Optical Force Probes for Spatially Resolved Imaging of Polymer Damage and Failure

Berçin V. Asya , Sitao Wang , Eric Euchler , Vu Ngoc Khiêm , Robert Göstl

Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e70014

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e70014 DOI: 10.1002/agt2.70014
REVIEW

Optical Force Probes for Spatially Resolved Imaging of Polymer Damage and Failure

Author information +
History +
PDF

Abstract

Polymer deformation spans 7–10 orders of magnitude in length scales, making its analysis a significant challenge. Optical force probes (OFPs), functional molecular motifs in polymer mechanochemistry, enable the study of mechanical properties by undergoing force-activated optical changes, such as absorption, fluorescence, or chemiluminescence. This review highlights OFPs integrated within polymer materials, focusing on their mechanical properties, optical methods for force elucidation, and the insights they provide. Special attention is given to high-resolution microscopy combined with OFPs, enabling qualitative and quantitative imaging of material damage and failure at unprecedented spatial resolution. While binary OFPs respond at critical strain thresholds, ideal for detecting permanent damage and stress hotspots, continuum OFPs track strain proportionally through reversible optical mechanisms, providing dynamic, real-time strain mapping. Together, these systems advance material diagnostics, offering complementary capabilities to study stress distribution, improve durability predictions, and understand polymer failure mechanisms.

Keywords

damage / failure / optical force probes / polymer mechanochemistry

Cite this article

Download citation ▾
Berçin V. Asya, Sitao Wang, Eric Euchler, Vu Ngoc Khiêm, Robert Göstl. Optical Force Probes for Spatially Resolved Imaging of Polymer Damage and Failure. Aggregate, 2025, 6(4): e70014 DOI:10.1002/agt2.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Erman and P. J. Flory, “Relationships Between Stress, Strain, and Molecular Constitution of Polymer Networks. Comparison of Theory With Experiments,” Macromolecules 15 (1982): 806-811.

[2]

G. S. Grest, M. Pütz, R. Everaers, and K. Kremer, “Stress-Strain Relation of Entangled Polymer Networks,” Journal of Non-Crystalline Solids 274 (2000): 139-146.

[3]

C. Svaneborg, R. Everaers, G. S. Grest, and J. G. Curro, “Connectivity and Entanglement Stress Contributions in Strained Polymer Networks,” Macromolecules 41 (2008): 4920-4928.

[4]

R. T. O'Neill and R. Boulatov, “The Many Flavours of Mechanochemistry and Its Plausible Conceptual Underpinnings,” Nature Reviews Chemistry 5 (2021): 148-167.

[5]

Y. Chen, G. Mellot, D. van Luijk, C. Creton, and R. P. Sijbesma, “Mechanochemical Tools for Polymer Materials,” Chemical Society Reviews 50 (2021): 4100-4140.

[6]

G. De Bo, “Polymer Mechanochemistry and the Emergence of the Mechanophore Concept,” Macromolecules 53 (2020): 7615-7617.

[7]

C. L. Brown and S. L. Craig, “Molecular Engineering of Mechanophore Activity for Stress-Responsive Polymeric Materials,” Chemical Science 6 (2015): 2158-2165.

[8]

C. Calvino, L. Neumann, C. Weder, and S. Schrettl, “Approaches to Polymeric Mechanochromic Materials,” Journal of Polymer Science Part A: Polymer Chemistry 55 (2017): 640-652.

[9]

H. Traeger, D. J. Kiebala, C. Weder, and S. Schrettl, “From Molecules to Polymers—Harnessing Inter- and Intramolecular Interactions to Create Mechanochromic Materials,” Macromolecular Rapid Communications 42 (2021): 2000573.

[10]

S. He, M. Stratigaki, S. P. Centeno, A. Dreuw, and R. Göstl, “Tailoring the Properties of Optical Force Probes for Polymer Mechanochemistry,” Chemistry: A European Journal 27 (2021): 15889-15897.

[11]

D. V. Chapman, H. Du, W. Y. Lee, and U. B. Wiesner, “Optical Super-Resolution Microscopy in Polymer Science,” Progress in Polymer Science 111 (2020): 101312.

[12]

D. Wöll and C. Flors, “Super-Resolution Fluorescence Imaging for Materials Science,” Small Methods 1 (2017): 1700191.

[13]

Y. Yuan, W. Yuan, and Y. Chen, “Recent Advances in Mechanoluminescent Polymers,” Science China Materials 59 (2016): 507-520.

[14]

F. F. C. Dubach, W. G. Ellenbroek, and C. Storm, “How Accurately Do Mechanophores Report on Bond Scission in Soft Polymer Materials?” Journal of Polymer Science 59 (2021): 1188-1199.

[15]

E. Ducrot, C. Creton, M. Bulters, Y. Chen, and R. P. Sijbesma, “Toughening Elastomers With Sacrificial Bonds and Watching Them Break,” Science 344 (2014): 186-189.

[16]

R. Göstl and R. P. Sijbesma, “π-Extended Anthracenes as Sensitive Probes for Mechanical Stress,” Chemical Science 7 (2016): 370-375.

[17]

C. Baumann, N. Willis-Fox, D. Campagna, et al., “Regiochemical Effects for the Mechanochemical Activation of 9-π-Extended Anthracene-Maleimide Diels-Alder Adducts,” Journal of Polymer Science 60 (2022): 3128-3133.

[18]

M. Stratigaki, C. Baumann, L. C. A. van Breemen, J. P. A. Heuts, R. P. Sijbesma, and R. Göstl, “Fractography of Poly(N-isopropylacrylamide) Hydrogel Networks Crosslinked With Mechanofluorophores Using Confocal Laser Scanning Microscopy,” Polymer Chemistry 11 (2020): 358-366.

[19]

J. Slootman, V. Waltz, C. J. Yeh, et al., “Quantifying Rate-and Temperature-Dependent Molecular Damage in Elastomer Fracture,” Physical Review X 10 (2020): 041045.

[20]

X. P. Morelle, G. E. Sanoja, S. Castagnet, and C. Creton, “3D Fluorescent Mapping of Invisible Molecular Damage after Cavitation in Hydrogen Exposed Elastomers,” Soft Matter 17 (2021): 4266-4274.

[21]

E. Ducrot, H. Montes, and C. Creton, “Structure of Tough Multiple Network Elastomers by Small Angle Neutron Scattering,” Macromolecules 48 (2015): 7945-7952.

[22]

E. Ducrot and C. Creton, “Characterizing Large Strain Elasticity of Brittle Elastomeric Networks by Embedding Them in a Soft Extensible Matrix,” Advanced Functional Materials 26 (2016): 2482-2492.

[23]

G. E. Sanoja, X. P. Morelle, J. Comtet, C. J. Yeh, M. Ciccotti, and C. Creton, “Why Is Mechanical Fatigue Different From Toughness in Elastomers? The Role of Damage by Polymer Chain Scission,” Science Advances 7 (2021): eabg9410.

[24]

Y. Chen, C. J. Yeh, Y. Qi, R. Long, and C. Creton, “From Force-Responsive Molecules to Quantifying and Mapping Stresses in Soft Materials,” Science Advances 6 (2020): eaaz5093.

[25]

C. Baumann, M. Stratigaki, S. P. Centeno, and R. Göstl, “Multicolor Mechanofluorophores for the Quantitative Detection of Covalent Bond Scission in Polymers,” Angewandte Chemie International Edition 60 (2021): 13287-13293.

[26]

V. N. Khiêm and M. Itskov, “Analytical Network-Averaging of the Tube Model: Mechanically Induced Chemiluminescence in Elastomers,” International Journal of Plasticity 102 (2018): 1-15.

[27]

Y. Chen, C. J. Yeh, Q. Guo, Y. Qi, R. Long, and C. Creton, “Fast Reversible Isomerization of Merocyanine as a Tool to Quantify Stress History in Elastomers,” Chemical Science 12 (2021): 1693-1701.

[28]

M. Stratigaki, C. Baumann, and R. Göstl, “Confocal Microscopy Visualizes Particle-Crack Interactions in Epoxy Composites With Optical Force Probe-Cross-Linked Rubber Particles,” Macromolecules 55 (2022): 1060-1066.

[29]

J. M. Clough, C. Kilchoer, B. D. Wilts, and C. Weder, “Hierarchically Structured Deformation-Sensing Mechanochromic Pigments,” Advanced Science 10 (2023): 2206416.

[30]

T. Magrini, D. Kiebala, D. Grimm, et al., “Tough Bioinspired Composites That Self-Report Damage,” ACS Applied Materials & Interfaces 13 (2021): 27481-27490.

[31]

A. Cartier, O. Taisne, S. Ivanov, et al., “Labeling a Polydiene Elastomer With a π-Extended Mechanophore With a Facile and Low Temperature Synthetic Route,” Macromolecules 57 (2024): 8712-8721.

[32]

P. J. Centellas, K. D. Mehringer, A. L. Bowman, et al., “Mechanochemically Responsive Polymer Enables Shockwave Visualization,” Nature Communications 15 (2024): 8596.

[33]

H. Li, R. Göstl, M. Delgove, et al., “Promoting Mechanochemistry of Covalent Bonds by Noncovalent Micellar Aggregation,” ACS Macro Letters 5 (2016): 995-998.

[34]

J. Diani, B. Fayolle, and P. Gilormini, “A Review on the Mullins Effect,” European Polymer Journal 45 (2009): 601-612.

[35]

J. M. Clough, C. Creton, S. L. Craig, and R. P. Sijbesma, “Covalent Bond Scission in the Mullins Effect of a Filled Elastomer: Real-Time Visualization With Mechanoluminescence,” Advanced Functional Materials 26 (2016): 9063-9074.

[36]

Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, and J. P. Gong, “Direct Observation of Damage Zone Around Crack Tips in Double-Network Gels,” Macromolecules 42 (2009): 3852-3855.

[37]

S. Liang, Z. L. Wu, J. Hu, T. Kurokawa, Q. M. Yu, and J. P. Gong, “Direct Observation on the Surface Fracture of Ultrathin Film Double-Network Hydrogels,” Macromolecules 44 (2011): 3016-3020.

[38]

T. Matsuda, R. Kawakami, T. Nakajima, and J. P. Gong, “Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission Through Mechanoradical Polymerization,” Macromolecules 53 (2020): 8787-8795.

[39]

L.-J. Wang, K.-X. Yang, Q. Zhou, H.-Y. Yang, J.-Q. He, and X.-Y. Zhang, “Rhodamine Mechanophore Functionalized Mechanochromic Double Network Hydrogels With High Sensitivity to Stress,” Chinese Journal of Polymer Science 38 (2020): 24-36.

[40]

L. Wang, J. Wang, Y. Wang, and X. Zhang, “Rhodamine-Containing Double-Network Hydrogels for Smart Window Materials With Tunable Light Transmittance, Low-Temperature Warning, and Deformation Sensing,” Reactive & Functional Polymers 181 (2022): 105408.

[41]

C. Löwe and C. Weder, “Oligo(p-phenylene vinylene) Excimers as Molecular Probes: Deformation-Induced Color Changes in Photoluminescent Polymer Blends,” Advanced Materials 14 (2002): 1625-1629.

[42]

D. J. Kiebala, Z. Fan, C. Calvino, L. Fehlmann, S. Schrettl, and C. Weder, “Mechanoresponsive Elastomers Made With Excimer-Forming Telechelics,” Organic Materials 02 (2020): 313-322.

[43]

D. J. Kiebala, R. Style, D. Vanhecke, C. Calvino, C. Weder, and S. Schrettl, “Sub-Micrometer Mechanochromic Inclusions Enable Strain Sensing in Polymers,” Advanced Functional Materials 33 (2023): 2304938.

[44]

H. Traeger, Y. Sagara, D. J. Kiebala, S. Schrettl, and C. Weder, “Folded Perylene Diimide Loops as Mechanoresponsive Motifs,” Angewandte Chemie International Edition 60 (2021): 16191-16199.

[45]

H. Traeger, Y. Sagara, J. A. Berrocal, S. Schrettl, and C. Weder, “Strain-Correlated Mechanochromism in Different Polyurethanes Featuring a Supramolecular Mechanophore,” Polymer Chemistry 13 (2022): 2860-2869.

[46]

H. Traeger, D. Kiebala, C. Calvino, et al., “Microscopic Strain Mapping in Polymers Equipped With Non-Covalent Mechanochromic Motifs,” Materials Horizons 10 (2023): 3467-3475.

[47]

D. Rasch and R. Göstl, “Gated Photoreactivity of Pyrene Copolymers in Multiresponsive Cross-Linked starPEG-Hydrogels,” ACS Polymers Au 1 (2021): 59-66.

[48]

F. M. Winnik, “Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media,” Chemical Reviews 93 (1993): 587-614.

[49]

D. Rasch and R. Göstl, “Pyrene-Based Macrocrosslinkers With Supramolecular Mechanochromism for Elastic Deformation Sensing in Hydrogel Networks,” Organic Materials 4 (2022): 170-177.

[50]

C. Micheletti, V. A. Dini, M. Carlotti, et al., “Blending or Bonding? Mechanochromism of an Aggregachromic Mechanophore in a Thermoplastic Elastomer,” ACS Applied Polymer Materials 5 (2023): 1545-1555.

[51]

Y. Wang, R. Li, M. Lu, et al., “Photo-Crosslinking Speckle Patterns for Large Deformation Measurement of Hydrogels Using Digital Image Correlation,” Applied Physics Letters 123 (2023): 181904.

[52]

M. Liu, J. Guo, C.-Y. Hui, and A. T. Zehnder, “Application of Digital Image Correlation (DIC) to the Measurement of Strain Concentration of a PVA Dual-Crosslink Hydrogel Under Large Deformation,” Experimental Mechanics 59 (2019): 1021-1032.

[53]

T. Yamakado, K. Otsubo, A. Osuka, and S. Saito, “Compression of a Flapping Mechanophore Accompanied by Thermal Void Collapse in a Crystalline Phase,” Journal of the American Chemical Society 140 (2018): 6245-6248.

[54]

T. Yamakado and S. Saito, “Ratiometric Flapping Force Probe That Works in Polymer Gels,” Journal of the American Chemical Society 144 (2022): 2804-2815.

[55]

R. Kotani, S. Yokoyama, S. Nobusue, et al., “Bridging Pico-to-Nanonewtons With a Ratiometric Force Probe for Monitoring Nanoscale Polymer Physics Before Damage,” Nature Communications 13 (2022): 303.

[56]

K. Makyła, C. Müller, S. Lörcher, et al., “Fluorescent Protein Senses and Reports Mechanical Damage in Glass-Fiber-Reinforced Polymer Composites,” Advanced Materials 25 (2013): 2701-2706.

[57]

V. N. Khiêm, M. Jabareen, R. Poudel, X. Tang, and M. Itskov, “Modeling of Textile Composite Using Analytical Network-Averaging and Gradient Damage Approach,” Journal of the Mechanics and Physics of Solids 193 (2024): 105874.

[58]

Y. Zhou, S. Huo, M. Loznik, R. Göstl, A. J. Boersma, and A. Herrmann, “Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound,” Angewandte Chemie International Edition 60 (2021): 1493-1497.

[59]

Y. Zhou, S. P. Centeno, K. Zhang, L. Zheng, R. Göstl, and A. Herrmann, “Fracture Detection in Bio-Glues With Fluorescent-Protein-Based Optical Force Probes,” Advanced Materials 35 (2023): 2210052.

[60]

R. Merindol, G. Delechiave, L. Heinen, L. H. Catalani, and A. Walther, “Modular Design of Programmable Mechanofluorescent DNA Hydrogels,” Nature Communications 10 (2019): 528.

[61]

G. Creusen, R. S. Schmidt, and A. Walther, “One-Component DNA Mechanoprobes for Facile Mechanosensing in Photopolymerized Hydrogels and Elastomers,” ACS Macro Letters 10 (2021): 671-678.

[62]

Y. Liu, K. Galior, V. P.-Y. Ma, and K. Salaita, “Molecular Tension Probes for Imaging Forces at the Cell Surface,” Accounts of Chemical Research 50 (2017): 2915-2924.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/