Harnessing Aggregation-Induced Emission-Based Detection Toolbox for Diagnostics of Urogenital Tumors

Wenzhe Chen , Hantian Guan , Yongfeng Lu , Guohua Zeng , Di Gu , Keying Guo , Cheng Jiang , Hongxing Liu

Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e70008

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e70008 DOI: 10.1002/agt2.70008
REVIEW

Harnessing Aggregation-Induced Emission-Based Detection Toolbox for Diagnostics of Urogenital Tumors

Author information +
History +
PDF

Abstract

Urogenital system tumors include prostate cancer, bladder cancer, ovarian cancer, and other very common solid tumor diseases with high morbidity and high mortality. The unique physiological and anatomical features of the urogenital system render it particularly amenable to the application of tissue imaging techniques for diagnostic purposes. The advancement of aggregation-induced emission (AIE) materials has addressed the limitations associated with conventional fluorescent materials that are prone to aggregation-caused quenching. This advancement has facilitated the development of innovative AIE fluorescent materials characterized by enhanced photostability, an increased signal-to-noise ratio, and improved imaging quality. This article reviews the research progress of AIE biosensors in the diagnosis of urogenital tumors. It mainly involves biomarker diagnostic in vitro and fluorescence imaging in urogenital solid tumors such as prostate cancer, uterine cancer, bladder cancer, and ovarian cancer, which are based on AIE biosensors. In addition, a comprehensive description of AIE biosensors’ synthesis and application strategies is provided. This includes a detailed elucidation of in vitro diagnostic platforms and intracellular imaging mechanisms based on the basic principles of AIE, accompanied by a presentation of quantitative analysis and cell imaging results. In addition, the limitations, challenges and suggestions of AIE biosensors application in the field of tumor diagnosis are summarized, and the development prospect of AIE biosensors in the field of tumor diagnosis is prospected. This article reviews the application of AIE biosensors in the diagnosis of urogenital tumors, and also provides a catalyst for exploring the characteristics of AIE biosensors and its wide application in the field of disease diagnosis.

Keywords

AIE biosensors / diagnosis / fluorescence imaging / tumors biomarkers / urogenital tumors

Cite this article

Download citation ▾
Wenzhe Chen, Hantian Guan, Yongfeng Lu, Guohua Zeng, Di Gu, Keying Guo, Cheng Jiang, Hongxing Liu. Harnessing Aggregation-Induced Emission-Based Detection Toolbox for Diagnostics of Urogenital Tumors. Aggregate, 2025, 6(4): e70008 DOI:10.1002/agt2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Bray, M. Laversanne, H. Sung, et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 74 (2024): 229.

[2]

C. Xia, X. Dong, H. Li, et al., “Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants,” Chinese Medical Journal 135 (2022): 584.

[3]

R. L. Siegel, A. N. Giaquinto, and A. Jemal, “Cancer Statistics, 2024,” CA: A Cancer Journal for Clinicians 74 (2024): 12.

[4]

H. Sung, J. Ferlay, R. L. Siegel, et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 71 (2021): 209.

[5]

P. A. Cohen, A. Jhingran, A. Oaknin, and L. Denny, “Cervical Cancer,” The Lancet 393 (2019): 169.

[6]

F. Guida, R. Kidman, J. Ferlay, et al., “Global and Regional Estimates of Orphans Attributed to Maternal Cancer Mortality in 2020,” Nature Medicine 28 (2022): 2563.

[7]

D. Crosby, S. Bhatia, K. M. Brindle, et al., “Early Detection of Cancer,” Science 375 (2022): eaay9040.

[8]

S. S. Murthy, D. Trapani, B. Cao, et al., “Premature Mortality Trends in 183 Countries by Cancer Type, Sex, WHO Region, and World Bank Income Level in 2000-19: A Retrospective, Cross-Sectional, Population-based Study,” The Lancet Oncology 25 (2024): 969.

[9]

R. C. Fitzgerald, A. C. Antoniou, L. Fruk, and N. Rosenfeld, “The Future of Early Cancer Detection,” Nature Medicine 28 (2022): 666.

[10]

H. Xu, X. Chen, H. Wang, et al., “Utilization of Aggregation-Induced Emission Materials in Urinary System Diseases,” Aggregate 5 (2024): e580.

[11]

A. Farolfi, S. Koschel, D. G. Murphy, and S. Fanti, “PET Imaging in Urology: A Rapidly Growing Successful Collaboration,” Current Opinion in Urology 30 (2020): 623.

[12]

M. Rouprêt, T. Seisen, A. J. Birtle, et al., “European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2023 Update,” European Urology 84 (2023): 49.

[13]

D. Yu, Y. Li, M. Wang, et al., “Exosomes as a New Frontier of Cancer Liquid Biopsy,” Molecular Cancer 21 (2022): 56.

[14]

S. Mummareddy, S. Pradhan, A. K. Narasimhan, and A. Natarajan, “On Demand Biosensors for Early Diagnosis of Cancer and Immune Checkpoints Blockade Therapy Monitoring From Liquid Biopsy,” Biosensors 11 (2021): 500.

[15]

L. Wang, Y. Hu, N. Jiang, and A. K. Yetisen, “Biosensors for Psychiatric Biomarkers in Mental Health Monitoring,” Biosensors & Bioelectronics 256 (2024): 116242.

[16]

S. Liu, S. Kumari, H. He, et al., “Biosensors Integrated 3D Organoid/Organ-on-a-Chip System: A Real-Time Biomechanical, Biophysical, and Biochemical Monitoring and Characterization,” Biosensors & Bioelectronics 231 (2023): 115285.

[17]

Z. L. Lei and B. Guo, “2D Material-Based Optical Biosensor: Status and Prospect,” Advanced Science 9 (2022): 2102924.

[18]

U. Chadha, P. Bhardwaj, R. Agarwal, et al., “Recent Progress and Growth in Biosensors Technology: A Critical Review,” Journal of Industrial and Engineering Chemistry 109 (2022): 21.

[19]

F. Han, T. Wang, G. Liu, et al., “Materials With Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring,” Advanced Materials 34 (2022): e2109055.

[20]

Y. Hu, Z. Pan, M. De Bock, et al., “A Wearable Microneedle Patch Incorporating Reversible FRET-Based Hydrogel Sensors for Continuous Glucose Monitoring,” Biosensors & Bioelectronics 262 (2024): 116542.

[21]

B. Kaur, S. Kumar, and B. K. Kaushik, “Recent Advancements in Optical Biosensors for Cancer Detection,” Biosensors & Bioelectronics 197 (2022): 113805.

[22]

N. Akkilic, S. Geschwindner, and F. Höök, “Single-Molecule Biosensors: Recent Advances and Applications,” Biosensors & Bioelectronics 151 (2020): 111944.

[23]

R. Guan, Q. Yu, and J. Li, “Aggregation Enhanced Fluorescence and Raman Signals for Highly Sensitive Cancer Detection,” Methods 216 (2023): 11.

[24]

M. I. Gaviria-Arroyave, J. B. Cano, and G. A. Peñuela, “Nanomaterial-based Fluorescent Biosensors for Monitoring Environmental Pollutants: A Critical Review,” Talanta Open 2 (2020): 100006.

[25]

Y. Cheng, H. Wang, Y. Zhuo, et al., “Reusable Smartphone-facilitated Mobile Fluorescence Biosensor for Rapid and Sensitive On-Site Quantitative Detection of Trace Pollutants,” Biosensors & Bioelectronics 199 (2022): 113863.

[26]

L. Xu, X. Jiang, K. Liang, M. Gao, and B. Kong, “Frontier Luminous Strategy of Functional Silica Nanohybrids in Sensing and Bioimaging: From ACQ to AIE,” Aggregate 3 (2022): e121.

[27]

Z. Wang, J. Ma, C. Li, and H. Zhang, “Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review,” Biosensors 13 (2023): 159.

[28]

Y. Hong, J. W. Lam, and B. Z. Tang, “Aggregation-Induced Emission,” Chemical Society Reviews 40 (2011): 5361.

[29]

H. Wang, Q. Li, P. Alam, et al., “Aggregation-Induced Emission (AIE), Life and Health,” ACS Nano 17 (2023): 14347.

[30]

J. Li, Z. Zhuang, Z. Zhao, and B. Z. Tang, “Type I AIE Photosensitizers: Mechanism and Application,” View 3 (2022): 20200121.

[31]

J. Zhang, H. Zhang, J. W. Lam, and B. Z. Tang, “Restriction of Intramolecular Motion (RIM): Investigating AIE Mechanism From Experimental and Theoretical Studies,” Chemical Research in Chinese Universities 37 (2021): 1.

[32]

R. Hu, A. Qin, and B. Z. Tang, “AIE Polymers: Synthesis and Applications,” Progress in Polymer Science 100 (2020): 101176.

[33]

Y. Guo, Y. Zhou, H. Duan, et al., “CRISPR/Cas-mediated “One to More” Lighting-up Nucleic Acid Detection Using Aggregation-Induced Emission Luminogens,” Nature Communications 15 (2024): 8560.

[34]

W. Zhu, J. Wang, K. Lei, et al., “Leading Edge Biosensing Applications Based on AIE Technology,” Biosensors & Bioelectronics 271 (2024): 116953.

[35]

S. K. Mohanty, A. Lobo, and L. Cheng, “The 2022 Revision of the World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs: Advances and Challenges,” Human Pathology 136 (2023): 123.

[36]

C. M. Sergi, Pathology of Childhood and Adolescence: An Illustrated Guide (Springer, 2020): 757.

[37]

R. Montironi, A. Cimadamore, Tumors of the Urinary System and Male Genital Organs: 2022 World Health Organization Classification and Multidisciplinarity, Vol. 82 (Elsevier, 2022), 483.

[38]

D. Wong, E. Rowe, and R. Ruby, Equine Neonatal Medicine (Wiley, 2024): 629.

[39]

A. E. Hentschel, R. van den Helder, N. E. van Trommel, et al., “The Origin of Tumor DNA in Urine of Urogenital Cancer Patients: Local Shedding and Transrenal Excretion,” Cancers 13 (2021): 535.

[40]

S. Wang, Z. Wei, H. Shu, et al., “Early Diagnosis and Prognostic Potential of RAC3 in Bladder Tumor,” International Urology and Nephrology 56 (2024): 475.

[41]

B. March, K. R. Lockhart, S. Faulkner, M. Smolny, R. Rush, and H. Hondermarck, “ELISA-Based Quantification of Neurotrophic Growth Factors in Urine From Prostate Cancer Patients,” FASEB BioAdvances 3 (2021): 888.

[42]

X. Liu, Q. Wang, Z. Diao, D. Huo, and C. Hou, “Label-free Fluorescent Biosensor Based on AuNPs Etching Releasing Signal for miRNA-155 Detection,” Talanta 278 (2024): 126481.

[43]

S. M. K. Aghamir, K. Gholami, F. Le Calvez-Kelm, “Liquid Biopsy as a New Tool for Diagnosis, Monitoring, and Personalized Medicine in Urogenital Cancers,” in Liquid Biopsy in Urogenital Cancers and Its Clinical Utility (Elsevier, 2022), 31.

[44]

M. Morris, “Fluorescent Biosensors for Cancer Cell Imaging and Diagnostics,” in Biosensors and Cancer (Taylor & Francis Group, 2012): 101.

[45]

A. N. Ramya, M. M. Joseph, J. B. Nair, V. Karunakaran, N. Narayanan, and K. K. Maiti, “New Insight of Tetraphenylethylene-based Raman Signatures for Targeted SERS Nanoprobe Construction Toward Prostate Cancer Cell Detection,” ACS Applied Materials & Interfaces 8 (2016): 10220.

[46]

R.-M. Kong, X. Zhang, L. Ding, D. Yang, and F. Qu, “Label-free Fluorescence Turn-on Aptasensor for Prostate-Specific Antigen Sensing Based on Aggregation-Induced Emission-Silica Nanospheres,” Analytical and Bioanalytical Chemistry 409 (2017): 5757.

[47]

J. Shen, B. Situ, X. Du, et al., “Aggregation-Induced Emission Luminogen-Based Dual-Mode Enzyme-Linked Immunosorbent Assay for Ultrasensitive Detection of Cancer Biomarkers in a Broad Concentration Range,” ACS Sensors 7 (2022): 766.

[48]

B. Li, C. Liu, W. Pan, et al., “Facile Fluorescent Aptasensor Using Aggregation-Induced Emission Luminogens for Exosomal Proteins Profiling Towards Liquid Biopsy,” Biosensors & Bioelectronics 168 (2020): 112520.

[49]

S. Muthusamy, D. Zhu, K. Rajalakshmi, et al., “Successive Detection of Zinc Ion and Citrate Using a Schiff Base Chemosensor for Enhanced Prostate Cancer Diagnosis in Biosystems,” ACS Applied Bio Materials 4 (2021): 1932.

[50]

H. Li, D. Luo, C. Yuan, et al., “Magnetic Resonance Imaging of PSMA-Positive Prostate Cancer by a Targeted and Activatable Gd(III) MR Contrast Agent,” Journal of the American Chemical Society 143 (2021): 17097.

[51]

C.-H. Ma, L. Li, S. Cai, et al., “Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies,” Molecules 27 (2022): 7036.

[52]

Y. Cui, R. Zhang, L. Yang, and S. Lv, “Self-carried AIE Nanoparticles for in Vitro Non-Invasive Long-Term Imaging,” Chinese Chemical Letters 30 (2019): 1078.

[53]

A. Nicol, R. T. K. Kwok, C. Chen, et al., “Ultrafast Delivery of Aggregation-Induced Emission Nanoparticles and Pure Organic Phosphorescent Nanocrystals by Saponin Encapsulation,” Journal of the American Chemical Society 139 (2017): 14792.

[54]

Y. Li, X. Wu, B. Yang, et al., “Synergy of CO2 Response and Aggregation-Induced Emission in a Block Copolymer: A Facile Way To “See” Cancer Cells,” ACS Applied Materials & Interfaces 11 (2019): 37077.

[55]

H. Li, Q. Yao, F. Xu, et al., “An Activatable AIEgen Probe for High-Fidelity Monitoring of Overexpressed Tumor Enzyme Activity and Its Application to Surgical Tumor Excision,” Angewandte Chemie International Edition 132 (2020): 10272.

[56]

L.-H. Xiong, L. Yang, J. Geng, B. Z. Tang, and X. He, “All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy,” ACS Nano 18 (2024): 17837.

[57]

C. W. T. Leung, Y. Hong, S. Chen, E. Zhao, J. W. Y. Lam, and B. Z. Tang, “A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking,” Journal of the American Chemical Society 135 (2013): 62.

[58]

S. Patil, S. Pandey, A. Singh, M. Radhakrishna, and S. Basu, “Hydrazide-Hydrazone Small Molecules as AIEgens: Illuminating Mitochondria in Cancer Cells,” Chemistry—A European Journal 25 (2019): 8229.

[59]

J. Ingle, H. Dedaniya, C. Mayya, A. Mondal, D. Bhatia, and S. Basu, “γ-Resorcyclic Acid-Based AIEgens for Illuminating Endoplasmic Reticulum,” Chemistry—A European Journal 28 (2022): e202200203.

[60]

X. Lou, Y. Zhuang, X. Zuo, et al., “Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AIEgens,” Analytical Chemistry 87 (2015): 6822.

[61]

Y. Zhuang, M. Zhang, B. Chen, et al., “Quencher Group Induced High Specificity Detection of Telomerase in Clear and Bloody Urines by AIEgens,” Analytical Chemistry 87 (2015): 9487.

[62]

X. Min, L. Xia, Y. Zhuang, et al., “An AIEgens and Exonuclease III Aided Quadratic Amplification Assay for Detecting and Cellular Imaging of Telomerase Activity,” Science Bulletin 62 (2017): 997.

[63]

X. Ou, F. Hong, Z. Zhang, et al., “A Highly Sensitive and Facile Graphene Oxide-Based Nucleic Acid Probe: Label-free Detection of Telomerase Activity in Cancer Patient's Urine Using AIEgens,” Biosensors & Bioelectronics 89 (2017): 417.

[64]

X. Li, Z. Zhou, Y. Tang, et al., “Modulation of Assembly and Disassembly of a New Tetraphenylethene Based Nanosensor for Highly Selective Detection of Hyaluronidase,” Sensors and Actuators B: Chemical 276 (2018): 95.

[65]

X. Min, Y. Zhuang, Z. Zhang, et al., “Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples From Bladder Cancer Patients Using a Single-Label DNA Probe With AIEgens,” ACS Applied Materials & Interfaces 7 (2015): 16813.

[66]

X. Min, M. Zhang, F. Huang, X. Lou, and F. Xia, “Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens,” ACS Applied Materials & Interfaces 8 (2016): 8998.

[67]

P. Hiranmartsuwan, X. Ma, J. Nootem, et al., “Synthesis and Properties of AIE-active Triazaborolopyridiniums Toward Fluorescent Nanoparticles for Cellular Imaging and Their Biodistribution in Vivo and Ex Vivo,” Materials Today Chemistry 26 (2022): 101121.

[68]

H. Bai, Z. Liu, T. Zhang, et al., “Multifunctional Supramolecular Assemblies With Aggregation-Induced Emission (AIE) for Cell Line Identification, Cell Contamination Evaluation, and Cancer Cell Discrimination,” ACS Nano 14 (2020): 7552.

[69]

L. Meng, M. A. H. Nawaz, X. Huang, et al., “The Use of Aggregation-Induced Emission Probe Doped Silica Nanoparticles for the Immunoassay of Human Epididymis Protein 4,” Analyst 144 (2019): 6136.

[70]

L. Peng, M. Gao, X. Cai, et al., “A Fluorescent Light-up Probe Based on AIE and ESIPT Processes for β-Galactosidase Activity Detection and Visualization in Living Cells,” Journal of Materials Chemistry B 3 (2015): 9168.

[71]

R. Long, C. Tang, Z. Yang, et al., “A Natural Hyperoside Based Novel Light-up Fluorescent Probe With AIE and ESIPT Characteristics for On-Site and Long-Term Imaging of β-Galactosidase in Living Cells,” Journal of Materials Chemistry C 8 (2020): 11860.

[72]

K. Gu, W. Qiu, Z. Guo, et al., “An Enzyme-Activatable Probe Liberating AIEgens: On-Site Sensing and Long-Term Tracking of β-Galactosidase in Ovarian Cancer Cells,” Chemical Science 10 (2019): 398.

[73]

L. Dong, M.-Y. Zhang, H.-H. Han, et al., “A General Strategy to the Intracellular Sensing of Glycosidases Using AIE-based Glycoclusters,” Chemical Science 13 (2022): 247.

[74]

L. Xu, H. Gao, Y. Deng, et al., “β-Galactosidase-Activated Near-Infrared AIEgen for Ovarian Cancer Imaging in Vivo,” Biosensors & Bioelectronics 255 (2024): 116207.

[75]

S. Lu, L. Xue, M. Yang, et al., “NIR-II Fluorescence/Photoacoustic Imaging of Ovarian Cancer and Peritoneal Metastasis,” Nano Research 15 (2022): 9183.

[76]

Y. Lu, C. Liu, Y. Liu, et al., “Detection of Carcinoembryonic Antigen Using Aggregation-Induced Emission Luminogens Empowered Triple-Format Biosensor,” Biosensors & Bioelectronics 272 (2024): 117065.

[77]

W. Chen, S. Wu, G. Li, et al., “Accurate Diagnosis of Prostate Cancer With CRISPR-based Nucleic Acid Test Strip by Simultaneously Identifying PCA3 and KLK3 Genes,” Biosensors & Bioelectronics 220 (2023): 114854.

[78]

O. Bergengren, K. R. Pekala, K. Matsoukas, et al., “2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review,” European Urology 84 (2023): 191.

[79]

X. Li, C. Li, and M. Chen, “Patients with “Gray Zone” PSA Levels: Application of Prostate MRI and MRS in the Diagnosis of Prostate Cancer,” Journal of Magnetic Resonance Imaging 57 (2023): 992.

[80]

C. Parker, E. Castro, K. Fizazi, et al., “Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up,” Annals of Oncology 31 (2020): 1119.

[81]

C. Dejous and U. M. Krishnan, “Sensors for Diagnosis of Prostate Cancer: Looking Beyond the Prostate Specific Antigen,” Biosensors & Bioelectronics 173 (2021): 112790.

[82]

M. B. Culp, I. Soerjomataram, J. A. Efstathiou, F. Bray, and A. Jemal, “Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates,” European Urology 77 (2020): 38.

[83]

M. Sekhoacha, K. Riet, P. Motloung, L. Gumenku, A. Adegoke, and S. Mashele, “Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches,” Molecules 27 (2022): 5730.

[84]

J. T. Wei, D. Barocas, S. Carlsson, et al., “Early Detection of Prostate Cancer: AUA/SUO Guideline Part II: Considerations for a Prostate Biopsy,” Journal of Urology 210 (2023): 54.

[85]

B. E. Boehm, M. E. York, G. Petrovics, I. Kohaar, and G. T. Chesnut, “Biomarkers of Aggressive Prostate Cancer at Diagnosis,” International Journal of Molecular Sciences 24 (2023): 2185.

[86]

S. V. Carlsson and A. J. Vickers, “Screening for Prostate Cancer,” Medical Clinics of North America 104 (2020): 1051.

[87]

D. J. Lomas and H. U. Ahmed, “All Change in the Prostate Cancer Diagnostic Pathway,” Nature Reviews Clinical Oncology 17 (2020): 372.

[88]

H. Van Poppel, T. Albreht, P. Basu, R. Hogenhout, S. Collen, and M. Roobol, “Serum PSA-Based Early Detection of Prostate Cancer in Europe and Globally: Past, Present and Future,” Nature Reviews Urology 19 (2022): 562.

[89]

D. Qin, S. Meng, Y. Wu, G. Mo, and B. Deng, “Aggregation-Induced Electrochemiluminescence Resonance Energy Transfer With Dual Quenchers for the Sensitive Detection of Prostate-Specific Antigen,” Sensors and Actuators B: Chemical 367 (2022): 132176.

[90]

X. Zhao, Y. Gao, J. Wang, et al., “Aggregation-Induced Emission Based One-Step “Lighting up” Sensor Array for Rapid Protein Identification,” Chemical Communications 56 (2020): 13828.

[91]

L. Wang, Y. Zhuang, R. Pan, et al., “Simultaneous Targeting and Monitoring of Free Antigen and In-Situ Membrane Antigen in Prostate Cancer Cells via an Aggregation-Induced Emission-based Bifunctional Probe,” Biosensors & Bioelectronics 263 (2024): 116581.

[92]

A. Auvinen, T. L. J. Tammela, T. Mirtti, et al., “Prostate Cancer Screening with PSA, Kallikrein Panel, and MRI,” JAMA 331 (2024): 1452.

[93]

S. Zhang, F. Rong, C. Guo, et al., “Metal-Organic Frameworks (MOFs) Based Electrochemical Biosensors for Early Cancer Diagnosis in Vitro,” Coordination Chemistry Reviews 439 (2021): 213948.

[94]

W. Zhang, Y. Lu, C. Su, et al., “Confinement-Guided Ultrasensitive Optical Assay With Artificial Intelligence for Disease Diagnostics,” TheInnovation Medicine 1 (2023): 100023.

[95]

P. Peng, C. Liu, Z. Li, et al., “Emerging ELISA Derived Technologies for in Vitro Diagnostics,” Trac Trends in Analytical Chemistry 152 (2022): 116605.

[96]

N. Tsurusawa, J. Chang, M. Namba, et al., “Modified ELISA for Ultrasensitive Diagnosis,” Journal of Clinical Medicine 10 (2021): 5197.

[97]

T. Lorenc, K. Klimczyk, I. Michalczewska, M. Słomka, G. Kubiak-Tomaszewska, and W. Olejarz, “Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy,” International Journal of Molecular Sciences 21 (2020): 2118.

[98]

Y.-T. Wang, T. Shi, S. Srivastava, J. Kagan, T. Liu, and K. D. Rodland, “Proteomic Analysis of Exosomes for Discovery of Protein Biomarkers for Prostate and Bladder Cancer,” Cancers 12 (2020): 2335.

[99]

S. Liu, X. Wu, S. Chandra, et al., “Extracellular Vesicles: Emerging Tools as Therapeutic Agent Carriers,” Acta Pharmaceutica Sinica B 12 (2022): 3822.

[100]

J. Zheng, R. Zhou, B. Wang, et al., “Electrochemical Detection of Extracellular Vesicles for Early Diagnosis: A Focus on Disease Biomarker Analysis,” Extracellular Vesicles Circulating Nucleic Acids 5 (2024): 165.

[101]

C. Jiang, Y. Fu, G. Liu, B. Shu, J. Davis, and G. K. Tofaris, “Multiplexed Profiling of Extracellular Vesicles for Biomarker Development,” Nanomicro Letters 14 (2022): 3.

[102]

C. Özyurt, İ. Uludağ, and M. K. Sezgintürk, “An Ultrasensitive and Disposable Electrochemical Aptasensor for Prostate-Specific Antigen (PSA) Detection in Real Serum Samples,” Analytical and Bioanalytical Chemistry 415 (2023): 1123.

[103]

M. Ghanavati, F. Tadayon, and H. Bagheri, “A Novel Label-free Impedimetric Immunosensor for Sensitive Detection of Prostate Specific Antigen Using Au Nanoparticles/MWCNTs-Graphene Quantum Dots Nanocomposite,” Microchemical Journal 159 (2020): 105301.

[104]

Y. An, W. Chang, W. Wang, et al., “A Novel Tetrapeptide Fluorescence Sensor for Early Diagnosis of Prostate Cancer Based on Imaging Zn2+ in Healthy versus Cancerous Cells,” Journal of Advanced Research 24 (2020): 363.

[105]

D. Li, D. B. Stovall, W. Wang, and G. Sui, “Advances of Zinc Signaling Studies in Prostate Cancer,” International Journal of Molecular Sciences 21 (2020): 667.

[106]

M. Buszewska-Forajta, F. Monedeiro, A. Gołębiowski, P. Adamczyk, and B. Buszewski, “Citric Acid as a Potential Prostate Cancer Biomarker Determined in Various Biological Samples,” Metabolites 12 (2022): 268.

[107]

X. Lu, M. Wu, S. Wang, J. Qin, and P. Li, “An AIE/PET-based Fluorescent Probe for Zn2+/Al3+ Detection and Its Application in Fluorescence-Assisted Diagnosis for Prostate Cancer,” Dyes and Pigments 203 (2022): 110372.

[108]

A. D. Combes, C. A. Palma, R. Calopedos, et al., “PSMA PET-CT in the Diagnosis and Staging of Prostate Cancer,” Diagnostics 12 (2022): 2594.

[109]

A. Farolfi, L. Calderoni, F. Mattana, et al., “Current and Emerging Clinical Applications of PSMA PET Diagnostic Imaging for Prostate Cancer,” Journal of Nuclear Medicine 62 (2021): 596.

[110]

V. Bouvard, N. Wentzensen, A. Mackie, et al., “The IARC Perspective on Cervical Cancer Screening,” New England Journal of Medicine 385 (2021): 1908.

[111]

M. Arbyn, E. Weiderpass, L. Bruni, et al., “Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis,” The Lancet Global Health 8 (2020): e191.

[112]

P. J. Maver and M. Poljak, “Primary HPV-based Cervical Cancer Screening in Europe: Implementation Status, Challenges, and Future Plans,” Clinical Microbiology and Infection 26 (2020): 579.

[113]

O. Ginsburg, F. Bray, M. P. Coleman, et al., “The Global Burden of Women's Cancers: A Grand Challenge in Global Health,” The Lancet 389 (2017): 847.

[114]

M. Arbyn and L. Xu, “Efficacy and Safety of Prophylactic HPV Vaccines. A Cochrane Review of Randomized Trials,” Expert Review of Vaccines 17 (2018): 1085.

[115]

D. Singh, J. Vignat, V. Lorenzoni, et al., “Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative,” The Lancet Global Health 11 (2023): e197.

[116]

T. J. Eun and R. B. Perkins, “Screening for Cervical Cancer,” Medical Clinics of North America 104 (2020): 1063.

[117]

J. Gong, G. Zhang, W. Wang, et al., “A Simple and Rapid Diagnostic Method for 13 Types of High-Risk Human Papillomavirus (HR-HPV) Detection Using CRISPR-Cas12a Technology,” Scientific Reports 11 (2021): 12800.

[118]

Y. He, Y. Liu, L. Cheng, et al., “Highly Reproducible and Sensitive Electrochemiluminescence Biosensors for HPV Detection Based on Bovine Serum Albumin Carrier Platforms and Hyperbranched Rolling Circle Amplification,” ACS Applied Materials & Interfaces 13 (2020): 298.

[119]

L. Li, H. Tian, G. Wang, et al., “Ready-to-Use Interactive Dual-Readout Differential Lateral Flow Biosensor for Two Genotypes of Human Papillomavirus,” Biosensors & Bioelectronics 228 (2023): 115224.

[120]

N. Wisuthiphaet, X. Yang, G. M. Young, and N. Nitin, “Application of Engineered Bacteriophage T7 in the Detection of Bacteria in Food Matrices,” Frontiers in Microbiology 12 (2021): 691003.

[121]

R. Seethala and P. B. Fernandes, Handbook of Drug Screening (Marcel Dekker, New York, 2001).

[122]

J. Soleymani, S. Azizi, S. Abbaspour-Ravasjani, M. Hasanzadeh, M. H. Somi, and A. Jouyban, “Glycoprotein-based Bioimaging of HeLa Cancer Cells by Folate Receptor and Folate Decorated Graphene Quantum Dots,” Microchemical Journal 170 (2021): 106732.

[123]

J. S. Ganesan, M. Sepperumal, A. Balasubramaniem, and S. Ayyanar, “A Novel Pyrazole Bearing Imidazole Frame as Ratiometric Fluorescent Chemosensor for Al3+/Fe3+ Ions and Its Application in HeLa Cell Imaging,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 230 (2020): 117993.

[124]

W. Zhang, Y. Luo, J. Zhao, et al., “tQ[14]-based AIE Supramolecular Network Polymers as Potential Bioimaging Agents for the Detection of Fe3+ in Live HeLa Cells,” Sensors and Actuators B: Chemical 354 (2022): 131189.

[125]

J. Qi, C. Sun, D. Li, et al., “Aggregation-Induced Emission Luminogen With Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy,” ACS Nano 12 (2018): 7936.

[126]

N. Sinha, J. R. Jiménez, B. Pfund, A. Prescimone, C. Piguet, and O. S. Wenger, “A Near-Infrared-II Emissive Chromium(III) Complex,” Angewandte Chemie 133 (2021): 23915.

[127]

A. Nicol, W. Qin, R. T. Kwok, et al., “Functionalized AIE Nanoparticles With Efficient Deep-Red Emission, Mitochondrial Specificity, Cancer Cell Selectivity and Multiphoton Susceptibility,” Chemical Science 8 (2017): 4634.

[128]

M. Zhu, W. Wang, J. Liu, R. Na, Z. Li, and Y. Wang, “A Novel Pyrene-based Fluorescent Probe for the Rapid and Efficient Detection of Co2+ in HeLa Cells and Natural Water Samples,” Journal of Molecular Liquids 303 (2020): 112680.

[129]

Y. Tan, L. Zhang, K. H. Man, et al., “Reaction-Based Off-On Near-Infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice,” ACS Applied Materials & Interfaces 9 (2017): 6796.

[130]

X. Wang, “The Expanding Role of Mitochondria in Apoptosis,” Genes & Development 15 (2001): 2922.

[131]

M. Ott, V. Gogvadze, S. Orrenius, and B. Zhivotovsky, “Mitochondria, Oxidative Stress and Cell Death,” Apoptosis 12 (2007): 913.

[132]

H. Zhou, X. Zeng, A. Li, et al., “Upconversion NIR-II Fluorophores for Mitochondria-Targeted Cancer Imaging and Photothermal Therapy,” Nature Communications 11 (2020): 6183.

[133]

Y. Li, Z. Zhou, S. Chen, et al., “Mitochondria-targeting Fluorescent Sensor With High Photostability and Permeability for Visualizing Viscosity in Mitochondrial Malfunction, Inflammation, and AD Models,” Analytica Chimica Acta 1250 (2023): 340967.

[134]

X. Fu, J. Cui, X. Meng, et al., “Endoplasmic Reticulum Stress, Cell Death and Tumor: Association Between Endoplasmic Reticulum Stress and the Apoptosis Pathway in Tumors,” Oncology Reports 45 (2021): 801.

[135]

L. McDonald, B. Liu, A. Taraboletti, et al., “Fluorescent Flavonoids for Endoplasmic Reticulum Cell Imaging,” Journal of Materials Chemistry B 4 (2016): 7902.

[136]

A. T. Lenis, P. M. Lec, K. Chamie, and M. Mshs, “Bladder Cancer,” JAMA 324 (2020): 1980.

[137]

R. Railkar and P. K. Agarwal, “Photodynamic Therapy in the Treatment of Bladder Cancer: Past Challenges and Current Innovations,” European Urology Focus 4 (2018): 509.

[138]

X. Hu, Y.-S. Zhang, Y.-C. Liu, N. Wang, X.-T. Zeng, and L.-L. Zhang, “Emerging Photodynamic/Sonodynamic Therapies for Urological Cancers: Progress and Challenges,” Journal of Nanbiotechnology 20 (2022): 437.

[139]

M. Wołącewicz, R. Hrynkiewicz, E. Grywalska, et al., “Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives,” Cancers 12 (2020): 1181.

[140]

R. Batista, N. Vinagre, S. Meireles, et al., “Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review,” Diagnostics 10 (2020): 39.

[141]

E. C. Cauberg, S. Kloen, M. Visser, et al., “Narrow Band Imaging Cystoscopy Improves the Detection of Non-Muscle-Invasive Bladder Cancer,” Urology 76 (2010): 658.

[142]

V. K. Wong, D. Ganeshan, C. T. Jensen, and C. E. Devine, “Imaging and Management of Bladder Cancer,” Cancers 13 (2021): 1396.

[143]

M. Maas, T. Todenhöfer, and P. C. Black, “Urine Biomarkers in Bladder Cancer—Current Status and Future Perspectives,” Nature Reviews Urology 20 (2023): 597.

[144]

C. Jiang, Y. Fu, G. Liu, B. Shu, J. Davis, and G. K. Tofaris, “Multiplexed Profiling of Extracellular Vesicles for Biomarker Development,” Nanomicro Letters 14 (2021): 3.

[145]

R. R. Kumar, A. Kumar, C.-H. Chuang, and M. O. Shaikh, “Electrochemical Immunosensor Utilizing a Multifunctional 3D Nanocomposite Coating With Antifouling Capability for Urinary Bladder Cancer Diagnosis,” Sensors and Actuators B: Chemical 384 (2023): 133621.

[146]

I. Lee, S.-J. Kwon, P. Heeger, and J. S. Dordick, “Ultrasensitive ImmunoMag-CRISPR Lateral Flow Assay for Point-of-Care Testing of Urinary Biomarkers,” ACS Sensors 9 (2023): 92.

[147]

M. Hassani-Marand, S. Jafarinejad, and M. Hormozi-Nezhad, “An AI-enabled Multi Colorimetric Sensor Array: Towards Rapid and Noninvasive Detection of Neuroblastoma Urinary Markers,” Sensors and Actuators B: Chemical 396 (2023): 134571.

[148]

Z. Holesova, L. Krasnicanova, R. Saade, et al., “Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies,” Genes 14 (2023): 715.

[149]

Y. Han, Q. Xu, H. Liu, F. Ma, and C.-Y. Zhang, “Advance in Intracellular Telomerase Imaging for Cancer Diagnosis and Therapy,” Coordination Chemistry Reviews 509 (2024): 215801.

[150]

M. Wang, W. Chen, M. Li, et al., “TE-RPA: One-tube telomerase extension recombinase polymerase amplification-based electrochemical biosensor for precise diagnosis of urothelial carcinoma,” Biosensors & Bioelectronics 271 (2025): 117042.

[151]

Z. Wang, X. Chen, X. Qiu, et al., “High-Fidelity Sensitive Tracing Circulating Tumor Cell Telomerase Activity,” Analytical Chemistry 96 (2024): 5527.

[152]

W. Liu, X. Zhu, L. Li, S. Wang, C. Z. Li, and T. Liang, “Reining in Cas13a Activity With N-Terminal Removable Tags Expands Cas13a Based Molecular Sensing and Enables Precise Gene Interference,” Biosensors & Bioelectronics 227 (2023): 115138.

[153]

M. A. Sanchini, R. Gunelli, O. Nanni, et al., “Relevance of Urine Telomerase in the Diagnosis of Bladder Cancer,” JAMA 294 (2005): 2052.

[154]

T. L. H. Huynh, C. D. T. Vo, and P. L. Truong. Analytical Methods (2024).

[155]

X.-Y. Sun, X. Wei, K.-X. Liu, Z.-J. Wang, M.-L. Chen, and J.-H. Wang, “Near Infrared Light-Activated Telomerase-Specific DNA Probe for Spatiotemporally Controlled Imaging,” Sensors and Actuators B: Chemical 396 (2023): 134533.

[156]

X. Luo, Y. Wan, K. Wang, et al., “Digital CRISPR/Cas12a-based Platform for Precise Quantification of Telomerase Activity,” Sensors and Actuators B: Chemical 394 (2023): 134374.

[157]

Y. Jiang, Y. Wang, W. Luo, et al., “Detecting telomerase activity at the single-cell level using a CRISPR-Cas12a-based chip,” Lab on A Chip 25 (2025): 49.

[158]

D. G. Ward, L. Baxter, S. Ott, et al., “Highly Sensitive and Specific Detection of Bladder Cancer via Targeted Ultra-Deep Sequencing of Urinary DNA,” European Urology Oncology 6 (2023): 67.

[159]

H. M. Nail, C.-C. Chiu, C.-H. Leung, M. M. Ahmed, and H.-M. D. Wang, “Exosomal miRNA-Mediated Intercellular Communications and Immunomodulatory Effects in Tumor Microenvironments,” Journal of Biomedical Science 30 (2023): 69.

[160]

X. Yu, Y. Zhang, F. Luo, Q. Zhou, and L. Zhu, “The Role of microRNAs in the Gastric Cancer Tumor Microenvironment,” Molecular Cancer 23 (2024): 170.

[161]

K. Wang, H. Yin, S. Li, et al., “Quantitative Detection of Circular RNA and MicroRNA at Point-of-Care Using Droplet Digital CRISPR/Cas13a Platform,” Biosensors & Bioelectronics 267 (2025): 116825.

[162]

L. Yan, Y. Bai, J. Zhou, et al., “Enzyme-free Nucleic Acid and Luminescent Material Cascade Amplifications Enable Urinary Dual miRNAs Assay for Non-Invasive Bladder Cancer Diagnosis,” Sensors and Actuators B: Chemical 396 (2023): 134627.

[163]

Z. Yu, C. Lu, and Y. Lai, “A Serum miRNAs Signature for Early Diagnosis of Bladder Cancer,” Annals of Medicine 55 (2023): 736.

[164]

E. M. Borkowska, P. Kutwin, D. Rolecka, T. Konecki, M. Borowiec, and Z. Jabłonowski, “Clinical Value of MicroRNA-19a-3p and MicroRNA-99a-5p in Bladder Cancer,” Archives of Medical Science 19 (2023): 694.

[165]

M. A. Dagdeviren and M. Ozaslan, “Determination of miRNA Expression Levels in Bladder Cancer,” The Eurasia Proceedings of Health, Environment and Life Sciences 13 (2024): 128.

[166]

S. Ren, R. Dai, Z. Zheng, et al., “A Novel Bidirectional Perfusion-Like Administered System for NIR-II Fluorescence Imaging Precision Diagnosis of Bladder Cancer,” Nanomedicine: Nanotechnology, Biology and Medicine 49 (2023): 102661.

[167]

F. Xing, N. Ai, S. Huang, et al., “An in Vivo Fluorescence Resonance Energy Transfer-Based Imaging Platform for Targeted Drug Discovery and Cancer Therapy,” Frontiers in Bioengineering & Biotechnology 10 (2022): 839078.

[168]

F. Liu, C. Guo, X. Li, et al., “A Versatile Nano-Transformer for Efficient Localization-Specific Imaging and Synergistic Therapy of Bladder Cancer,” Nano Today 54 (2024): 102116.

[169]

A. Nowak-Król, P. T. Geppert, and K. R. Naveen, “Boron-Containing Helicenes as New Generation of Chiral Materials: Opportunities and Challenges of Leaving the Flatland,” Chemical Science 15 (2024): 7408.

[170]

A. T. Ali, O. Al-Ani, and F. Al-Ani, “Epidemiology and Risk Factors for Ovarian Cancer,” Menopause Review/Przegląd Menopauzalny 22 (2023): 93.

[171]

G. Tossetta, A. Inversetti, “Ovarian Cancer: Advances in Pathophysiology and Therapies,” International Journal of Molecular Sciences 24 (2023): 8930.

[172]

A. Matsas, D. Stefanoudakis, T. Troupis, et al., “Tumor Markers and Their Diagnostic Significance in Ovarian Cancer,” Life 13 (2023): 1689.

[173]

F. D. Moghaddam, D. Dadgar, Y. Esmaeili, et al., “Microfluidic Platforms in Diagnostic of Ovarian Cancer,” Environmental Research 237 (2023): 117084.

[174]

C. Young Han, J. S. Bedia, W.-L. Yang, et al., “GCN5 mediates DNA-PKcs Crotonylation for DNA Double-Strand Break Repair and Determining Cancer Radiosensitivity,” British Journal of Cancer 130 (2024): 1621.

[175]

W. Mu, C. Wu, F. Wu, et al., “Ultrasensitive and Label-free Electrochemical Immunosensor for the Detection of the Ovarian Cancer Biomarker CA125 Based on CuCo-ONSs@AuNPs Nanocomposites,” Journal of Pharmaceutical and Biomedical Analysis 243 (2024): 116080.

[176]

E. Anastasi, A. Farina, T. Granato, et al., “Recent Insight About HE4 Role in Ovarian Cancer Oncogenesis,” International Journal of Molecular Sciences 24 (2023): 10479.

[177]

C. E. Barr, K. Njoku, G. L. Owens, and E. J. Crosbie, “Urine CA125 and HE4 for the Detection of Ovarian Cancer in Symptomatic Women,” Cancers 15 (2023): 1256.

[178]

J. Zhang, P. Cheng, and K. Pu, “Recent Advances of Molecular Optical Probes in Imaging of β-Galactosidase,” Bioconjugate Chemistry 30 (2019): 2089.

[179]

L. Li, F. Jia, Y. Li, and Y. Peng, “Design Strategies and Biological Applications of β-Galactosidase Fluorescent Sensor in Ovarian Cancer Research and Beyond,” RSC Advances 14 (2024): 3010.

[180]

M. Wang, H. Liu, and K. Fan, “Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers,” Small Methods 7 (2023): 2301049.

[181]

G. Li, S. Wu, W. Chen, et al., “Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer,” Small Methods 7 (2023): 2201313.

[182]

J. Xu, Y. Liu, K.-J. Huang, R. Wang, and J. Li, “Cascade Amplification Strategy Based on Ultra-Thin Graphdiyne and CRISPR/Cas for Real-Time Detection of Tumor Biomarker,” Chemical Engineering Journal 466 (2023): 143230.

[183]

L. Vázquez-Iglesias, G. M. S. Casagrande, D. García-Lojo, et al., “SERS Sensing for Cancer Biomarker: Approaches and Directions,” Bioactive Materials 34 (2024): 248.

[184]

Y. Shen, L. Liang, S. Zhang, et al., “Organelle-targeting Surface-enhanced Raman Scattering (SERS) Nanosensors for Subcellular pH Sensing,” Nanoscale 10 (2018): 1622.

[185]

S. Wang, J. Liu, C. C. Goh, L. G. Ng, and B. Liu, “NIR-II-Excited Intravital Two-Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures With an Ultrabright NIR-I AIE Luminogen,” Advanced Materials 31 (2019): 1904447.

[186]

J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, and B. Z. Tang, “Aggregation-Induced Emission: The Whole is More Brilliant Than the Parts,” Advanced Materials 26 (2014): 5429.

[187]

C. Chen, L. Chen, Y. Yang, R. He, Y. Deng, and J. Hu, “Aggregation-induced Emission Luminogen Based ELISA for Highly Sensitive Protein Detection,” Sensors and Actuators B: Chemical 401 (2024): 134961.

[188]

Z. Tong, G. Rajeev, K. Guo, et al., “Microfluidic Cell Microarray Platform for High Throughput Analysis of Particle-Cell Interactions,” Analytical Chemistry 90 (2018): 4338.

[189]

Z. Tong, A. Ivask, K. Guo, et al., “Crossed Flow Microfluidics for High Throughput Screening of Bioactive Chemical-Cell Interactions,” Lab on A Chip 17 (2017): 501.

[190]

L. Shi, S. Liu, X. Li, et al., “Droplet Microarray Platforms for High-Throughput Drug Screening,” Microchimica Acta 190 (2023): 260.

[191]

X. Chen, Y. Deng, G. Cao, et al., “An Ultrasensitive and Point-of-Care Sensor for the Telomerase Activity Detection,” Analytica Chimica Acta 1146 (2021): 61.

[192]

Y. Zhou, S. Xie, B. Liu, et al., “Chemiluminescence Sensor for miRNA-21 Detection Based on CRISPR-Cas12a and Cation Exchange Reaction,” Analytical Chemistry 95 (2023): 3332.

[193]

J. Du, S. Liu, P. Zhang, et al., “Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter,” ACS Applied Materials & Interfaces 12 (2020): 8040.

[194]

M. Gao and B. Z. Tang, “AIE-Based Cancer Theranostics,” Coordination Chemistry Reviews 402 (2020): 213076.

[195]

Y. Shi, Y. Hu, N. Jiang, and A. K. Yetisen, “Fluorescence Sensing Technologies for Ophthalmic Diagnosis,” ACS Sensors 7 (2022): 1615.

[196]

S. Liu, Y. Xu, X. Jiang, H. Tan, and B. Ying, “Translation of Aptamers Toward Clinical Diagnosis and Commercialization,” Biosensors & Bioelectronics 208 (2022): 114168.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/