Heavy-Atom-Induced Narrow Emission in Chalcogen-Coordinating Lanthanide Cerium(III) Complexes

Jiayin Zheng , Zewei Li , Ruoyao Guo , Hao Qi , Huanyu Liu , Yujia Li , Haodi Niu , Hong Jiang , Zuqiang Bian , Zhiwei Liu

Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70015

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70015 DOI: 10.1002/agt2.70015
RESEARCH ARTICLE

Heavy-Atom-Induced Narrow Emission in Chalcogen-Coordinating Lanthanide Cerium(III) Complexes

Author information +
History +
PDF

Abstract

Luminescent lanthanide cerium(III) compounds have gathered increasing research interest in both inorganic phosphors and functional molecular complexes. Cerium(III) exhibits broad double-peak emission originating from 5d excited state 2D3/2 to 4f ground states 2F7/2 and 2F5/2. It is vital to adjust the bandwidth of the emission for different applications like lighting and display, while no regulation between these two peaks in Ce(III) emitters has been reported hitherto. In this work, novel heavy-atom-induced narrow emission is observed in luminescent Ce(III) complexes by adopting imidodiphosphinate ligand with different chalcogen-coordinating sites from O to S, Se, and Te. Not only a new Ce(III) complex with orange–red emission beyond the traditional emission color regions of Ce(III) was obtained, but also the ratio of the two peaks was systematically tuned to achieve the narrowest emission from Ce(III) with a full width at half maximum of 42 nm. Time-dependent density functional theory calculations ascribe the tuning of emission spectra to centroid shift and simultaneously provide the orbital contribution values of different chalcogen atoms to the emission excited state. By extending the coordination atoms from classic oxygen and nitrogen to heavier and softer elements, these results give new insight into luminescence properties and mechanisms of Ce(III) emission.

Keywords

cerium(III) complexes / chalcogen / double-peak emission / lanthanide / luminescence

Cite this article

Download citation ▾
Jiayin Zheng, Zewei Li, Ruoyao Guo, Hao Qi, Huanyu Liu, Yujia Li, Haodi Niu, Hong Jiang, Zuqiang Bian, Zhiwei Liu. Heavy-Atom-Induced Narrow Emission in Chalcogen-Coordinating Lanthanide Cerium(III) Complexes. Aggregate, 2025, 6(5): e70015 DOI:10.1002/agt2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) S. Zhao, J. Zou, H. Xu, Q. Hu, Q. Han, and W. Wu, “Luminescent Enhancement and Multi-Mode Optical Thermometry of Erbium Doped Halide Cs2(Na/Ag)BiCl6 Microcrystals,” Journal of Rare Earths 42 (2024): 2018-2026; b) L. Wang, Z. Zhao, C. Wei, et al., “Review on the Electroluminescence Study of Lanthanide Complexes,” Advanced Optical Materials 7 (2019): 1801256.

[2]

a) F. Szabadvary, Handbook on the Physics and Chemistry of Rare Earths, (Elsevier, 1988), 33-80; b) M. E. Weeks, “The Discovery of the Elements. XVI. The Rare Earth Elements,” Journal of Chemical Education 9 (1932): 1751.

[3]

A. A. Yaroshevsky, “Abundances of Chemical Elements in the Earth's Crust,” Geochemistry International 44 (2006): 48-55.

[4]

Y. Qiao and E. J. Schelter, “Lanthanide Photocatalysis,” Accounts of Chemical Research 51 (2018): 2926-2936.

[5]

A. Hirsch, “The Pyrophoric Alloy Industry,” Journal of Industrial and Engineering Chemistry 10 (1918): 849-851.

[6]

H. Zhang, J. Zhang, R. Ye, S. Xu, and G. Bai, “Color Modulation of Cerium Sulfide Colorant Powders Through Chemical Doping Engineering,” Journal of Materials Chemistry C 11 (2023): 9215-9222.

[7]

a) S. Feng, Y. Guo, X. Sun, et al., “Elevating Photoluminescence Properties of Y3MgAl3SiO12:Ce3+ Transparent Ceramics for High-Power White Lighting,” Journal of Rare Earths 41 (2023): 649-657; b) V. Retivov, V. Dubov, D. Kuznetsova, A. Ismagulov, and M. Korzhik, “Gd3+ Content Optimization for Mastering High Light Yield and Fast GdxAl2Ga3O12:Ce3+ Scintillation Ceramics,” Journal of Rare Earths 41 (2023): 1911-1918; c) S. Lin, H. Lin, H. Yang, et al., “Highly Crystalline Y3Al5O12:Ce3+ Phosphor-in-Silica Glass Ceramics for High-Power Solid-State Lighting,” Journal of Rare Earths 42 (2024): 2051-2057.

[8]

a) X. Zhao, Z. Zhao, L. Zhou, et al., “Highly Efficient Green Organic Light-Emitting Devices Based on Terbium Complex by Employing Hole Block Material as Host,” Science China Technol Sciences 61 (2018): 1334-1339; b) J. Kido, K. Nagai, and Y. Ohashi, “Electroluminescence in a Terbium Complex,” Chemistry Letters 19 (1990): 657-660.

[9]

a) Z. Zhao, L. Wang, G. Zhan, Z. Liu, Z. Bian, and C. Huang, “Efficient Rare Earth Cerium(III) Complex With Nanosecond d−f Emission for Blue Organic Light-Emitting Diodes,” National Science Review 8 (2020): nwaa193; b) M. Suta, N. Harmgarth, M. Kühling, P. Liebing, F. T. Edelmann, and C. Wickleder, “Bright Photoluminescence of [{(CptBu2)2 Ce(μ-Cl)}2]: A Valuable Technique for the Determination of the Oxidation State of Cerium,” Chemistry—An Asian Journal 13 (2018): 1038-1044; c) L. Wang, Z. Zhao, G. Zhan, et al., “Deep-Blue Organic Light-Emitting Diodes Based on a Doublet d–f Transition Cerium(III) Complex With 100% Exciton Utilization Efficiency,” Light: Science & Applications 9 (2020): 1-9.

[10]

a) J. Li, L. Wang, Z. Zhao, et al., “Highly Efficient and Air-Stable Eu(II)-Containing Azacryptates Ready for Organic Light-Emitting Diodes,” Nature Communications 11 (2020): 5218; b) L. A. Basal, A. B. Kajjam, M. D. Bailey, and M. J. Allen, “Systematic Tuning of the Optical Properties of Discrete Complexes of EuII in Solution Using Counterions and Solvents,” Inorganic Chemistry 59 (2020): 9476-9480; c) H. Qi, Z. Zhao, G. Zhan, et al., “Air Stable and Efficient Rare Earth Eu(II) Hydro-tris(pyrazolyl) Borate Complexes With Tunable Emission Colors,” Inorganic Chemistry Frontiers 7 (2020): 4593-4599.

[11]

a) H. B. Wineinger, B. Scheibe, J. P. Brannon, et al., “Coordination Chemistry and Spectroscopic Properties of Eu(II), Sm(II), and Yb(II) With 12-Crown-4,” Crystal Growth & Design 24 (2024): 1544-1550; b) T. C. Jenks, A. N. Kuda-Wedagedara, M. D. Bailey, C. L. Ward, and M. J. Allen, “Spectroscopic and Electrochemical Trends in Divalent Lanthanides Through Modulation of Coordination Environment,” Inorganic Chemistry 59 (2020): 2613-2620.

[12]

a) L. C. Dixie, A. Edgar, and M. F. Reid, “Sm2+ Fluorescence and Absorption in Cubic BaCl2: Strong Thermal Crossover of Fluorescence Between 4f6 and 4f55d1 Configurations,” Journal of Luminescence 132 (2012): 2775-2782; b) T. C. Schäfer, J. R. Sorg, A. E. Sedykh, and K. Müller-Buschbaum, “Red Emitting Sm(II) Phosphors: Thermally Switchable Luminescence in Sm(AlX4)2 (X = Cl, Br) by 5d–4f and Intra-4f Transitions,” Chemical Communications 57 (2021): 11984-11987.

[13]

J. Ueda and S. Tanabe, “(INVITED) Review of Luminescent Properties of Ce3+-doped Garnet Phosphors: New Insight Into the Effect of Crystal and Electronic Structure,” Optical Materials: X 1 (2019): 100018.

[14]

N. Sinha, P. Yaltseva, and O. S. Wenger, “The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First-Row Transition Metal Complexes,” Angewandte Chemie International Edition 62 (2023): e202303864.

[15]

a) H. Yin, P. J. Carroll, J. M. Anna, and E. J. Schelter, “Luminescent Ce(III) Complexes as Stoichiometric and Catalytic Photoreductants for Halogen Atom Abstraction Reactions,” Journal of the American Chemical Society 137 (2015): 9234-9237; b) H. Yin, P. J. Carroll, B. C. Manor, J. M. Anna, and E. J. Schelter, “Cerium Photosensitizers: Structure– Function Relationships and Applications in Photocatalytic Aryl Coupling Reactions,” Journal of the American Chemical Society 138 (2016): 5984-5993.

[16]

P. Fang, L. Wang, G. Zhan, et al., “Lanthanide Cerium(III) Tris(pyrazolyl)borate Complexes: Efficient Blue Emitters for Doublet Organic Light-Emitting Diodes,” ACS Applied Materials & Interfaces 13 (2021): 45686-45695.

[17]

P. Fang, J. Liu, H. Liu, et al., “Delayed Doublet Emission in a Cerium(III) Complex,” Angewandte Chemie International Edition 62 (2023): e202302192.

[18]

a) N. Yamashita, Y. Michitsuji, and S. Asano, “Photoluminescence Spectra and Vibrational Structures of the SrS:Ce3+ and SrSe:Ce3+ Phosphors,” Journal of the Electrochemical Society 134 (1987): 2932; b) H. Kunkely and A. Vogler, “Can Halides Serve as a Charge Transfer Acceptor? Metal-Centered and Metal-to-Ligand Charge Transfer Excitation of Cerium(III) Halides,” Inorganic Chemistry Communications 9 (2006): 1-3.

[19]

M. D. Rausch, K. J. Moriarty, J. L. Atwood, J. A. Weeks, W. E. Hunter, and H. G. Brittain, “Synthetic, X-Ray Structural and Photoluminescence Studies on Pentamethylcyclopentadienyl Derivatives of Lanthanum, Cerium and Praseodymium,” Organometallics 5 (1986): 1281-1283.

[20]

a) P. Bhattacharyya and J. D. Woollins, “Bis(Diphenylphosphino)Amine and Related Chemistry,” Polyhedron 14 (1995): 3367-3388; b) D. Cupertino, D. J. Birdsall, A. M. Z. Slawin, and J. D. Woollins, “The Preparation and Coordination Chemistry of iPr2P(E)NHP(E′)iPr2 (E, E′=Se; E=Se, E′=S; E=S, E′=O; E, E′=O,” Inorganica Chimica Acta 290 (1999): 1-7; c) M. Necas, M. R. S. J. Foreman, J. Marek, J. D. Woollins, and J. Novosad, “New Mixed-Donor Unsymmetrical P–N–P Ligands and Their Palladium(II) Complexes,” New Journal of Chemistry 25 (2001): 1256-1263; d) J. S. Ritch, T. Chivers, D. J. Eisler, and H. M. Tuononen, “Experimental and Theoretical Investigations of Structural Isomers of Dichalcogenoimidodiphosphinate Dimers: Dichalcogenides or Spirocyclic Contact Ion Pairs?,” Chemistry - A European Journal 13 (2007): 4643-4653.

[21]

a) P. Pyykkö and M. Atsumi, “Molecular Single-Bond Covalent Radii for Elements 1-118,” Chemistry - A European Journal 15 (2009): 186-197; b) S. S. Batsanov, “Experimental Determination of Covalent Radii of Elements,” Russian Chemical Bulletin 44 (1995): 2245-2250.

[22]

A. J. Gaunt, S. D. Reilly, A. E. Enriquez, et al., “Experimental and Theoretical Comparison of Actinide and Lanthanide Bonding in M[N(EPR2)2]3 Complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H),” Inorganic Chemistry 47 (2008): 29-41.

[23]

a) W. Yan, L. Wang, H. Qi, et al., “Highly Efficient Heteroleptic Cerium(III) Complexes With a Substituted Pyrazole Ancillary Ligand and Their Application in Blue Organic Light-Emitting Diodes,” Inorganic Chemistry 60 (2021): 18103-18111; b) R. Guo, L. Wang, Z. Cai, Z. Zhao, Z. Bian, and Z. J. I. C. Liu, “Complexes of Ce(III) and Bis(pyrazolyl) Borate Ligands: Synthesis, Structures, and Luminescence Properties,” Inorganic Chemistry 61 (2022): 14164-14172; c) P. Fang, L. Wang, G. Zhan, et al., “Lanthanide Cerium(III) Tris(Pyrazolyl) Borate Complexes: Efficient Blue Emitters for Doublet Organic Light-Emitting Diodes,” ACS Applied Materials & Interfaces 13 (2021): 45686-45695.

[24]

a) Y. S. Ding, X. L. Jiang, L. Li, C. Q. Xu, J. Li, and Z. Zheng, “Atomically Precise Semiconductor Clusters of Rare-Earth Tellurides,” Nature Synthesis 3 (2024): 655-661; b) D. R. Cary and J. Arnold, “Preparation of Lanthanide Tellurolates and Evidence for the Formation of Cluster Intermediates in Their Thermal Decomposition to Bulk Metal Tellurides,” Journal of the American Chemical Society 115 (1993): 2520-2521.

[25]

P. Dorenbos, “Lanthanide 4f-Electron Binding Energies and the Nephelauxetic Effect in Wide Band Gap Compounds,” Journal of Luminescence 136 (2013): 122-129.

[26]

H. O. Pritchard and H. A. Skinner, “The Concept of Electronegativity,” Chemical Reviews 55 (1955): 745-786.

[27]

a) Y. Qiao, D. C. Sergentu, H. Yin, et al., “Understanding and Controlling the Emission Brightness and Color of Molecular Cerium Luminophores,” Journal of the American Chemical Society 140 (2018): 4588-4595; b) P. Pandey, Q. Yang, M. R. Gau, and E. J. Schelter, “Evaluating the Photophysical and Photochemical Characteristics of Green-Emitting Cerium(iii) Mono-Cyclooctatetraenide Complexes,” Dalton Transactions 52 (2023): 5909-5917.

[28]

H. U. Kim, T. Kim, C. Kim, M. Kim, and T. Park, “Recent Advances in Structural Design of Efficient Near-Infrared Light-Emitting Organic Small Molecules,” Advanced Functional Materials 33 (2023): 2208082.

[29]

a) E. Runge and E. K. U. Gross, “Density-Functional Theory for Time-Dependent Systems,” Physical Review Letter 52 (1984): 997-1000; b) C. Adamo and D. Jacquemin, “The Calculations of Excited-State Properties With Time-Dependent Density Functional Theory,” Chemical Society Reviews 42 (2013): 845-856.

[30]

Z. Liu, T. Lu, and Q. Chen, “An Sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity,” Carbon 165 (2020): 461-467.

[31]

Z. Song, Z. Xia, and Q. Liu, “Insight Into the Relationship Between Crystal Structure and Crystal-Field Splitting of Ce3+ Doped Garnet Compounds,” Journal of Physical Chemistry A 122 (2018): 3567-3574.

[32]

a) T. Lu, Multiwfn Manual, version 3.8(dev), Section 3.21.1; b) Z. Liu, X. Wang, T. Lu, A. Yuan, and X. Yan, “Potential Optical Molecular Switch: Lithium@Cyclo[18]Carbon Complex Transforming between Two Stable Configurations,” Carbon 187 (2022): 78-85; c) T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33 (2012): 580-592.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/