A Refined Dual-Fiber Network Morphology as Printable Hole Transport Layers for High-Performance Perovskite Solar Mini-Modules

Zhihui Yao , Qiyuan Xia , Jin Li , Xiangchuan Meng , Zengqi Huang , Muhammad Bilal Khan Niazi , Shaohua Zhang , Xiaotian Hu , Yiwang Chen

Aggregate ›› 2025, Vol. 6 ›› Issue (6) : e70017

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (6) :e70017 DOI: 10.1002/agt2.70017
RESEARCH ARTICLE

A Refined Dual-Fiber Network Morphology as Printable Hole Transport Layers for High-Performance Perovskite Solar Mini-Modules

Author information +
History +
PDF

Abstract

In the contemporary preparation of perovskite solar cells (PSCs), the prevalent issue of hole transport layers (HTLs) materials is frequently incompatible with large-area deposition techniques. As the area increases, this results in nonuniform preparation of the HTLs, which significantly reduces the efficiency and reliability of the device at the module level. To tackle this significant challenge, we propose a strategy for a dual-fiber network structure based on polymer HTLs. This strategy involves the use of organic solar cell polymer donor material (PM6) and poly(3-hexylthiophene) (P3HT), which are spontaneously interwoven into micron-sized fiber crystals to establish efficient carrier transport channels. This unique structure not only accelerates charge extraction but also takes advantage of the inherent benefits of polymers, such as excellent printability and homogeneous film formation while enhancing the protection of the perovskite layers. The resulting devices demonstrate a VOC of 1.18 V and a champion PCE of 24.90%, which is higher than the pristine devices (the PCE is 22.87%). Moreover, due to the improved printing characteristics, the PSMs prepared by blade-coating also demonstrate a high PCE of 15.15% within an aperture area of 100 cm2. Additionally, this strategy significantly improves the operational stability, thermal stability, and humidity stability of the devices.

Keywords

dual-fiber network morphology / hole transport layers / mini-modules / perovskite photovoltaic / printability

Cite this article

Download citation ▾
Zhihui Yao, Qiyuan Xia, Jin Li, Xiangchuan Meng, Zengqi Huang, Muhammad Bilal Khan Niazi, Shaohua Zhang, Xiaotian Hu, Yiwang Chen. A Refined Dual-Fiber Network Morphology as Printable Hole Transport Layers for High-Performance Perovskite Solar Mini-Modules. Aggregate, 2025, 6(6): e70017 DOI:10.1002/agt2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Bruening, B. Dou, J. Simonaitis, Y.-Y. Lin, M. F. Van Hest, and C. J. Tassone, “Scalable Fabrication of Perovskite Solar Cells to Meet Climate Targets,” Joule 2 (2018): 2464-2476.

[2]

N. J. Jeon, J. H. Noh, W. S. Yang, et al., “Compositional Engineering of Perovskite Materials for High-Performance Solar Cells,” Nature 517 (2015): 476-480.

[3]

K. Liao, C. Li, L. Xie, et al., “Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance,” Nano-Micro Letters 12 (2020): 156.

[4]

Z. Song, C. L. Mcelvany, A. B. Phillips, et al., “A Technoeconomic Analysis of Perovskite Solar Module Manufacturing With Low-Cost Materials and Techniques,” Energy & Environmental Science 10 (2017): 1297-1305.

[5]

S. D. Stranks, G. E. Eperon, G. Grancini, et al., “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342 (2013): 341-344.

[6]

W. S. Yang, J. H. Noh, N. J. Jeon, et al., “High-Performance Photovoltaic Perovskite Layers Fabricated Through Intramolecular Exchange,” Science 348 (2015): 1234-1237.

[7]

“Best Research Cell Efficiency Chart,” NREL, accessed July 2024, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf.

[8]

H. S. Jung, G. S. Han, N.-G. Park, and M. J. Ko, “Flexible Perovskite Solar Cells,” Joule 3 (2019): 1850-1880.

[9]

X. Li, D. Bi, C. Yi, et al., “A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells,” Science 353 (2016): 58-62.

[10]

X. Meng, Z. Xing, X. Hu, et al., “Stretchable Perovskite Solar Cells With Recoverable Performance,” Angewandte Chemie International Edition 59 (2020): 16602-16608.

[11]

P. Murugan, T. Hu, X. Hu, and Y. Chen, “Current Development Toward Commercialization of Metal-Halide Perovskite Photovoltaics,” Advanced Optical Materials 9 (2021): 2100390.

[12]

Y. Wu, G. Xu, J. Xi, et al., “In Situ Crosslinking-Assisted Perovskite Grain Growth for Mechanically Robust Flexible Perovskite Solar Cells With 23.4% Efficiency,” Joule 7 (2023): 398-415.

[13]

Y. Rong, Y. Hu, A. Mei, et al., “Challenges for Commercializing Perovskite Solar Cells,” Science 361 (2018): 1214.

[14]

Y. Hu, Y. Chu, Q. Wang, et al., “Standardizing Perovskite Solar Modules Beyond Cells,” Joule 3 (2019): 2076-2085.

[15]

F. Huang, M. Li, P. Siffalovic, G. Cao, and J. Tian, “From Scalable Solution Fabrication of Perovskite Films Towards Commercialization of Solar Cells,” Energy & Environmental Science 12 (2019): 518-549.

[16]

C. Gong, B. Fan, F. Li, et al., “An Enhanced Couette Flow Printing Strategy to Recover Efficiency Losses by Area and Substrate Differences in Perovskite Solar Cells,” Energy & Environmental Science 15 (2022): 4313-4322.

[17]

X. Hu, S. Liu, Y. Song, and Y. Chen, “New Thin-Film Solar Cells: Flexible Design and Printing Manufacturing,” Acta Polymerica Sinica 54 (2023): 910-926.

[18]

W. Li, Z. Chu, F. Li, et al., “Electrostatic Assembly Strategy for Printing Inorganic Nanoparticles and Its Application in Large-Area Perovskite Solar Cells,” Science China Materials 67 (2024): 1-10.

[19]

Y. Xu, Z. Chu, H. Wang, et al., “Printable Oil-NiOX Hole Transport Layer Enables Efficient n-i-p Perovskite Solar Cells With a High Thermal Stability,” Science China Chemistry 67 (2024): 2335-2340.

[20]

J. Zhou, L. Tan, Y. Liu, et al., “Highly Efficient and Stable Perovskite Solar Cells via a Multifunctional Hole Transporting Material,” Joule 8 (2024): 1691.

[21]

T. Malinauskas, M. Saliba, T. Matsui, et al., “Branched Methoxydiphenylamine-Substituted Fluorene Derivatives as Hole Transporting Materials for High-Performance Perovskite Solar Cells,” Energy & Environmental Science 9 (2016): 1681-1686.

[22]

L. Vesce, M. Stefanelli, and A. Di Carlo, “Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer,” Energies 14 (2021): 6081.

[23]

C. Zhang, K. Wei, J. Hu, et al., “A Review on Organic Hole Transport Materials for Perovskite Solar Cells: Structure, Composition and Reliability,” Materials Today 67 (2023): 518-547.

[24]

N. A. N. Ouedraogo, G. O. Odunmbaku, B. Guo, et al., “Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells,” ACS Applied Materials & Interfaces 14 (2022): 34303-34327.

[25]

P. Yan, D. Yang, H. Wang, S. Yang, and Z. Ge, “Recent Advances in Dopant-Free Organic Hole-Transporting Materials for Efficient, Stable and Low-Cost Perovskite Solar Cells,” Energy & Environmental Science 15 (2022): 3630-3669.

[26]

G. Li, Y. Wang, L. Huang, and W. Sun, “High-Performance Self-Powered Perovskite Photodetector Based on Cesium Iodide Doped Spiro-OMeTAD Hole Transport Material,” Journal of Alloys and Compounds 907 (2022): 164432.

[27]

L. Nakka, Y. Cheng, A. G. Aberle, and F. Lin, “Analytical Review of Spiro-OMeTAD Hole Transport Materials: Paths Toward Stable and Efficient Perovskite Solar Cells,” Advanced Energy and Sustainability Research 3 (2022): 2200045.

[28]

K.-M. Lee, W.-H. Chiu, Y.-H. Tsai, C.-S. Wang, Y.-T. Tao, and Y.-D. Lin, “High-Performance Perovskite Solar Cells Based on Dopant-Free Hole-Transporting Material Fabricated by a Thermal-Assisted Blade-Coating Method With Efficiency Exceeding 21%,” Chemical Engineering Journal 427 (2022): 131609.

[29]

J. Li, B. Fan, X. Liu, et al., “Polymer Modulated Ink Rheology and Compatibility Enables Homogenized Printing of a Spiro-OMeTAD Transport Layer for Scalable and Stable Perovskite Solar Modules,” Energy & Environmental Science 17 (2024): 6821-6832.

[30]

T. Qin, W. Huang, J.-E. Kim, et al., “Amorphous Hole-Transporting Layer in Slot-Die Coated Perovskite Solar Cells,” Nano Energy 31 (2017): 210-217.

[31]

S. Zhang, H. Wang, X. Duan, et al., “Printable and Homogeneous NiOx Hole Transport Layers Prepared by a Polymer-Network Gel Method for Large-Area and Flexible Perovskite Solar Cells,” Advanced Functional Materials 31 (2021): 202106495.

[32]

M. Jeong, I. W. Choi, E. M. Go, et al., “Stable Perovskite Solar Cells With Efficiency Exceeding 24.8% and 0.3-V Voltage Loss,” Science 369 (2020): 1615-1620.

[33]

J. H. Lee, T. Ghanem, D. J. P. Sánchez, et al., “Enhancing Intermolecular Interaction of Spiro-OMeTAD for Stable Perovskite Solar Cells With Efficiencies Over 24%,” ACS Energy Letters 8 (2023): 3895-3901.

[34]

T. K. Zhang, F. Wang, H. B. Kim, et al., “Ion-Modulated Radical Doping of Spiro-OMeTAD for More Efficient and Stable Perovskite Solar Cells,” Science 377 (2022): 495-501.

[35]

F. M. Rombach, S. A. Haque, and T. J. Macdonald, “Lessons Learned From spiro-OMeTAD and PTAA in Perovskite Solar Cells,” Energy & Environmental Science 14 (2021): 5161-5190.

[36]

Y. Wang, L. Duan, M. Zhang, et al., “PTAA as Efficient Hole Transport Materials in Perovskite Solar Cells: A Review,” Solar RRL 6 (2022): 2200234.

[37]

X. Liu, Y. Wang, E. Rezaee, et al., “Tetra-Propyl-Substituted Copper (II) Phthalocyanine as Dopant-Free Hole Transporting Material for Planar Perovskite Solar Cells,” Solar RRL 2 (2018): 1800050.

[38]

X. Z. Huang, X. R. Wang, Y. Q. Zou, M. W. An, and Y. Wang, “The Renaissance of Poly(3-Hexylthiophene) as a Promising Hole-Transporting Material Toward Efficient and Stable Perovskite Solar Cells,” Small 20 (2024): 2400874.

[39]

M. J. Jeong, K. M. Yeom, S. J. Kim, E. H. Jung, and J. H. Noh, “Spontaneous Interface Engineering for Dopant-Free Poly(3-Hexylthiophene) Perovskite Solar Cells With Efficiency Over 24%,” Energy & Environmental Science 14 (2021): 2419-2428.

[40]

E. H. Jung, N. J. Jeon, E. Y. Park, et al., “Efficient, Stable and Scalable Perovskite Solar Cells Using Poly(3-Hexylthiophene),” Nature 567 (2019): 511-515.

[41]

D. Xu, Z. Gong, Y. Jiang, et al., “Constructing Molecular Bridge for High-Efficiency and Stable Perovskite Solar Cells Based on P3HT,” Nature Communications 13 (2022): 7020.

[42]

M. H. Li, X. B. Ma, J. J. Fu, et al., “Molecularly Tailored Perovskite/Poly(3-Hexylthiophene) Interfaces for High-Performance Solar Cells,” Energy & Environmental Science 17 (2024): 5513-5520.

[43]

G. H. Ren, W. B. Han, Q. Zhang, et al., “Overcoming Perovskite Corrosion and De-Doping Through Chemical Binding of Halogen Bonds Toward Efficient and Stable Perovskite Solar Cells,” Nano-Micro Letters 14 (2022): 175.

[44]

X. Lin, Y. Wang, H. Su, et al., “An In-Situ Formed Tunneling Layer Enriches the Options of Anode for Efficient and Stable Regular Perovskite Solar Cells,” Nano-Micro Letters 15 (2023): 10.

[45]

Y. Shen, K. M. Deng, Q. H. Chen, G. Gao, and L. Li, “Crowning Lithium Ions in Hole-Transport Layer Toward Stable Perovskite Solar Cells,” Advanced Materials 34 (2022): 2200978.

[46]

Z. Yao, J. Wang, and J. Pei, “Controlling Morphology and Microstructure of Conjugated Polymers via Solution-State Aggregation,” Progress in Polymer Science 136 (2023): 101626.

[47]

H. Sun, Y. Leng, X. Y. Zhou, X. Li, and T. Wang, “Regulation of the Nanostructures Self-Assembled From an Amphiphilic Azobenzene Homopolymer: Influence of Initial Concentration and Solvent Solubility Parameter,” Soft Matter 19 (2023): 743-748.

[48]

Y. Li, L. Yu, L. Chen, et al., Innovation 2 (2021): 100090.

[49]

R. Schmid, “Recent Advances in the Description of the Structure of Water, the Hydrophobic Effect, and the Like-Dissolves-Like Rule,” Monatshefte für Chemie 132 (2001): 1295-1326.

[50]

G. Zhang, H. Zhang, R. Yu, Y. Duan, Y. Huang, and Z. Yin, “Critical Size/Viscosity for Coffee-Ring-Free Printing of Perovskite Micro/Nanopatterns,” ACS Applied Materials & Interfaces 14 (2022): 14712-14720.

[51]

K. Liu, L. Wang, S. Li, et al., “Novel Metal-Organic Framework Cocrystal Strategy for Significantly Enhancing Photocatalytic Performance,” Advanced Functional Materials 33 (2023): 2306871.

[52]

R. Zeng, L. Zhu, M. Zhang, et al., “All-Polymer Organic Solar Cells With Nano-to-Micron Hierarchical Morphology and Large Light Receiving Angle,” Nature Communications 14 (2023): 4148.

[53]

L. Zhu, M. Zhang, J. Xu, et al., “Single-Junction Organic Solar Cells With Over 19% Efficiency Enabled by a Refined Double-Fibril Network Morphology,” Nature Materials 21 (2022): 656-663.

[54]

D. W. Lee, K. H. Kim, and H. D. Kim, “Thickness Optimization of Charge Transport Layers on Perovskite Solar Cells for Aerospace Applications,” Nanomaterials 13 (2023): 1848.

[55]

Q. Tan, Z. Li, G. Luo, et al., “Inverted Perovskite Solar Cells Using Dimethylacridine-based Dopants,” Nature 620 (2023): 545-551.

[56]

J. Wang, S. Fu, L. Huang, et al., “Heterojunction Engineering and Ideal Factor Optimization Toward Efficient MINP Perovskite Solar Cells,” Advanced Energy Materials 11 (2021): 2102724.

[57]

S. Tan, T. Huang, I. Yavuz, et al., “Stability-Limiting Heterointerfaces of Perovskite Photovoltaics,” Nature 605 (2022): 268-273.

[58]

V. W. Bergmann, Y. Guo, H. Tanaka, et al., “Local Time-Dependent Charging in a Perovskite Solar Cell,” ACS Applied Materials & Interfaces 8 (2016): 19402-19409.

[59]

L. Fu, H. Li, L. Wang, R. Yin, B. Li, and L. Yin, “Defect Passivation Strategies in Perovskites for an Enhanced Photovoltaic Performance,” Energy & Environmental Science 13 (2020): 4017-4056.

[60]

X. Liu, B. Zheng, L. Shi, et al., “Perovskite Solar Cells Based on Spiro-OMeTAD Stabilized With an Alkylthiol Additive,” Nature Photonics 17 (2023): 96-105.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/