Circularly Polarized Luminescence Inversion in AIE-Active Crystal Enabled by Solvent-Induced Transition Dipole Moment Regulation

Xiaofei Niu , Xinwen Ou , Shizhe Ren , Ke Wang , Fengyan Song , Xiaobin Dong , Wu-Jie Guo , Hui-Qing Peng , Zujin Zhao , Jacky W. Y. Lam , Yong Sheng Zhao , Fei Li , Shu-Yan Yu , Ben Zhong Tang

Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70003

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e70003 DOI: 10.1002/agt2.70003
RESEARCH ARTICLE

Circularly Polarized Luminescence Inversion in AIE-Active Crystal Enabled by Solvent-Induced Transition Dipole Moment Regulation

Author information +
History +
PDF

Abstract

Control of the dissymmetry of circularly polarized luminescence (CPL) is intriguing and has great potential for applications in the field of optics. The traditional control strategy involves using the opposite enantiomers to achieve reversal of CPL signs. However, regulating CPL reversal by controlling only the transition dipole moments without changing molecular or supramolecular chirality remains a challenge. Herein, we developed a couple of crystal materials based on axially chiral aggregation-induced emission luminogens (AIEgens). These materials exhibit achiral solvent-induced CPL sign inversion with identical helical structures and molecular chirality in their crystalline states. (R)-BPAuCzT displays (+)-CPL with a dissymmetry factor of luminescence (glum) value of +9.81 × 10−4 (560 nm), while (R)-BPAuCzC exhibits (−)-CPL with a glum value of −1.02 × 10−3 (560 nm). Time-dependent density functional theory calculations show that the magnetic and electric transition dipole moments at S1 → S0 of the (R)-BPAuCzC unit cell are considerably influenced by the cocrystallized solvent molecules, revealing a solvent-induced CPL inversion mechanism. The nonbonding interactions between the solvent molecules (i.e., tetrahydrofuran or CDCl3) and AIEgens in the crystal play a crucial role in the manipulation of the transition dipole moment of these crystal materials. Moreover, microrods of (R)-BPAuCzT, (R)-BPAuCzC, and (R)-BPAuCzDCE exhibit optical waveguide properties with relatively low optical-loss coefficients of 187.3, 567.4, and 65.2 dB/cm, respectively. These findings can help in developing a new strategy toward controlling CPL signals and providing a potential application for future integrated photonic circuits.

Keywords

aggregation-induced emission / chirality / circularly polarized luminescence / optical waveguide / transition dipole moment regulation

Cite this article

Download citation ▾
Xiaofei Niu, Xinwen Ou, Shizhe Ren, Ke Wang, Fengyan Song, Xiaobin Dong, Wu-Jie Guo, Hui-Qing Peng, Zujin Zhao, Jacky W. Y. Lam, Yong Sheng Zhao, Fei Li, Shu-Yan Yu, Ben Zhong Tang. Circularly Polarized Luminescence Inversion in AIE-Active Crystal Enabled by Solvent-Induced Transition Dipole Moment Regulation. Aggregate, 2025, 6(5): e70003 DOI:10.1002/agt2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D.-W. Zhang, M. Li, and C.-F. Chen, “Recent Advances in Circularly Polarized Electroluminescence Based on Organic Light-Emitting Diodes,” Chemical Society Reviews 49 (2020): 1331-1343.

[2]

Y. Sang, J. Han, T. Zhao, P. Duan, and M. Liu, “Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application,” Advanced Materials 32 (2020): 1900110.

[3]

J. R. Brandt, F. Salerno, and M. J. Fuchter, “The Added Value of Small-Molecule Chirality in Technological Applications,” Nature Reviews Chemistry 1 (2017): 0045.

[4]

F. Song, Z. Zhao, Z. Liu, J. W. Y. Lam, and B. Z. Tang, “Circularly Polarized Luminescence From AIEgens,” Journal of Materials Chemistry C 8 (2020): 3284-3301.

[5]

C. Zhang, S. Li, X.-Y. Dong, and S.-Q. Zang, “Circularly Polarized Luminescence of Agglomerate Emitters,” Aggregate 2 (2021): e48.

[6]

S. Yang, S. Zhang, F. Hu, J. Han, and F. Li, “Circularly Polarized Luminescence Polymers: From Design to Applications,” Coordination Chemistry Reviews 485 (2023): 215116.

[7]

Y. Wu, M. Li, Z.-G. Zheng, Z.-Q. Yu, and W.-H. Zhu, “Liquid Crystal Assembly for Ultra-Dissymmetric Circularly Polarized Luminescence and Beyond,” Journal of the American Chemical Society 145 (2023): 12951-12966.

[8]

G. Albano, G. Pescitelli, and L. Di Bari, “Chiroptical Properties in Thin Films of π-Conjugated Systems,” Chemical Reviews 120 (2020): 10145-10243.

[9]

J. Crassous, M. J. Fuchter, D. E. Freedman, et al., “Materials for Chiral Light Control,” Nature Reviews Materials 8 (2023): 365-371.

[10]

J. Wade, F. Salerno, R. C. Kilbride, et al., “Controlling Anisotropic Properties by Manipulating the Orientation of Chiral Small Molecules,” Nature Chemistry 14 (2022): 1383-1389.

[11]

I. Song, J. Ahn, H. Ahn, et al., “Helical Polymers for Dissymmetric Circularly Polarized Light Imaging,” Nature 617 (2023): 92-99.

[12]

Z. Han, Y. Si, X.-Y. Dong, et al., “Smart Reversible Transformations Between Chiral Superstructures of Copper Clusters for Optical and Chiroptical Switching,” Journal of the American Chemical Society 145 (2023): 6166-6176.

[13]

W.-J. Li, Q. Gu, X.-Q. Wang, et al., “AIE-Active Chiral [3]Rotaxanes With Switchable Circularly Polarized Luminescence,” Angewandte Chemie International Edition 60 (2021): 9507-9515.

[14]

H. Maeda, Y. Bando, K. Shimomura, et al., “Chemical-Stimuli-Controllable Circularly Polarized Luminescence From Anion-Responsive π-Conjugated Molecules,” Journal of the American Chemical Society 133 (2011): 9266-9269.

[15]

X. Song, X. Zhu, S. Qiu, W. Tian, and M. Liu, “Self-Assembly of Adaptive Chiral [1]Rotaxane for Thermo-Rulable Circularly Polarized Luminescence,” Angewandte Chemie International Edition 61 (2022): e202208574.

[16]

L. Wan, J. Wade, F. Salerno, et al., “Inverting the Handedness of Circularly Polarized Luminescence From Light-Emitting Polymers Using Film Thickness,” ACS Nano 13 (2019): 8099-8105.

[17]

Y. Wang, J. Gong, X. Wang, et al., “Multistate Circularly Polarized Luminescence Switching Through Stimuli-Induced Co-Conformation Regulations of Pyrene-Functionalized Topologically Chiral [2]Catenane,” Angewandte Chemie International Edition 61 (2022): e202210542.

[18]

K.-F. Zhang, N. Saleh, M. Swierczewski, et al., “Multistate Aggregation-Induced Chiroptical Properties of Enantiopure Disulfide-Mediated Bispyrene Macrocycles,” Angewandte Chemie International Edition 62 (2023): e202304075.

[19]

K. Takaishi, K. Iwachido, and T. Ema, “Solvent-Induced Sign Inversion of Circularly Polarized Luminescence: Control of Excimer Chirality by Hydrogen Bonding,” Journal of the American Chemical Society 142 (2020): 1774-1779.

[20]

O. G. Willis, F. Zinna, and L. Di Bari, “NIR-Circularly Polarized Luminescence From Chiral Complexes of Lanthanides and d-Metals,” Angewandte Chemie International Edition 62 (2023): e202302358.

[21]

J. Crassous, L. Di Bari, W.-Y. Wong, and Y.-X. Zheng, “Circularly Polarized Luminescence: A Themed Collection,” Journal of Materials Chemistry C 11 (2023): 5905-5907.

[22]

W. Shang, X. Zhu, Y. Jiang, et al., “Self-Assembly of Macrocyclic Triangles Into Helicity-Opposite Nanotwists by Competitive Planar Over Point Chirality,” Angewandte Chemie International Edition 61 (2022): e202210604.

[23]

Y. Wang, D. Niu, G. Ouyang, and M. Liu, “Double Helical π-Aggregate Nanoarchitectonics for Amplified Circularly Polarized Luminescence,” Nature Communications 13 (2022): 171024.

[24]

O. Oki, C. Kulkarni, H. Yamagishi, et al., “Robust Angular Anisotropy of Circularly Polarized Luminescence From a Single Twisted-Bipolar Polymeric Microsphere,” Journal of the American Chemical Society 143 (2021): 8772-8779.

[25]

R. Liu, Z. Feng, X. Yan, et al., “Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites With Strong Circularly Polarized Luminescence,” Journal of the American Chemical Society 145 (2023): 17274-17283.

[26]

J. Li, X. Peng, D. Chen, S. Shi, J. Ma, and W.-Y. Lai, “Tuning the Circularly Polarized Luminescence of Supramolecules via Self-Assembly Morphology Control,” ACS Macro Letters 11 (2022): 1174-1182.

[27]

Z. Zheng, H. Hu, Z. Zhang, et al., “Digital Photoprogramming of Liquid-Crystal Superstructures Featuring Intrinsic Chiral Photoswitches,” Nature Photonics 16 (2022): 226-234.

[28]

M. Li, H. Hu, B. Liu, et al., “Light-Reconfiguring Inhomogeneous Soft Helical Pitch With Fatigue Resistance and Reversibility,” Journal of the American Chemical Society 144 (2022): 20773-20784.

[29]

W. Yuan, L. Chen, C. Yuan, et al., “Cooperative Supramolecular Polymerization of Styrylpyrenes for Color-Dependent Circularly Polarized Luminescence and Photocycloaddition,” Nature Communications 14 (2023): 8022.

[30]

S. Lee, K. Y. Kim, S. H. Jung, et al., “Finely Controlled Circularly Polarized Luminescence of a Mechano-Responsive Supramolecular Polymer,” Angewandte Chemie International Edition 58 (2019): 18878-18882.

[31]

J. P. Riehl and F. S. Richardson, “Circularly Polarized Luminescence Spectroscopy,” Chemical Reviews 86 (1986): 1-16.

[32]

A. Garci, S. Abid, A. H. G. David, et al., “Aggregation-Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl-Based Cyclophanes,” Angewandte Chemie International Edition 61 (2022): e202208679.

[33]

A. Ying, Y. Ai, C. Yang, and S. Gong, “Aggregation-Dependent Circularly Polarized Luminescence and Thermally Activated Delayed Fluorescence From Chiral Carbene-Cu I -Amide Enantiomers,” Angewandte Chemie International Edition 61 (2022): e202210490.

[34]

Y.-X. Yuan, J.-H. Jia, Y.-P. Song, F.-Y. Ye, Y.-S. Zheng, and S.-Q. Zang, “Fluorescent TPE Macrocycle Relayed Light-Harvesting System for Bright Customized-Color Circularly Polarized Luminescence,” Journal of the American Chemical Society 144 (2022): 5389-5399.

[35]

Y. Jin, Q.-C. Peng, J.-W. Xie, K. Li, and S.-Q. Zang, “Photo-Activated Circularly Polarized Luminescence Film Based on Aggregation-Induced Emission Copper(I) Cluster-Assembled Materials,” Angewandte Chemie International Edition 62 (2023): e202301000.

[36]

F. Song, Y. Cheng, Q. Liu, et al., “Tunable Circularly Polarized Luminescence From Molecular Assemblies of Chiral AIEgens,” Materials Chemistry Frontiers 3 (2019): 1768-1778.

[37]

W. Huang, C. Fu, Z. Liang, K. Zhou, and Z. He, “Strong Circularly-Polarized Room-Temperature Phosphorescence From a Feasibly Separable Scaffold of Bidibenzo[b,d]Furan With Locked Axial Chirality,” Angewandte Chemie International Edition 61 (2022): e202202977.

[38]

J. Li, X. Peng, C. Hou, et al., “Discriminating Chiral Supramolecular Motions by Circularly Polarized Luminescence,” Chemistry - A European Journal 28 (2022): e202202336.

[39]

Y. Sheng, D. Shen, W. Zhang, H. Zhang, C. Zhu, and Y. Cheng, “Reversal Circularly Polarized Luminescence of AIE-Active Chiral Binaphthyl Molecules From Solution to Aggregation,” Chemistry - A European Journal 21 (2015): 13196-13200.

[40]

J. Li, Y. Chen, W. Wu, et al., “Multiple Energy Transfer Modes From o-Carborane Dyad Induced by Synergetic Conformational Regulations and Intense Circularly Polarized Luminescence in Self-Assembly Aggregates,” Advanced Optical Materials 12 (2024): 2401859.

[41]

S. Nakanishi, N. Hara, N. Kuroda, N. Tajima, M. Fujiki, and Y. Imai, “Solvent-Sensitive Signs and Magnitudes of Circularly Polarised Luminescence and Circular Dichroism Spectra: Probing Two Phenanthrenes as Emitters Endowed With BINOL Derivatives,” Organic & Biomolecular Chemistry 16 (2018): 1093-1100.

[42]

Z.-B. Sun, J.-K. Liu, D.-F. Yuan, et al., “2,2′-Diamino-6,6′-Diboryl-1,1′-Binaphthyl: A Versatile Building Block for Temperature-Dependent Dual Fluorescence and Switchable Circularly Polarized Luminescence,” Angewandte Chemie International Edition 58 (2019): 4840-4846.

[43]

P. Sumsalee, P. Morgante, G. Pieters, J. Crassous, J. Autschbach, and L. Favereau, “Negative Solvatochromism and Sign Inversion of Circularly Polarized Luminescence in Chiral Exciplexes as a Function of Solvent Polarity,” Journal of Materials Chemistry C 11 (2023): 8514-8523.

[44]

Y. Nagata, T. Nishikawa, and M. Suginome, “Chirality-Switchable Circularly Polarized Luminescence in Solution Based on the Solvent-Dependent Helix Inversion of Poly(quinoxaline-2,3-diyl)s,” Chemical Communications 50 (2014): 9951-9953.

[45]

A. Satrijo, S. C. J. Meskers, and T. M. Swager, “Probing a Conjugated Polymer's Transfer of Organization-Dependent Properties From Solutions to Films,” Journal of the American Chemical Society 128 (2006): 9030-9031.

[46]

A. M. T. Muthig, O. Mrózek, T. Ferschke, et al., “Mechano-Stimulus and Environment-Dependent Circularly Polarized TADF in Chiral Copper(I) Complexes and Their Application in OLEDs,” Journal of the American Chemical Society 145 (2023): 4438-4449.

[47]

Y. Chen, Y. Zhang, H. Li, et al., “Dynamic Circularly Polarized Luminescence With Tunable Handedness and Intensity Enabled by Achiral Dichroic Dyes in Cholesteric Liquid Crystal Medium,” Advanced Materials 34 (2022): 2202309.

[48]

F. Song, Z. Xu, Q. Zhang, et al., “Highly Efficient Circularly Polarized Electroluminescence From Aggregation-Induced Emission Luminogens With Amplified Chirality and Delayed Fluorescence,” Advanced Functional Materials 28 (2018): 1800051.

[49]

J. Li, C. Hou, C. Huang, et al., “Boosting Circularly Polarized Luminescence of Organic Conjugated Systems via Twisted Intramolecular Charge Transfer,” Research 2020 (2020): 3839160.

[50]

X.-Y. Wang, J. Gong, H. Zou, S. H. Liu, and J. Zhang, “Aggregation-Induced Conversion From TADF to Phosphorescence of Gold(I) Complexes With Millisecond Lifetimes,” Aggregate 4 (2023): e252.

[51]

G. Yang, Y. Ran, Y. Wu, M. Chen, Z. Bin, and J. You, “Endowing Imidazole Derivatives With Thermally Activated Delayed Fluorescence and Aggregation-Induced Emission Properties for Highly Efficient Non-Doped Organic Light-Emitting Diodes,” Aggregate 3 (2022): e127.

[52]

H. Liu, J. Guo, Z. Zhao, and B. Z. Tang, “Aggregation-Induced Delayed Fluorescence,” ChemPhotoChem 3 (2019): 993-999.

[53]

F. Song, X. Ou, T. Y. Chou, et al., “Oxygen Quenching-Resistant Nanoaggregates With Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity,” ACS Nano 16 (2022): 6176-6184.

[54]

J. Zhang, J. Ma, S. Zhang, et al., “Exploration of Thermally Activated Delayed Fluorescence (TADF)-Based Photoredox Catalyst To Establish the Mechanisms of Action for Photodynamic Therapy,” ACS Nano 17 (2023): 23430-23441.

[55]

Z. Zhu, D. Tian, P. Gao, et al., “Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging,” Journal of the American Chemical Society 140 (2018): 17484-17491.

[56]

B. Yang, S. Yan, Y. Zhang, et al., “Double-Model Decay Strategy Integrating Persistent Photogenic Radicaloids With Dynamic Circularly Polarized Doublet Radiance and Triplet Afterglow,” Journal of the American Chemical Society 146 (2024): 7668-7678.

[57]

K. Wang, X. Ou, and X. Niu, et al., “Aggregation-Induced Circularly Polarized Luminescence and Delayed Fluorescence Enabled by Activating High-Level Reverse Intersystem Crossing,” Aggregate 6 (2025): e667.

[58]

C.-L. Sun, Z. Gao, K.-X. Teng, et al., “Supramolecular Polymer-Based Fluorescent Microfibers for Switchable Optical Waveguides,” ACS Applied Materials & Interfaces 10 (2018): 26526-26532.

[59]

Z. Qi, Y.-J. Ma, and D. Yan, “One-Dimensional Molecular Co-Crystal Alloys Capable of Full-Color Emission for Low-Loss Optical Waveguide and Optical Logic Gate,” Aggregate 5 (2024): e411.

[60]

Y. Yu, X.-Y. Xia, C.-F. Xu, Z.-J. Lv, X.-D. Wang, and L.-S. Liao, “Customizable Organic Charge-Transfer Cocrystals for the Dual-Mode Optoelectronics in the NIR (II) Window,” Journal of the American Chemical Society 146 (2024): 11845-11854.

[61]

Y. Yan and Y. S. Zhao, “Exciton Polaritons in 1D Organic Nanocrystals,” Advanced Functional Materials 22 (2012): 1330-1332.

[62]

S. Chen, M.-P. Zhuo, X.-D. Wang, G.-Q. Wei, and L.-S. Liao, “Optical Waveguides Based on One-Dimensional Organic Crystals,” PhotoniX 2 (2021): 1-24.

[63]

X. Wang, B. Yin, L. Jiang, et al., “Ligand-Protected Metal Nanoclusters as Low-Loss, Highly Polarized Emitters for Optical Waveguides,” Science 381 (2023): 784-790.

[64]

J.-F. Liao, Z. Zhang, G. Wang, et al., “Oriented Growth of Highly Emissive Manganese Halide Microrods for Dual-Mode Low-Loss Optical Waveguides,” Angewandte Chemie International Edition (2024): e202419085, https://doi.org/10.1002/anie.202419085.

[65]

C.-Y. Ding, Y.-W. Zhong, and J. Yao, “Metalloligand-anion Frameworks: Tunable Polarized Luminescence and Crystal-to-crystal Transformation,” Matter 7 (2024): 3537-3553.

[66]

Y. Xu, X. Huang, Y. Wang, et al., “Controllable and Low-Loss Electrochemiluminescence Waveguide Supported by a Micropipette Electrode,” Journal of the American Chemical Society 146 (2024): 5423-5432.

[67]

M.-J. Sun, Y. Liu, Y. Yan, et al., “In Situ Visualization of Assembly and Photonic Signal Processing in a Triplet Light-Harvesting Nanosystem,” Journal of the American Chemical Society 140 (2018): 4269-4278.

[68]

H. Liu, Z. Lu, Z. Zhang, Y. Wang, and H. Zhang, “Highly Elastic Organic Crystals for Flexible Optical Waveguides,” Angewandte Chemie International Edition 57 (2018): 8448-8452.

[69]

S. Hayashi, S.-y. Yamamoto, D. Takeuchi, Y. Ie, and K. Takagi, “Creating Elastic Organic Crystals of π-Conjugated Molecules With Bending Mechanofluorochromism and Flexible Optical Waveguide,” Angewandte Chemie International Edition 57 (2018): 17002-17008.

[70]

M.-P. Zhuo, J.-J. Wu, X.-D. Wang, Y.-C. Tao, Y. Yuan, and L.-S. Liao, “Hierarchical Self-Assembly of Organic Heterostructure Nanowires,” Nature Communications 10 (2019): 3839.

[71]

W. Yao, Y. Yan, L. Xue, et al., “Controlling the Structures and Photonic Properties of Organic Nanomaterials by Molecular Design,” Angewandte Chemie International Edition 52 (2013): 8713-8717.

[72]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., “Gaussian 16, Revision A. 03,” Gaussian, Inc. Wallingford CT, 2016.

[73]

T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33 (2012): 580-592.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/