Ultrafast Excitonic Transitions in Enantiopure and Racemic Squaraine Thin Films

Robin Bernhardt , Lukas Rieland , Tianyi Wang , Marvin F. Schumacher , Arne Lützen , Manuela Schiek , Paul H. M. van Loosdrecht

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e698

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e698 DOI: 10.1002/agt2.698
RESEARCH ARTICLE

Ultrafast Excitonic Transitions in Enantiopure and Racemic Squaraine Thin Films

Author information +
History +
PDF

Abstract

While chirality is a prevalent character of numerous biological and synthetic organic molecules, its selective absorption of circularly polarized light, known as circular dichroism (CD), is typically small due to intrinsically weak coupling between magnetic and electric dipoles. However, thin films of aggregated, enantiopure prolinol-derived squaraine molecules (ProSQ-C16) exhibit an unusually large excitonic CD signal, although the underlying mechanism is not yet known. In this study, we employ steady-state and ultrafast transient absorption spectroscopy to investigate the nature and dynamics of excitons in aggregates of enantiopure and racemic ProSQ-C16 thin films. Highly resembling transient responses of enantiopure thin films under excitations at different photon energies strongly indicate that a single type of aggregate dominates the linear optical response, that is, a strong red-shifted (J-like) and weak blue-shifted (H-like) absorption band. On the other hand, the transient properties of the racemic thin film deviate from this pattern and remain largely ambiguous. The short lifetime of excited states and coherent oscillations present in the dynamics of the transient absorption signal indicate that the early time dynamics are governed by a transition towards a dark intermediate state, which might arise from intermolecular charge transfer with potential contributions from the coupling of excitons to the vibrations. This non-radiative relaxation pathway explains the unusually weak fluorescence of the predominately J-like behaving aggregate. Our findings conclusively show that the chiral aggregate structure has a strong impact on the optical and dynamic response of the excitons and underline the significance of non-Frenkel exciton states for the optical properties of anilino squaraine dyes.

Keywords

chirality / excitons / molecular aggregation / transient absorption / ultrafast dynamics

Cite this article

Download citation ▾
Robin Bernhardt, Lukas Rieland, Tianyi Wang, Marvin F. Schumacher, Arne Lützen, Manuela Schiek, Paul H. M. van Loosdrecht. Ultrafast Excitonic Transitions in Enantiopure and Racemic Squaraine Thin Films. Aggregate, 2025, 6(3): e698 DOI:10.1002/agt2.698

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics Meets Excitonics: Natural and Artificial Molecular Aggregates,” Nanophotonics 2, no. 1 (2013): 21-38, https://doi.org/10.1515/nanoph-2012-0025.

[2]

A. M. Valencia, D. Bischof, S. Anhäuser, et al., “Excitons in Organic Materials: Revisiting Old Concepts With New Insights,” Electronic Structure 5, no. 3 (2023): 033003, https://doi.org/10.1088/2516-1075/acf2d4.

[3]

M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, “The Exciton Model in Molecular Spectroscopy,” Pure and Applied Chemistry 11, no. 3 (1965): 371-392, https://doi.org/10.1351/pac196511030371.

[4]

A. S. Davydov, “The Theory of Molecular Excitons,” Soviet Physics Uspekhi 7, no. 2 (1964): 145, https://doi.org/10.1070/PU1964v007n02ABEH003659.

[5]

N. J. Hestand and F. C. Spano, “Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer,” Chemical Reviews 118, no. 15 (2018): 7069-7163, https://doi.org/10.1021/acs.chemrev.7b00581.

[6]

K. Ilina, W. M. MacCuaig, M. Laramie, J. N. Jeouty, L. R. McNally, and M. Henary, “Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges,” Bioconjugate Chemistry 31, no. 2 (2020): 194-213, https://doi.org/10.1021/acs.bioconjchem.9b00482.

[7]

J. Zablocki, O. Arteaga, F. Balzer, et al., “Polymorphic Chiral Squaraine Crystallites in Textured Thin Films,” Chirality 32, no. 5 (2020): 619-631, https://doi.org/10.1002/chir.23213.

[8]

G. de Miguel, M. Ziółek, M. Zitnan, et al., “Photophysics of H- and J-Aggregates of Indole-Based Squaraines in Solid State,” Journal of Physical Chemistry C 116, no. 17 (2012): 9379-9389, https://doi.org/10.1021/jp210281z.

[9]

C. Lambert, F. Koch, S. F. Völker, et al., “Energy Transfer Between Squaraine Polymer Sections: From Helix to Zigzag and All the Way Back,” Journal of the American Chemical Society 137, no. 24 (2015): 7851-7861, https://doi.org/10.1021/jacs.5b03644.

[10]

G. M. Paternò, L. Moretti, A. J. Barker, et al., “Near-Infrared Emitting Single Squaraine dye Aggregates With Large Stokes Shifts,” Journal of Materials Chemistry C 5, no. 31 (2017): 7732-7738, https://doi.org/10.1039/C7TC01375B.

[11]

F. Balzer, N. J. Hestand, J. Zablocki, G. Schnakenburg, A. Lützen, and M. Schiek, “Spotlight on Charge-Transfer Excitons in Crystalline Textured n-Alkyl Anilino Squaraine Thin Films,” Journal of Physical Chemistry C 126, no. 32 (2022): 13802-13813, https://doi.org/10.1021/acs.jpcc.2c03665.

[12]

R. Bernhardt, M. Manrho, J. Zablocki, et al., “Structural Disorder as the Origin of Optical Properties and Spectral Dynamics in Squaraine Nano-Aggregates,” Journal of the American Chemical Society 144, no. 42 (2022): 19372-19381, https://doi.org/10.1021/jacs.2c07064.

[13]

N. J. Hestand, C. Zheng, A. R. Penmetcha, et al., “Confirmation of the Origins of Panchromatic Spectra in Squaraine Thin Films Targeted for Organic Photovoltaic Devices,” Journal of Physical Chemistry C 119, no. 33 (2015): 18964-18974, https://doi.org/10.1021/acs.jpcc.5b05095.

[14]

C. A. Shen, D. Bialas, M. Hecht, V. Stepanenko, K. Sugiyasu, and F. Würthner, “Polymorphism in Squaraine Dye Aggregates by Self-Assembly Pathway Differentiation: Panchromatic Tubular Dye Nanorods versus J-Aggregate Nanosheets,” Angewandte Chemie International Edition 133, no. 21 (2021): 12056-12065, https://doi.org/10.1002/ange.202102183.

[15]

H. Chen, M. S. Farahat, K. Y. Law, and D. G. Whitten, “Aggregation of Surfactant Squaraine Dyes in Aqueous Solution and Microheterogeneous Media: Correlation of Aggregation Behavior with Molecular Structure,” Journal of the American Chemical Society 118, no. 11 (1996): 2584-2594, https://doi.org/10.1021/ja9523911.

[16]

A. T. Rösch, Q. Zhu, J. Robben, et al., “Helicity Control in the Aggregation of Achiral Squaraine Dyes in Solution and Thin Films,” Chemistry A European Journal 27, no. 1 (2021): 298-306, https://doi.org/10.1002/chem.202002695.

[17]

J. Selby, M. Holzapfel, B. K. Lombe, et al., “Chiroptical Properties of Indolenine Squaraines With a Stereogenic Center at Close Proximity,” Journal of Organic Chemistry 85, no. 19 (2020): 12227-12242, https://doi.org/10.1021/acs.joc.0c01422.

[18]

O. A. Mass, C. K. Wilson, S. K. Roy, et al., “Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds,” Journal of Physical Chemistry B 124, no. 43 (2020): 9636-9647, https://doi.org/10.1021/acs.jpcb.0c06480.

[19]

E. Freytag, L. Kreimendahl, M. Holzapfel, et al., “Chiroptical Properties of Planar Benzobisthiazole-Bridged Squaraine Dimers,” Journal of Organic Chemistry 88, no. 15 (2023): 10777-10788, https://doi.org/10.1021/acs.joc.3c00821.

[20]

J. R. Brandt, F. Salerno, and M. J. Fuchter, “The Added Value of Small-Molecule Chirality in Technological Applications,” Nature Reviews Chemistry 1, no. 6 (2017): 1-12, https://doi.org/10.1038/s41570-017-0045.

[21]

B. P. Bloom, Y. Paltiel, R. Naaman, and D. H. Waldeck, “Chiral Induced Spin Selectivity,” Chemical Reviews 4, no. 124, (2024): 1950-1991, https://doi.org/10.1021/acs.chemrev.3c00661.

[22]

N. S. S. Nizar, M. Sujith, K. Swathi, C. Sissa, A. Painelli, and K. G. Thomas, “Emergent Chiroptical Properties in Supramolecular and Plasmonic Assemblies,” Chemical Society Reviews 50, no. 20 (2021): 11208-11226, https://doi.org/10.1039/D0CS01583K.

[23]

F. Bertocchi, C. Sissa, and A. Painelli, “Circular Dichroism of Molecular Aggregates: A Tutorial,” Chirality 35, no. 10 (2023): 681-691, https://doi.org/10.1002/chir.23565.

[24]

M. Mitov, “Cholesteric Liquid Crystals With a Broad Light Reflection Band,” Advanced Materials 24, no. 47 (2012): 6260-6276, https://doi.org/10.1002/adma.201202913.

[25]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic Nanostructures: Spatial Dispersion Mimics Chirality,” Physical Review Letters 106, no. 18 (2011): 185501, https://doi.org/10.1103/PhysRevLett.106.185501.

[26]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical Chiral Metamaterials: A Review of the Fundamentals, Fabrication Methods and Applications,” Nanotechnology 27, no. 41 (2016): 412001, https://doi.org/10.1088/0957-4484/27/41/412001.

[27]

Y. Yang, R. C. de Costa, M. J. Fuchter, and A. J. Campbell, “Circularly Polarized Light Detection by a Chiral Organic Semiconductor Transistor,” Nature Photonics 7, no. 8 (2013): 634-638, https://doi.org/10.1038/nphoton.2013.176.

[28]

M. Schulz, F. Balzer, D. Scheunemann, et al., “Chiral Excitonic Organic Photodiodes for Direct Detection of Circular Polarized Light,” Advanced Functional Materials 29, no. 16 (2019): 1900684, https://doi.org/10.1002/adfm.201900684.

[29]

G. Albano, G. Pescitelli, and L. D. Bari, “Chiroptical Properties in Thin Films of pi-Conjugated Systems,” Chemical Reviews 120, no. 18 (2020): 10145-10243, https://doi.org/10.1021/acs.chemrev.0c00195.

[30]

J. Wade, J. N. Hilfiker, J. R. Brandt, et al., “Natural Optical Activity as the Origin of the Large Chiroptical Properties in Pi-Conjugated Polymer Thin Films,” Nature Communications 11, no. 1 (2020): 6137, https://doi.org/10.1038/s41467-020-19951-y.

[31]

Y. Deng, M. Wang, Y. Zhuang, S. Liu, W. Huang, and Q. Zhao, “Circularly Polarized Luminescence From Organic Micro-/Nano-Structures,” Light: Science & Applications 10, no. 1 (2021): 76, https://doi.org/10.1038/s41377-021-00516-7.

[32]

D. Giavazzi, M. F. Schumacher, L. Grisanti, et al., “A Marvel of Chiral Squaraine Aggregates: Chiroptical Spectra Beyond the Exciton Model,” Journal of Materials Chemistry C 11, no. 24 (2023): 8307-8321, https://doi.org/10.1039/D2TC05555D.

[33]

M. Schulz, J. Zablocki, O. S. Abdullaeva, et al., “Giant Intrinsic Circular Dichroism of Prolinol-Derived Squaraine Thin Films,” Nature Communications 9, no. 1 (2018): 2413, https://doi.org/10.1038/s41467-018-04811-7.

[34]

T. Quenzel, D. Timmer, M. Gittinger, et al., “Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates,” ACS Nano 16, no. 3 (2022): 4693-4704, https://doi.org/10.1021/acsnano.1c11398.

[35]

M. S. Vezie, S. Few, I. Meager, et al., “Exploring the Origin of High Optical Absorption in Conjugated Polymers,” Nature Materials 15, no. 7 (2016): 746-753, https://doi.org/10.1038/nmat4645.

[36]

R. K. Hylton, G. J. Tizzard, T. L. Threlfall, et al., “Are the Crystal Structures of Enantiopure and Racemic Mandelic Acids Determined by Kinetics or Thermodynamics?,” Journal of the American Chemical Society 137, no. 34 (2015): 11095-11104, https://doi.org/10.1021/jacs.5b05938.

[37]

T. J. Wiegand, J. S. Sandoval, J. A. Cody, D. W. McCamant, and C. J. Collison, “Directional Exciton Diffusion, Measured by Subpicosecond Transient Absorption as an Explanation for Squaraine Solar Cell Performance,” Journal of Physical Chemistry C 128, no. 11 (2024): 4616-4630, https://doi.org/10.1021/acs.jpcc.3c06361.

[38]

C. Zheng, M. F. Mark, T. Wiegand, et al., “Measurement and Theoretical Interpretation of Exciton Diffusion as a Function of Intermolecular Separation for Squaraines Targeted for Bulk Heterojunction Solar Cells,” Journal of Physical Chemistry C 124, no. 7 (2020): 4032-4043, https://doi.org/10.1021/acs.jpcc.9b11816.

[39]

L. D. Bakalis and J. Knoester, “Pump-Probe Spectroscopy and the Exciton Delocalization Length in Molecular Aggregates,” Journal of Physical Chemistry B 103, no. 31 (1999): 6620-6628, https://doi.org/10.1021/jp990354g.

[40]

D. Timmer, F. Zheng, M. Gittinger, et al., “Charge Delocalization and Vibronic Couplings in Quadrupolar Squaraine Dyes,” Journal of the American Chemical Society 144, no. 41 (2022): 19150-19162, https://doi.org/10.1021/jacs.2c08682.

[41]

C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, “Comprehensive Data Analysis of Femtosecond Transient Absorption Spectra: A review,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, no. 1 (2012): 1-27, https://doi.org/10.1016/j.jphotochemrev.2011.10.002.

[42]

H. P. Pasanen, R. Khan, J. A. Odutola, and N. V. Tkachenko, “Transient Absorption Spectroscopy of Films: Impact of Refractive Index,” Journal of Physical Chemistry C 128, no. 15 (2024): 6167-6179, https://doi.org/10.1021/acs.jpcc.4c00981.

[43]

A. Ashoka, R. R. Tamming, A. V. Girija, et al., “Extracting Quantitative Dielectric Properties From Pump-Probe Spectroscopy,” Nature Communications 13, no. 1 (2022): 1437, https://doi.org/10.1038/s41467-022-29112-y.

[44]

P. Malý, J. Lüttig, P. A. Rose, et al., “Separating Single- From Multi-Particle Dynamics in Nonlinear Spectroscopy,” Nature 616, no. 7956 (2023): 280-287, https://doi.org/10.1038/s41586-023-05846-7.

[45]

D. Fazzi, M. Barbatti, and W. Thiel, “Unveiling the Role of Hot Charge-Transfer States in Molecular Aggregates via Nonadiabatic Dynamics,” Journal of the American Chemical Society 138, no. 13 (2016): 4502-4511, https://doi.org/10.1021/jacs.5b13210.

[46]

R. Binder, M. Polkehn, T. Ma, and I. Burghardt, “Ultrafast Exciton Migration in an HJ-Aggregate: Potential Surfaces and Quantum Dynamics,” Chemical Physics 482 (2017): 16-26, https://doi.org/10.1016/j.chemphys.2016.09.037.

[47]

A. Schubert, V. Settels, W. Liu, et al., “Ultrafast Exciton Self-Trapping Upon Geometry Deformation in Perylene-Based Molecular Aggregates,” Journal of Physical Chemistry Letters 4, no. 5 (2013): 792-796, https://doi.org/10.1021/jz4000752.

[48]

B. Manna, R. Ghosh, and D. K. Palit, “Exciton Dynamics in Anthracene Nanoaggregates,” Journal of Physical Chemistry C 119, no. 19 (2015): 10641-10652, https://doi.org/10.1021/acs.jpcc.5b00469.

[49]

X. Fan, A. Wei, T. Klamroth, Y. Zhang, K. Gao, and L. Wang, “Ultrafast Multiexciton Dynamics in Molecular Systems: Inclusion of Exciton-Exciton Annihilation,” Physical Review B 107, no. 13 (2023): 134301, https://doi.org/10.1103/PhysRevB.107.134301.

[50]

A. De Sio, E. Sommer, X. T. Nguyen, et al., “Intermolecular Conical Intersections in Molecular Aggregates,” Nature Nanotechnology 16, no. 1 (2021): 63-68, https://doi.org/10.1038/s41565-020-00791-2.

[51]

A. J. Musser, M. Liebel, C. Schnedermann, et al., “Evidence for Conical Intersection Dynamics Mediating Ultrafast Singlet Exciton Fission,” Nature Physics 11, no. 4 (2015): 352-357, https://doi.org/10.1038/nphys3241.

[52]

M. J. Paterson, L. Blancafort, S. Wilsey, and M. A. Robb, “Photoinduced Electron Transfer in Squaraine Dyes: Sensitization of Large Band Gap Semiconductors,” Journal of Physical Chemistry A 106, no. 47 (2002): 11431-11439, https://doi.org/10.1021/jp026418w.

[53]

G. de Miguel, M. Marchena, M. Zitnan, S. S. Pandey, S. Hayase, and A. Douhal, “Femto to Millisecond Observations of Indole-Based Squaraine Molecules Photodynamics in Solution,” Physical Chemistry Chemical Physics 14, no. 5 (2012): 1796-1805, https://doi.org/10.1039/C1CP22864A.

[54]

B. G. Levine, M. P. Esch, B. S. Fales, D. T. Hardwick, W. T. Peng, and Y. Shu, “Conical Intersections at the Nanoscale: Molecular Ideas for Materials,” Annual Review of Physical Chemistry 70 (2019): 21-43, https://doi.org/10.1146/annurev-physchem-042018-052425.

[55]

D. Polli, P. Altoé, O. Weingart, et al., “Conical Intersection Dynamics of the Primary Photoisomerization Event in Vision,” Nature 467, no. 7314 (2010): 440-443, https://doi.org/10.1038/nature09346.

[56]

Y. Wu and J. E. Subotnik, “Electronic Spin Separation Induced by Nuclear Motion Near Conical Intersections,” Nature Communications 12, no. 1 (2021): 700, https://doi.org/10.1038/s41467-020-20831-8.

[57]

M. S. Schuurman and A. Stolow, “Dynamics at Conical Intersections,” Annual Review of Physical Chemistry 69 (2018): 427-450, https://doi.org/10.1146/annurev-physchem-052516-050721.

[58]

V. Settels, A. Schubert, M. Tafipolski, et al., “Identification of Ultrafast Relaxation Processes As a Major Reason for Inefficient Exciton Diffusion in Perylene-Based Organic Semiconductors,” Journal of the American Chemical Society 136, no. 26 (2014): 9327-9337, https://doi.org/10.1021/ja413115h.

[59]

H. G. Duan, P. Nalbach, R. J. D. Miller, and M. Thorwart, “Ultrafast Energy Transfer in Excitonically Coupled Molecules Induced by a Nonlocal Peierls Phonon,” Journal of Physical Chemistry Letters 10, no. 6 (2019): 1206-1211, https://doi.org/10.1021/acs.jpclett.9b00242.

[60]

O. Arteaga and R. Ossikovski, “Complete Mueller Matrix From a Partial Polarimetry Experiment: The 12-Element Case,” Journal of the Optical Society of America A 36, no. 3 (2019): 416-427, https://doi.org/10.1364/JOSAA.36.000416.

[61]

E. Jung, K. Budzinauskas, S. Öz, et al., “Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskite,” ACS Energy Letters 5, no. 3 (2020): 785-792, https://doi.org/10.1021/acsenergylett.9b02684.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/