, et al., “Extracellular Vesicles From Early Stage Plasmodium Falciparum-Infected Red Blood Cells Contain PfEMP1 and Induce Transcriptional Changes in Human Monocytes,” Cellular Microbiology 20, no. 5 (2018): e12822.

[92]

K. A. Babatunde, S. Mbagwu, M. A. Hernández-Castañeda, et al., “Malaria Infected Red Blood Cells Release Small Regulatory RNAs Through Extracellular Vesicles,” Scientific Reports 8, no. 1 (2018): 884.

[93]

N. Salas, M. Blasco Pedreros, T. Dos Santos Melo, et al., “Role of Cytoneme Structures and Extracellular Vesicles in Trichomonas Vaginalis Parasite-Parasite Communication,” Elife 12 (2023): e86067.

[94]

S. Chaiyadet, J. Sotillo, M. Smout, et al., “Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype,” Journal of Infectious Diseases 212, no. 10 (2015): 1636-1645.

[95]

M. E. Kuipers, E. N. M. Nolte-'t Hoen, A. J. van der Ham, et al., “DC-SIGN mediated internalisation of glycosylated extracellular vesicles From Schistosoma mansoni increases activation of monocyte-derived dendritic cells,” Journal of Extracellular Vesicles 9, no. 1 (2020): 1753420.

[96]

L. E. Emerson, A. Gioseffi, H. Barker, et al., “Leishmania Infection-Derived Extracellular Vesicles Drive Transcription of Genes Involved in M2 Polarization,” Frontiers in Cellular and Infection Microbiology 12 (2022): 934611.

[97]

A. Siddiq, G. Dong, B. Balan, et al., “A thermo-resistant and RNase-sensitive cargo From Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria,” Journal of Extracellular Biology 2, no. 9 (2023): e109.

[98]

B. He, H. Wang, G. Liu, et al., “Fungal Small RNAs Ride in Extracellular Vesicles to Enter Plant Cells Through Clathrin-Mediated Endocytosis,” Nature Communications 14, no. 1 (2023): 4383.

[99]

Q. Cai, L. Qiao, M. Wang, et al., “Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes,” Science 360, no. 6393 (2018): 1126-1129.

[100]

R. Martínez-López, M. L. Hernáez, E. Redondo, et al., “Candida Albicans Hyphal Extracellular Vesicles Are Different From Yeast Ones, Carrying an Active Proteasome Complex and Showing a Different Role in Host Immune Response,” Microbiology Spectrum 10, no. 3 (2022): e0069822.

[101]

R. Zarnowski, A. Noll, M. G. Chevrette, et al., “Coordination of Fungal Biofilm Development by Extracellular Vesicle Cargo,” Nature Communications 12, no. 1 (2021): 6235.

[102]

E. Bielska, M. A. Sisquella, M. Aldeieg, C. Birch, E. J. O'Donoghue, and R. C. May, “Pathogen-Derived Extracellular Vesicles Mediate Virulence in the Fatal Human Pathogen Cryptococcus Gattii,” Nature Communications 9, no. 1 (2018): 1556.

[103]

H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, and H. Lee, “New Technologies for Analysis of Extracellular Vesicles,” Chemical Reviews 118, no. 4 (2018): 1917-1950.

[104]

S. M. Cho, S. Shin, Y. Kim, et al., “A Novel Approach for Tuberculosis Diagnosis Using Exosomal DNA and Droplet Digital PCR,” Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 26, no. 7 (2020): 942.e1-942.e5.

[105]

C. Huang, L. Pan, X. Shen, et al., “Hsp16.3 of Mycobacterium Tuberculosis in Exosomes as a Biomarker of Tuberculosis,” European Journal of Clinical Microbiology Infectious Diseases 40, no. 11 (2021): 2427-2430.

[106]

A. Palacios, L. Sampedro, I. A. Sevilla, et al., “Mycobacterium Tuberculosis Extracellular Vesicle-Associated Lipoprotein LpqH as a Potential Biomarker to Distinguish Paratuberculosis Infection or Vaccination From Tuberculosis Infection,” BMC Veterinary Research 15, no. 1 (2019): 188.

[107]

C. Mehaffy, N. A. Kruh-Garcia, B. Graham, et al., “Identification of Mycobacterium Tuberculosis Peptides in Serum Extracellular Vesicles From Persons With Latent Tuberculosis Infection,” Journal of Clinical Microbiology 58, no. 6 (2020): e00393-20.

[108]

W. Zheng, S. M. LaCourse, B. Song, et al., “Diagnosis of Paediatric Tuberculosis by Optically Detecting Two Virulence Factors on Extracellular Vesicles in Blood Samples,” Nature Biomedical Engineering 6, no. 8 (2022): 979-991.

[109]

P. Han, P. M. Bartold, C. Salomon, and S. Ivanovski, “Salivary Outer Membrane Vesicles and DNA Methylation of Small Extracellular Vesicles as Biomarkers for Periodontal Status: A Pilot Study,” International Journal of Molecular Sciences 22, no. 5 (2021): 2423.

[110]

R. Juodeikis, C. Martins, G. Saalbach, et al., “Differential Temporal Release and Lipoprotein Loading in B. Thetaiotaomicron Bacterial Extracellular Vesicles,” Journal of Extracellular Vesicles 13, no. 1 (2024): 12406.

[111]

S. Deng, Y. Wang, S. Liu, et al., “Extracellular Vesicles: A Potential Biomarker for Quick Identification of Infectious Osteomyelitis,” Frontiers in Cellular and Infection Microbiology 10 (2020): 323.

[112]

B. Dahiya, A. Khan, P. Mor, et al., “Detection of Mycobacterium Tuberculosis Lipoarabinomannan and CFP-10 (Rv3874) From Urinary Extracellular Vesicles of Tuberculosis Patients by Immuno-PCR,” Pathogens and Disease 77, no. 5 (2019): ftz049.

[113]

F. Martelli, L. Macera, P. G. Spezia, et al., “Torquetenovirus Detection in Exosomes Enriched Vesicles Circulating in Human Plasma Samples,” Virology Journal 15, no. 1 (2018): 145.

[114]

Y. Li, Y. Chen, N. Zhang, and D. Fan, “Human Endogenous Retrovirus K (HERV-K) Env in Neuronal Extracellular Vesicles: A New Biomarker of Motor Neuron Disease,” Pathogenesis 23, no. 1-2 (2022): 100-107.

[115]

O. Ramayanti, S. A. W. M. Verkuijlen, P. Novianti, et al., “Vesicle-bound EBV-BART13-3p miRNA in circulation distinguishes nasopharyngeal From other head and neck cancer and asymptomatic EBV-infections,” International Journal of Cancer 144, no. 10 (2019): 2555-2566.

[116]

S. Ludwig, P. Sharma, P. Wise, et al., “mRNA and miRNA Profiles of Exosomes From Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer,” International Journal of Molecular Sciences 21, no. 22 (2020): 8570.

[117]

L. Liu, L. Zuo, J. Yang, et al., “Exosomal cyclophilin A as a novel noninvasive biomarker for Epstein-Barr virus associated nasopharyngeal carcinoma,” Cancer Medicine 8, no. 6 (2019): 3142-3151.

[118]

S. Kopcho, M. McDew-White, W. Naushad, M. Mohan, and C. M. Okeoma, “Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates During HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ9-THC),” Viruses 15, no. 3 (2023): 623.

[119]

F. Tsukada, S. Takashima, Y. Wakihara, et al., “Characterization of miRNAs in Milk Small Extracellular Vesicles From Enzootic Bovine Leukosis Cattle,” International Journal of Molecular Sciences 23, no. 18 (2022): 10782.

[120]

M. H. Kim, Y. H. Lee, J.-W. Seo, et al., “Urinary Exosomal Viral microRNA as a Marker of BK Virus Nephropathy in Kidney Transplant Recipients,” PLoS ONE 12, no. 12 (2017): e0190068.

[121]

C. Montaldo, M. Terri, V. Riccioni, et al., “Fibrogenic Signals Persist in DAA-Treated HCV Patients After Sustained Virological Response,” Journal of Hepatology 75, no. 6 (2021): 1301-1311.

[122]

S. M. Lam, C. Zhang, Z. Wang, et al., “A Multi-Omics Investigation of the Composition and Function of Extracellular Vesicles Along the Temporal Trajectory of COVID-19,” Nature Metabolism 3, no. 7 (2021): 909-922.

[123]

F. C. Nowacki, M. T. Swain, O. I. Klychnikov, et al., “Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni,” Journal of Extracellular Vesicles 4, no. 1 (2015): 28665.

[124]

C. Li, C. Li, F. Xu, et al., “Identification of Antigens in the Trichinella Spiralis Extracellular Vesicles for Serological Detection of Early Stage Infection in Swine,” Parasit Vectors 16, no. 1 (2023).

[125]

R. P. Madeira, L. M. Dal'Mas Romera, P. de Cássia Buck, C. Mady, B. M. Ianni, and A. C. Torrecilhas, “New Biomarker in Chagas Disease: Extracellular Vesicles Isolated From Peripheral Blood in Chronic Chagas Disease Patients Modulate the Human Immune Response,” Journal of Immunology Research 2021 (2021): 1-14.

[126]

L. Retana Moreira, A. Prescilla-Ledezma, A. Cornet-Gomez, et al., “Biophysical and Biochemical Comparison of Extracellular Vesicles Produced by Infective and Non-Infective Stages of Trypanosoma Cruzi,” International Journal of Molecular Sciences 22, no. 10 (2021): 5183.

[127]

A. Prescilla-Ledezma, F. Linares, M. Ortega-Muñoz, et al., “Molecular Recognition of Surface Trans-Sialidases in Extracellular Vesicles of the Parasite Trypanosoma Cruzi Using Atomic Force Microscopy (AFM),” International Journal of Molecular Sciences 23, no. 13 (2022): 7193.

[128]

V. Parreira, L. G. C. Santos, M. L. Rodrigues, and F. Passetti, “ExVe: The Knowledge Base of Orthologous Proteins Identified in Fungal Extracellular Vesicles,” Computational and Structural Biotechnology Journal 19 (2021): 2286-2296.

[129]

B. D. Rutter, T.-T.-H. Chu, J.-F. Dallery, K. K. Zajt, R. J. O'Connell, and R. W. Innes, “The Development of Extracellular Vesicle Markers for the Fungal Phytopathogen Colletotrichum Higginsianum,” Journal of Extracellular Vesicles 11, no. 5 (2022): e12216.

[130]

A. C. Aor, L. S. Sangenito, T. P. Mello, et al., “Extracellular Vesicles From Scedosporium Apiospermum Mycelial Cells: Implication for Fungal-Host Interplays,” Journal of Fungi 10, no. 4 (2024): 277.

[131]

L. Dong, R. C. Zieren, K. Horie, et al., “Comprehensive Evaluation of Methods for Small Extracellular Vesicles Separation From Human Plasma, Urine and Cell Culture Medium,” Journal of Extracellular Vesicles 10, no. 2 (2020): e12044.

[132]

M. Colombo, G. Raposo, and C. Théry, “Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles,” Annual Review of Cell and Developmental Biology 30 (2014): 255-289.

[133]

M. Holcar, M. Kandušer, and M. Lenassi, “Blood Nanoparticles—Influence on Extracellular Vesicle Isolation and Characterization,” Frontiers in pharmacology 12 (2021): 773844.

[134]

A. G. Yates, R. C. Pink, U. Erdbrügger, et al., “In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo,” Journal of Extracellular Vesicles 11, no. 1 (2022): e12190.

[135]

M. Taylor, A. Giacalone, K. Amrhein, R. Wilson, Y. Wang, and X. Huang, “Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles,” Nanomaterials 13, no. 3 (2023): 524.

[136]

The Oxford English Dictionary. British Medical Journal 1928, 1 (3503), 311-312.

[137]

G. Nichols, S. Byard, M. J. Bloxham, et al., “A Review of the Terms Agglomerate and Aggregate With a Recommendation for Nomenclature Used in Powder and Particle Characterization,” Journal of Pharmaceutical Sciences 91, no. 10 (2002): 2103-2109.

[138]

F. Würthner, “Aggregation-Induced Emission (AIE): A Historical Perspective,” Angewandte Chemie International Edition 59, no. 34 (2020): 14192-14196.

[139]

J. Luo, Z. Xie, J. W. Y. Lam, et al., “Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole,” Chemical Communications 18 (2001): 1740-1741.

[140]

Y. Ren, J. W. Y. Lam, Y. Dong, B. Z. Tang, and K. S. Wong, “Enhanced Emission Efficiency and Excited State Lifetime due to Restricted Intramolecular Motion in Silole Aggregates,” Journal of Physical Chemistry B 109, no. 3 (2005): 1135-1140.

[141]

H. Zhang, Z. Zhao, A. T. Turley, et al., “Aggregate Science: From Structures to Properties,” Advanced Materials 32, no. 36 (2020): 2001457.

[142]

J. M. Zook, V. Rastogi, R. I. Maccuspie, A. M. Keene, and J. Fagan, “Measuring Agglomerate Size Distribution and Dependence of Localized Surface Plasmon Resonance Absorbance on Gold Nanoparticle Agglomerate Size Using Analytical Ultracentrifugation,” American Chemical Society Nano 5, no. 10 (2011): 8070-8079.

[143]

L. Grasso, R. Wyss, L. Weidenauer, et al., “Molecular Screening of Cancer-Derived Exosomes by Surface Plasmon Resonance Spectroscopy,” Analytical and Bioanalytical Chemistry 407, no. 18 (2015): 5425-5432.

[144]

C. Liu, X. Zeng, Z. An, et al., “Sensitive Detection of Exosomal Proteins via a Compact Surface Plasmon Resonance Biosensor for Cancer Diagnosis,” ACS Sensors 3, no. 8 (2018): 1471-1479.

[145]

L. Zhu, K. Wang, J. Cui, et al., “Label-Free Quantitative Detection of Tumor-Derived Exosomes Through Surface Plasmon Resonance Imaging,” Analytical Chemistry 86, no. 17 (2014): 8857-8864.

[146]

Y. Yildizhan, V. S. Vajrala, E. Geeurickx, et al., “FO-SPR biosensor calibrated With recombinant extracellular vesicles enables specific and sensitive detection directly in complex matrices,” Journal of Extracellular Vesicles 10, no. 4 (2021): e12059.

[147]

A. A. I. Sina, R. Vaidyanathan, S. Dey, L. G. Carrascosa, M. J. A. Shiddiky, and M. Trau, “Real Time and Label Free Profiling of Clinically Relevant Exosomes,” Scientific Reports 2016, 6, 30460.

[148]

Q. Wang, L. Zou, X. Yang, et al., “Direct Quantification of Cancerous Exosomes via Surface Plasmon Resonance With Dual Gold Nanoparticle-Assisted Signal Amplification,” Biosensors & Bioelectronics 135 (2019): 129-136.

[149]

W. Chen, J. Li, X. Wei, et al., “Surface Plasmon Resonance Biosensor Using Hydrogel-AuNP Supramolecular Spheres for Determination of Prostate Cancer-Derived Exosomes,” Mikrochimica Acta 187, no. 11 (2020): 590.

[150]

Y. Fan, X. Duan, M. Zhao, et al., “High-Sensitive and Multiplex Biosensing Assay of NSCLC-Derived Exosomes via Different Recognition Sites Based on SPRi Array,” Biosensors & Bioelectronics 154 (2020): 112066.

[151]

H. Im, H. Shao, Y. I. Park, et al., “Label-Free Detection and Molecular Profiling of Exosomes With a Nano-Plasmonic Sensor,” Nature Biotechnology 32, no. 5 (2014): 490-495.

[152]

J. Park, H. Im, S. Hong, C. M. Castro, R. Weissleder, and H. Lee, “Analyses of Intravesicular Exosomal Proteins Using a Nano-Plasmonic System,” ACS Photonics 5, no. 2 (2018): 487-494.

[153]

A. Thakur, G. Qiu, S.-P. Ng, et al., “Direct Detection of Two Different Tumor-Derived Extracellular Vesicles by SAM-AuNIs LSPR Biosensor,” Biosensors & Bioelectronics 94 (2017): 400-407.

[154]

D. Raju, S. Bathini, S. Badilescu, R. J. Ouellette, A. Ghosh, and M. Packirisamy, “Study of Detection and Capture of Exosomes by Using the Morphologies of Ex Situ and in Situ Nanostructures,” Journal of the Electrochemical Society 166, no. 9 (2018): B3001.

[155]

L. Tirinato, F. Gentile, D. Di Mascolo, et al., “SERS Analysis on Exosomes Using Super-Hydrophobic Surfaces,” Microelectronic Engineering 97 (2012): 337-340.

[156]

J. Park, M. Hwang, B. Choi, et al., “Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis,” Analytical Chemistry 89, no. 12 (2017): 6695-6701.

[157]

J. Carmicheal, C. Hayashi, X. Huang, et al., “Label-Free Characterization of Exosome via Surface Enhanced Raman Spectroscopy for the Early Detection of Pancreatic Cancer,” Nanomedicine: Nanotechnology, Biology and Medicine 16 (2019): 88-96.

[158]

K. Sivashanmugan, W.-L. Huang, C.-H. Lin, et al., “Bimetallic Nanoplasmonic Gap-Mode SERS Substrate for Lung Normal and Cancer-Derived Exosomes Detection,” Journal of the Taiwan Institute of Chemical Engineers 80 (2017): 149-155.

[159]

S. Stremersch, M. Marro, B.-E. Pinchasik, et al., “Identification of Individual Exosome-Like Vesicles by Surface Enhanced Raman Spectroscopy,” Small 12, no. 24 (2016): 3292-3301.

[160]

S. Zong, L. Wang, C. Chen, et al., “Facile Detection of Tumor-Derived Exosomes Using Magnetic Nanobeads and SERS Nanoprobes,” Analytical Methods 8, no. 25 (2016): 5001-5008.

[161]

E. A. Kwizera, R. O'Connor, V. Vinduska, et al., “Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device,” Theranostics 8, no. 10 (2018): 2722-2738.

[162]

H. Chen, C. Luo, M. Yang, J. Li, P. Ma, and X. Zhang, “Intracellular Uptake of and Sensing With SERS-Active Hybrid Exosomes: Insight Into a Role of Metal Nanoparticles,” Nanomedicine 15, no. 9 (2020): 913-926.

[163]

O. Betzer, N. Perets, A. Angel, et al., “In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles,” ACS Nano 11, no. 11 (2017): 10883-10893.

[164]

K. Liang, F. Liu, J. Fan, et al., “Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring,” Nature Biomedical Engineering 1 (2017): 0021.

[165]

K. Amrhein, M. L. Taylor, R. Wilson, et al., “Dual Imaging Single Vesicle Surface Protein Profiling and Early Cancer Detection,” ACS Applied Materials and Interfaces 15, no. 2 (2023): 2679-2692.

[166]

Y. Jiang, M. Shi, Y. Liu, et al., “Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins,” Angewandte Chemie International Edition 56, no. 39 (2017): 11916-11920.

[167]

C. Hu, D.-P. Yang, K. Xu, et al., “Ag@BSA Core/Shell Microspheres as an Electrochemical Interface for Sensitive Detection of Urinary Retinal-Binding Protein,” Analytical Chemistry 84, no. 23 (2012): 10324-10331.

[168]

Y. Zhou, R. M. Mohamadi, M. Poudineh, et al., “Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles,” Small 12, no. 6 (2016): 727-732.

[169]

F. He, J. Wang, B.-C. Yin, and B.-C. Ye, “Quantification of Exosome Based on a Copper-Mediated Signal Amplification Strategy,” Analytical Chemistry 90, no. 13 (2018): 8072-8079.

[170]

M. Rodrigues, N. Richards, B. Ning, C. J. Lyon, and T. Y. Hu, “Rapid Lipid-Based Approach for Normalization of Quantum-Dot-Detected Biomarker Expression on Extracellular Vesicles in Complex Biological Samples,” Nano Letters 19, no. 11 (2019): 7623-7631.

[171]

A. B. Madhankumar, O. D. Mrowczynski, S. R. Patel, et al., “Interleukin-13 Conjugated Quantum Dots for Identification of Glioma Initiating Cells and Their Extracellular Vesicles,” Acta Biomaterialia 58 (2017): 205-213.

[172]

D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” Materials 3, no. 4 (2010): 2260-2345.

[173]

M. Zhang, L. Vojtech, Z. Ye, F. Hladik, and E. Nance, “Quantum Dot Labeling and Visualization of Extracellular Vesicles,” ACS Applied Nano Materials 3, no. 7 (2020): 7211-7222.

[174]

Y. Bai, Y. Lu, K. Wang, et al., “Rapid Isolation and Multiplexed Detection of Exosome Tumor Markers via Queued Beads Combined With Quantum Dots in a Microarray,” Nano-Micro Letters 11, no. 1 (2019): 59.

[175]

M. Wu, Z. Chen, Q. Xie, et al., “One-Step Quantification of Salivary Exosomes Based on Combined Aptamer Recognition and Quantum Dot Signal Amplification,” Biosensors & Bioelectronics 171 (2021): 112733.

[176]

H.-M. Kim, C. Oh, J. An, et al., “Multi-Quantum Dots-Embedded Silica-Encapsulated Nanoparticle-Based Lateral Flow Assay for Highly Sensitive Exosome Detection,” Nanomaterials 11, no. 3 (2021): 768.

[177]

D. Dong, L. Zhu, J. Hu, D.-W. Pang, and Z.-L. Zhang, “Simple and Rapid Extracellular Vesicles Quantification via Membrane Biotinylation Strategy Coupled With Fluorescent Nanospheres-Based Lateral Flow Assay,” Talanta 200 (2019): 408-414.

[178]

D. Fang, D. Zhao, S. Zhang, Y. Huang, H. Dai, and Y. Lin, “Black Phosphorus Quantum Dots Functionalized MXenes as the Enhanced Dual-Mode Probe for Exosomes Sensing,” Sensors and Actuators B: Chemical 305 (2020): 127544.

[179]

X. Pang, X. Zhang, K. Gao, et al., “Visible Light-Driven Self-Powered Device Based on a Straddling Nano-Heterojunction and Bio-Application for the Quantitation of Exosomal RNA,” ACS Nano 13, no. 2 (2019): 1817-1827.

[180]

K. Boriachek, M. N. Islam, V. Gopalan, A. K. Lam, N.-T. Nguyen, and M. J. A. Shiddiky, “Quantum Dot-Based Sensitive Detection of Disease Specific Exosome in Serum,” Analyst 142, no. 12 (2017): 2211-2219.

[181]

G. Dobhal, D. Ayupova, G. Laufersky, Z. Ayed, T. Nann, and R. V. Goreham, “Cadmium-Free Quantum Dots as Fluorescent Labels for Exosomes,” Sensors 18, no. 10 (2018): 3308.

[182]

Z. Nemati, M. R. Zamani Kouhpanji, F. Zhou, et al., “Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe3O4 Nanoparticles to Ni Nanowires,” Nanomaterials 10, no. 9 (2020): 1662.

[183]

Z. Nemati, J. Um, M. R. Zamani Kouhpanji, et al., “Magnetic Isolation of Cancer-Derived Exosomes Using Fe/Au Magnetic Nanowires,” ACS Applied Nano Materials 3, no. 2 (2020): 2058-2069.

[184]

M. Chang, Y.-J. Chang, P. Y. Chao, and Q. Yu, “Exosome Purification Based on PEG-Coated Fe3O4 Nanoparticles,” PLoS ONE 13, no. 6 (2018): e0199438.

[185]

B. Wang, A. Moyano, J. M. Duque, et al., “Nanozyme-Based Lateral Flow Immunoassay (LFIA) for Extracellular Vesicle Detection,” Biosensors 12, no. 7 (2022): 490.

[186]

C. Zhang, Y. Pan, Y. Zhao, P. Wang, L. Zhang, and W. Zhang, “Design and Application of Hydrophilic Bimetallic Metal-Organic Framework Magnetic Nanoparticles for Rapid Capture of Exosomes,” Analytica Chimica Acta 1186 (2021): 339099.

[187]

J. Chen, Y. Xu, Y. Lu, and W. Xing, “Isolation and Visible Detection of Tumor-Derived Exosomes From Plasma,” Analytical Chemistry 90, no. 24 (2018): 14207-14215.

[188]

H. Shao, J. Chung, L. Balaj, et al., “Protein Typing of Circulating Microvesicles Allows Real-Time Monitoring of Glioblastoma Therapy,” Nature Medicine 18, no. 12 (2012): 1835-1840.

[189]

D. Issadore, C. Min, M. Liong, J. Chung, R. Weissleder, and H. Lee, “Miniature Magnetic Resonance System for Point-of-Care Diagnostics,” Lab on A Chip 11, no. 13 (2011): 2282-2287.

[190]

W. Yang, Y. Yu, X. Shou, D. Zhang, G. Liang, and Y. Zhao, “Hedgehog-Inspired Magnetic Nanoparticles for Effectively Capturing and Detecting Exosomes,” NPG Asia Materials 13, no. 1 (2021): 78.

[191]

F. Z. Farhana, M. Umer, A. Saeed, et al., “Isolation and Detection of Exosomes Using Fe2O3 Nanoparticles,” ACS Applied Nano Materials 4, no. 2 (2021): 1175-1186.

[192]

J. Wu, J. Wu, W. Wei, Y. Zhang, and Q. Chen, “Upconversion Nanoparticles Based Sensing: From Design to Point-of-Care Testing,” Small 20, no. 29 (2024): 2311729.

[193]

G. Huang, Y. Liu, D. Wang, et al., “Upconversion Nanoparticles for Super-Resolution Quantification of Single Small Extracellular Vesicles,” Elight 2, no. 1 (2022): 20.

[194]

R. Pu and Q. Zhan, “Upconversion Nanoscopy Revealing Surface Heterogeneity of Tumor-Secreted Extracellular Vesicles,” Light: Science & Applications 12, no. 1 (2023): 55.

[195]

X. Chen, J. Lan, Y. Liu, et al., “A Paper-Supported Aptasensor Based on Upconversion Luminescence Resonance Energy Transfer for the Accessible Determination of Exosomes,” Biosensors & Bioelectronics 102 (2018): 582-588.

[196]

Y. Wang, D. Luo, Y. Fang, et al., “An Aptasensor Based on Upconversion Nanoparticles as LRET Donors for the Detection of Exosomes,” Sensors & Actuators B: Chemical 298 (2019): 126900.

[197]

L. Zhang, H. Wang, G. Zhao, et al., “Anti-Tim4 Grafting Strongly Hydrophilic Metal-Organic Frameworks Immunoaffinity Flake for High-Efficiency Capture and Separation of Exosomes,” Analytical Chemistry 93, no. 16 (2021): 6534-6543.

[198]

S. Zhand, K. Xiao, S. Razavi Bazaz, et al., “Improving Capture Efficiency of Human Cancer Cell Derived Exosomes With Nanostructured Metal Organic Framework Functionalized Beads,” Applied Materials Today 23 (2021): 100994.

[199]

X. Liu, X. Gao, L. Yang, Y. Zhao, and F. Li, “Metal-Organic Framework-Functionalized Paper-Based Electrochemical Biosensor for Ultrasensitive Exosome Assay,” Analytical Chemistry 93, no. 34 (2021): 11792-11799.

[200]

Z. Sun, L. Wang, S. Wu, et al., “An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes With Practical Application,” Analytical Chemistry 92, no. 5 (2020): 3819-3826.

[201]

Y. Cao, Y. Wang, X. Yu, X. Jiang, G. Li, and J. Zhao, “Identification of Programmed Death Ligand-1 Positive Exosomes in Breast Cancer Based on DNA Amplification-Responsive Metal-Organic Frameworks,” Biosensors & Bioelectronics 166 (2020): 112452.

[202]

F. Wang, Y. Gui, W. Liu, C. Li, and Y. Yang, “Precise Molecular Profiling of Circulating Exosomes Using a Metal-Organic Framework-Based Sensing Interface and an Enzyme-Based Electrochemical Logic Platform,” Analytical Chemistry 94, no. 2 (2022): 875-883.

[203]

M. Wang, Y. Pan, S. Wu, et al., “Detection of Colorectal Cancer-Derived Exosomes Based on Covalent Organic Frameworks,” Biosensors & Bioelectronics 169 (2020): 112638.

[204]

Y. Xia, L. Wang, J. Li, et al., “A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA,” Analytical Chemistry 90, no. 15 (2018): 8969-8976.

[205]

B. Li, W. Pan, C. Liu, et al., “Homogenous Magneto-Fluorescent Nanosensor for Tumor-Derived Exosome Isolation and Analysis,” ACS Sensors 5, no. 7 (2020): 2052-2060.

[206]

T. Li, Y. Liang, J. Li, et al., “Carbon Nanotube Field-Effect Transistor Biosensor for Ultrasensitive and Label-Free Detection of Breast Cancer Exosomal miRNA21,” Analytical Chemistry 93, no. 46 (2021): 15501-15507.

[207]

Y. Zhang, H. Fu, D.-E. Liu, J. An, and H. Gao, “Construction of Biocompatible Bovine Serum Albumin Nanoparticles Composed of Nano Graphene Oxide and AIEgen for Dual-Mode Phototherapy Bacteriostatic and Bacterial Tracking,” Journal of Nanobiotechnology 17, no. 1 (2019), 104.

[208]

Y. J. Sung, S. Song, and S. J. Sim, “A Rapid and High-Throughput Assay for Light Scattering of SARS-CoV-2 Virion-Sized Particulates via Microfluidic Spray Device Reveals the Protection Performance of Face Masks Against Virus Infection,” Nano Letters 22, no. 16 (2022): 6744-6752.

[209]

Z. Wang, H. Chen, X. Cheng, et al., “Simple and Ultrasensitive Nanozyme-Linked Immunosorbent Assay for SARS-CoV-2 Detection on a Syringe-Driven Filtration Device,” ACS Applied Materials and Interfaces 16, no. 34 (2024): 44485-44492.

[210]

E. Kamra, T. Prasad, A. Rais, et al., “Diagnosis of Genitourinary Tuberculosis: Detection of Mycobacterial Lipoarabinomannan and MPT-64 Biomarkers Within Urine Extracellular Vesicles by Nano-Based Immuno-PCR Assay,” Scientific Reports 13, no. 1 (2023) 11560.

[211]

J. Ao, A.-X. Ma, J. Li, et al., “Real-Time Dissection of the Exosome Pathway for Influenza Virus Infection,” ACS Nano 18, no. 5 (2024): 4507-4519.

[212]

R. Gupta, D. Srivastava, M. Sahu, S. Tiwari, R. K. Ambasta, and P. Kumar, “Artificial Intelligence to Deep Learning: Machine Intelligence Approach for Drug Discovery,” Molecular Diversity 25, no. 3 (2021): 1315-1360.

[213]

P. Hamet and J. Tremblay, “Artificial Intelligence in Medicine,” Metabolism 69 (2017): S36-S40.

[214]

J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, “A Guide to Machine Learning for Biologists,” Nature Reviews Molecular Cell Biology 23, no. 1 (2022): 40-55.

[215]

S. Badillo, B. Banfai, F. Birzele, et al., “An Introduction to Machine Learning,” Clinical Pharmacology & Therapeutics 107, no. 4 (2020): 871-885.

[216]

N. Katsiki, A. Gastaldelli, and D. P. Mikhailidis, “Predictive Models With the Use of Omics and Supervised Machine Learning to Diagnose Non-Alcoholic Fatty Liver Disease: A “Non-Invasive Alternative” to Liver Biopsy?,” Metabolism 101 (2019): 154010.

[217]

M.-P. Hosseini, A. Hosseini, and K. Ahi, “A Review on Machine Learning for EEG Signal Processing in Bioengineering,” Ieee Reviews in Biomedical Engineering 14 (2021): 204-218.

[218]

C. Cao, F. Liu, H. Tan, et al., “Deep Learning and Its Applications in Biomedicine,” Genomics, Proteomics & Bioinformatics 16, no. 1 (2018): 17-32.

[219]

L. Zhu, J. Pan, W. Mou, et al., “Harnessing Artificial Intelligence for Prostate Cancer Management,” Cell Reports Medicine 5, no. 4 (2024): 101506.

[220]

M. Ringnér, “What Is Principal Component Analysis?,” Nature Biotechnology 26, no. 3 (2008): 303-304.

[221]

Z. Peng, Y. Wang, X. Wu, et al., “Identifying High Gleason Score Prostate Cancer by Prostate Fluid Metabolic Fingerprint-Based Multi-Modal Recognition,” Small Methods (2024): 2301684.

[222]

W. Lee, A. Nanou, L. Rikkert, et al., “Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy,” Analytical Chemistry 90, no. 19 (2018): 11290-11296.

[223]

Z. Yan, S. Dutta, Z. Liu, et al., “A Label-Free Platform for Identification of Exosomes From Different Sources,” ACS Sensors 4, no. 2 (2019): 488-497.

[224]

T. C. Hill and B. L. Holman, “Discriminant Function Analysis: Toward a More Rigorous Approach to SPECT Interpretation,” Journal of Nuclear Medicine 35, no. 9 (1994): 1455-1456.

[225]

G. C. Madathil, S. Iyer, K. Thankappan, G. S. Gowd, S. Nair, and M. Koyakutty, “A Novel Surface Enhanced Raman Catheter for Rapid Detection, Classification, and Grading of Oral Cancer,” Advanced Healthcare Materials 8, no. 13 (2019): 1801557.

[226]

L. Xu, J. Raitoharju, A. Iosifidis, and M. Gabbouj, “Saliency-Based Multilabel Linear Discriminant Analysis,” IEEE Transactions on Cybernetics 52, no. 10 (2022): 10200-10213.

[227]

P. Zhang, L. Wang, Y. Fang, D. Zheng, T. Lin, and H. Wang, “Label-Free Exosomal Detection and Classification in Rapid Discriminating Different Cancer Types Based on Specific Raman Phenotypes and Multivariate Statistical Analysis,” Molecules 24, no. 16 (2019): 2947.

[228]

T. Rojalin, H. J. Koster, J. Liu, et al., “Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles,” ACS Sensors 5, no. 9 (2020): 2820-2833.

[229]

H. Wang, Y. Liu, L. Zhang, et al., “High Throughput and Noninvasive Exosomal PD-L1 Detection for Accurate Immunotherapy Response Prediction via Tim4-Functionalized Magnetic Core-Shell Metal-Organic Frameworks,” Analytical Chemistry 95, no. 49 (2023): 18268-18277.

[230]

Y. Lei, X. Fei, Y. Ding, et al., “Simultaneous Subset Tracing and miRNA Profiling of Tumor-Derived Exosomes via Dual-Surface-Protein Orthogonal Barcoding,” Science Advances 9, no. 40 (2023): eadi1556.

[231]

S. Premachandran, R. Haldavnekar, S. Ganesh, S. Das, K. Venkatakrishnan, and B. Tan, “Self-Functionalized Superlattice Nanosensor Enables Glioblastoma Diagnosis Using Liquid Biopsy,” ACS Nano 17, no. 20 (2023): 19832-19852.

[232]

J. Penders, A. Nagelkerke, E. M. Cunnane, et al., “Single Particle Automated Raman Trapping Analysis of Breast Cancer Cell-Derived Extracellular Vesicles as Cancer Biomarkers,” ACS Nano 15, no. 11 (2021): 18192-18205.

[233]

J. C. Fraire, S. Stremersch, D. Bouckaert, et al., “Improved Label-Free Identification of Individual Exosome-Like Vesicles With Au@ag Nanoparticles as SERS Substrate,” ACS Applied Materials and Interfaces 11 (2019): 39424-39435.

[234]

J. Wang and X. Geng, “Large Margin Weighted k -Nearest Neighbors Label Distribution Learning for Classification,” IEEE Transactions on Neural Networks Learning Systems 35, no. 11 (2024): 16720-16732.

[235]

H. Wang, Y. Shao, S. Zhou, C. Zhang, and N. Xiu, “Support Vector Machine Classifier via Soft-Margin Loss,” IEEE Transactions on Pattern Analysis and Machine Intelligence 44, no. 10 (2022): 7253-7265.

[236]

N. Wu, X. Y. Zhang, J. Xia, X. Li, T. Yang, and J. H Wang, “Ratiometric 3D DNA Machine Combined With Machine Learning Algorithm for Ultrasensitive and High-precision Screening of Early Urinary Diseases,” ACS Nano 15, no. 12 (2021): 19522-19534 (accessed 2024-11-14).

[237]

X. Xiao, K. Wu, A. Yan, J.-G. Wang, Z. Zhang, and D. Li, “Intelligent Probabilistic System for Digital Tracing Cellular Origin of Individual Clinical Extracellular Vesicles,” Analytical Chemistry 93, no. 29 (2021): 10343-10350.

[238]

L. Lin, “FRP-XGBoost: Identification of Ferroptosis-Related Proteins Based on Multi-View Features,” International Journal of Biological Macromolecules 262 (2024): 130180.

[239]

J. Lv, X.-Y. Wang, S. Chang, et al., “Amperometric Identification of Single Exosomes and Their Dopamine Contents Secreted by Living Cells,” Analytical Chemistry 95, no 30 (2023): 11273-11279.

[240]

C. Qin, D. Xu, H. Han, et al., “Dynamic and Label-Free Sensing of Cardiomyocyte Responses to Nanosized Vesicles for Cardiac Oxidative Stress Injury Therapy,” Nano Letters 23, no. 24 (2023): 11850-11859.

[241]

Y. Xie, X. Su, Y. Wen, C. Zheng, and M. Li, “Artificial Intelligent Label-Free SERS Profiling of Serum Exosomes for Breast Cancer Diagnosis and Postoperative Assessment,” Nano Letters 22, no. 19 (2022): 7910-7918.

[242]

M. Jalali, C. del Real Mata, L. Montermini, et al., “MoS2-Plasmonic Nanocavities for Raman Spectra of Single Extracellular Vesicles Reveal Molecular Progression in Glioblastoma,” ACS Nano 17, no. 13 (2023): 12052-12071.

[243]

H. Shin, Y. Kang, K. W. Choi, S. Kim, B.-J. Ham, and Y. Choi, “Artificial Intelligence-Based Major Depressive Disorder (MDD) Diagnosis Using Raman Spectroscopic Features of Plasma Exosomes,” Analytical Chemistry 95, no. 15 (2023): 6410-6416.

[244]

A. Z. Al Meslamani, I. Sobrino, and J. de la Fuente, “Machine Learning in Infectious Diseases: Potential Applications and Limitations,” Annals of Medicine 56, no. 1 (2024): 2362869.

[245]

Y.-F. Qin, X.-Y. Lu, Z. Shi, et al., “Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process,” Analytical Chemistry 94, no. 36 (2022): 12416-12426.

[246]

R. J. Farr, N. Godde, C. Cowled, et al., “Machine Learning Identifies Cellular and Exosomal MicroRNA Signatures of Lyssavirus Infection in Human Stem Cell-Derived Neurons,” Frontiers in Cellular and Infection Microbiology 11 (2021): 783140.

[247]

A. A. Q. Ahmed, F. Qi, R. Zheng, et al., “The Impact of ExHp-CD (Outer Membrane Vesicles) Released From Helicobacter Pylori SS1 on Macrophage RAW 264.7 Cells and Their Immunogenic Potential,” Life Sciences 279 (2021): 119644.

[248]

Y. Qin, Z. Shi, L. Zhu, et al., “Impact of Airborne Pathogen-Derived Extracellular Vesicles on Macrophages Revealed by Raman Spectroscopy and Multiomics,” Environmental Science & Technology 57, no. 42 (2023): 15858-15868.

[249]

F. Yokoyama, A. Kling, and P. S. Dittrich, “Capturing of Extracellular Vesicles Derived From Single Cells of Escherichia Coli,” Lab on A Chip 24, no. 7 (2024): 2049-2057.

[250]

V. Vinduska, C. E. Gallops, R. O'Connor, Y. Wang, and X. Huang, “Exosomal Surface Protein Detection With Quantum Dots and Immunomagnetic Capture for Cancer Detection,” Nanomaterials 11, no. 7 (2021): 1853.

[251]

J. Zhang, Y. Zhu, J. Shi, K. Zhang, Z. Zhang, and H. Zhang, “Sensitive Signal Amplifying a Diagnostic Biochip Based on a Biomimetic Periodic Nanostructure for Detecting Cancer Exosomes,” ACS Applied Materials and Interfaces 12, no. 30 (2020): 33473-33482.

[252]

J. Rho, J. Chung, H. Im, et al., “Magnetic Nanosensor for Detection and Profiling of Erythrocyte-Derived Microvesicles,” ACS Nano 7, no. 12 (2013): 11227-11233.

[253]

Y. Sun, H. Jin, X. Jiang, and R. Gui, “Assembly of Black Phosphorus Nanosheets and MOF to Form Functional Hybrid Thin-Film for Precise Protein Capture, Dual-Signal and Intrinsic Self-Calibration Sensing of Specific Cancer-Derived Exosomes,” Analytical Chemistry 92, no. 3 (2020): 2866-2875.

[254]

R. Haldavnekar, K. Venkatakrishnan, and B. Tan, “Cancer Stem Cell Derived Extracellular Vesicles With Self-Functionalized 3D Nanosensor for Real-Time Cancer Diagnosis: Eliminating the Roadblocks in Liquid Biopsy,” ACS Nano 16, no. 8 (2022): 12226-12243.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/