Enhancing SDT Efficacy of Doxorubicin-Loaded Sonosensitizer Micelles to Overcome Resistance of Cancer Therapy by Optimizing Acoustic Parameters
Zhuoran Gong , Deshang Hou , Yunxue Xu , Mengxuan Wang , Shiyin Lin , Yingjuan Zheng , Zhifei Dai
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70005
Enhancing SDT Efficacy of Doxorubicin-Loaded Sonosensitizer Micelles to Overcome Resistance of Cancer Therapy by Optimizing Acoustic Parameters
Tumor drug resistance has been reported to be associated with drug efflux in tumor cells. Recently, a noninvasive and safe mechanism, sonodynamic therapy (SDT), has been proposed to be an oxidative stress strategy to potentially overcome drug efflux, but with efficacy limitation. Herein, we propose a systematic strategy for optimizing SDT, especially revealing the key role of acoustics parameters acting in SDT efficiency. A doxorubicin (DOX)-loaded sonosensitive micelle (DPM) mediated “sono-force” combination (chemotherapy and sonodynamic) therapy strategy, named DPCSTs, which was designed for amplifying SDT to augment oxidative stress to overcome drug efflux and induce robust long-term inhibition of tumor development by optimized acoustic parameters. The sub-10 nm size DPM enhanced tumor targeting and renal clearance. Meanwhile, another important component, doxorubicin, significantly suppressed residual tumors (78.6%) due to “sono-force” augmented oxidative stress reversing drug efflux, finally leading to long-term tumor development limitation in vivo. It is the first time to propose a systematic strategy for optimizing SDT regimens to overcome resistance, which can synergize with chemotherapy to exert long-term tumor development inhibition. We believe that this work will advance SDT-related research to a new level, and improve our understanding of overcoming resistance of targeted cancer therapy.
acoustic parameters / drug resistance / reactive oxygen species / sonodynamic therapy
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |