Apical-out Tubuloids for Accurate Kidney Toxicity Studies

Yugyeong Lee , Ji Su Hwang , Ziliang Zhai , Kyungwon Park , Ye Seul Son , Dae-Soo Kim , Seok Chung , Sejoong Kim , Mi-Young Son , Gwang Lee , Sungsu Park

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e697

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e697 DOI: 10.1002/agt2.697
RESEARCH ARTICLE

Apical-out Tubuloids for Accurate Kidney Toxicity Studies

Author information +
History +
PDF

Abstract

In kidney organoids, typically only the basal membrane is exposed, limiting toxicity assessments of apically transported drugs. Although the reversion of basal-out organoids has successfully created apical-out organoids of the intestine and airway, this method has not yet been applied to kidney organoids. Here, a technique to reverse tubuloid polarity is reported, enabling the apical surface to evert and face the medium by dissolving extracellular matrix proteins in the culture system. The resulting apical-out tubuloids maintain high viability, exhibit proper morphological characteristics, and express cell adhesion proteins and biomarkers appropriately. Further analyses, including RNA sequencing and scanning electron microscopy, confirm the presence of primary cilia on the outer surface, along with albumin receptors and Na+/K+-ATPase on the outer and inner surfaces, respectively, and apical proteins such as zonula occludens-1 on the lateral membrane, verifying the apical-out orientation. These apical-out tubuloids demonstrate selective albumin internalization, greater sensitivity to apically transported colistin, and reduced sensitivity to basally transported tenofovir, effectively mimicking drug transport mechanisms. This approach for generating apical-out tubuloids is a valuable tool for assessing drug efficacy and toxicity in physiologically relevant, tissue-like microenvironments, significantly advancing the field of nephrotoxicity research.

Keywords

apical transport / drug uptake / kidney / nephrotoxicity / organoid

Cite this article

Download citation ▾
Yugyeong Lee, Ji Su Hwang, Ziliang Zhai, Kyungwon Park, Ye Seul Son, Dae-Soo Kim, Seok Chung, Sejoong Kim, Mi-Young Son, Gwang Lee, Sungsu Park. Apical-out Tubuloids for Accurate Kidney Toxicity Studies. Aggregate, 2025, 6(3): e697 DOI:10.1002/agt2.697

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Yin and J. Wang, “Renal Drug Transporters and Their Significance in Drug-Drug Interactions,” Acta Pharmaceutica Sinica B 6 (2016): 363.

[2]

G. S. Pazhayattil and A. C. Shirali, “Drug-induced impairment of renal function,” International Journal of Nephrology and Renovascular Disease 7 (2014): 457.

[3]

J. Faria, S. Ahmed, K. G. Gerritsen, S. M. Mihaila, and R. Masereeuw, “Kidney-Based in Vitro Models for Drug-Induced Toxicity Testing,” Archives of Toxicology 93 (2019): 3397.

[4]

C. Sakolish, E. J. Weber, E. J. Kelly, et al., “Technology Transfer of the Microphysiological Systems: A Case Study of the Human Proximal Tubule Tissue Chip,” Scientific Reports 8 (2018): 14882.

[5]

F. A. Yousef Yengej, J. Jansen, M. B. Rookmaaker, M. C. Verhaar, and H. Clevers, “Kidney Organoids and Tubuloids,” Cells 9 (2020): 1326.

[6]

F. Schutgens, M. B. Rookmaaker, T. Margaritis, et al., “Tubuloids Derived from human Adult Kidney and Urine for Personalized Disease Modeling,” Nature Biotechnology 37 (2019): 303.

[7]

L. Grassi, R. Alfonsi, F. Francescangeli, et al., “Organoids as a New Model for Improving Regenerative Medicine and Cancer Personalized Therapy in Renal Diseases,” Cell Death & Disease 10 (2019): 201.

[8]

J. O. Aceves, S. Heja, K. Kobayashi, et al., “3D proximal Tubule-on-Chip Model Derived from Kidney Organoids with Improved Drug Uptake,” Scientific Reports 12 (2022): 14997.

[9]

C. Wiraja, Y. Mori, T. Ichimura, J. Hwang, C. Xu, and J. V. Bonventre, “Nephrotoxicity Assessment with Human Kidney Tubuloids Using Spherical Nucleic Acid-Based mRNA Nanoflares,” Nano Letters 21 (2021): 5850.

[10]

J. L. Digby, T. Vanichapol, A. Przepiorski, A. J. Davidson, and V. Sander, “Evaluation of Cisplatin-Induced Injury in Human Kidney Organoids,” American Journal of Physiology Renal Physiology 318 (2020): F971.

[11]

J. Y. Co, M. Margalef-Catala, X. Li, et al., “Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions,” Cell Reports 26 (2019): 2509.

[12]

M. C. Chiu, S. Zhang, C. Li, et al., “Apical-Out Human Airway Organoids Modeling SARS-CoV-2 Infection,” Viruses 15 (2023): 1166.

[13]

G. Stroulios, T. Brown, G. Moreni, et al., “Apical-out Airway Organoids as a Platform for Studying Viral Infections and Screening for Antiviral Drugs,” Scientific Reports 12 (2022): 7673.

[14]

P. Wijesekara, P. Yadav, L. A. Perkins, et al., “Engineering Rotating Apical-Out Airway Organoid for Assessing respiratory Cilia Motility,” iScience 25 (2022): 104730.

[15]

S. S. Joo, B. H. Gu, Y. J. Park, et al., “Porcine Intestinal Apical-Out Organoid Model for Gut Function Study,” Animals 12 (2022): 372.

[16]

Y. Li, N. Yang, J. Chen, et al., “Next-Generation Porcine Intestinal Organoids: An Apical-Out Organoid Model for Swine Enteric Virus Infection and Immune Response Investigations,” Journal of Virology 94 (2020): e01006.

[17]

G. Stroulios, M. Stahl, F. Elstone, et al., “Culture Methods to Study Apical-Specific Interactions using Intestinal Organoid Models,” Journal of Visualized Experiments: JoVE 169 (2021): e62330.

[18]

E. Parigoris, J.-H. Lee, A. Y. Liu, X. Zhao, and S. Takayama, “Extended Longevity Geometrically-Inverted Proximal Tubule Organoids,” Biomaterials 290 (2022): 121828.

[19]

Y. H. Jung, K. Park, M. Kim, et al., “Development of an Extracellular Matrix Plate for Drug Screening Using Patient-Derived Tumor Organoids,” Biochip Journal 17 (2023): 284.

[20]

Y. H. Jung, D.-H. Choi, K. Park, et al., “Drug Screening by Uniform Patient Derived Colorectal Cancer Hydro-Organoids,” Biomaterials 276 (2021): 121004.

[21]

K. E. Boonekamp, K. Kretzschmar, D. J. Wiener, et al., “Long-Term Expansion and Differentiation of Adult Murine Epidermal Stem Cells in 3D Organoid Cultures,” PNAS 116 (2019): 14630.

[22]

H. Döpper, J. Menges, M. Bozet, et al., “Differentiation Protocol for 3D Retinal Organoids, Immunostaining and Signal Quantitation,” Current Protocols in Stem Cell Biology 55 (2020): e120.

[23]

J.-H. Lee, H. Shin, M. R. Shaker, et al., “Production of human Spinal-Cord Organoids Recapitulating Neural-Tube Morphogenesis,” Nature Biomedical Engineering 6 (2022): 435.

[24]

S. Logan, T. Arzua, Y. Yan, et al., “Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles,” Cells 9 (2020): 1301.

[25]

S. van Dinteren, C. Araya-Cloutier, E. Robaczewska, et al., “Switching the Polarity of Mouse Enteroids Affects the Epithelial Interplay with Prenylated Phenolics from Licorice (Glycyrrhiza) Roots,” Food & Function 15 (2024): 1852.

[26]

S. Han, S. Kim, Z. Chen, et al., “3D Bioprinted Vascularized Tumour for Drug Testing,” International Journal of Molecular Sciences 21 (2020): 2993.

[27]

P. Kakni, C. López-Iglesias, R. Truckenmüller, P. Habibović, and S. Giselbrecht, “Reversing Epithelial Polarity in Pluripotent Stem Cell-Derived Intestinal Organoids,” Frontiers in Bioengineering and Biotechnology 10 (2022): 879024.

[28]

K. Onuma, Y. Sato, H. Okuyama, et al., “Aberrant Activation of Rho/ROCK Signaling in Impaired Polarity Switching of Colorectal Micropapillary Carcinoma,” Journal of Pathology 255 (2021): 84.

[29]

G. F. Le Bras, K. J. Taubenslag, and C. D. Andl, “The Regulation of Cell-Cell Adhesion during Epithelial-Mesenchymal Transition, Motility and Tumor Progression,” Cell Adhesion & Migration 6 (2012): 365.

[30]

Y. Kimura, H. Shiozaki, M. Hirao, et al., “Expression of Occludin, Tight-Junction-Associated Protein, in Human Digestive Tract,” American Journal of Pathology 151 (1997): 45-54.

[31]

S. E. Vidal Yucha, D. Quackenbush, T. Chu, et al., “3D, human Renal Proximal Tubule (RPTEC-TERT1) Organoids ‘Tubuloids’ for Translatable Evaluation of Nephrotoxins in High-Throughput,” PLoS ONE 17 (2022): e0277937.

[32]

P. L. Jorgensen, K. O. Håkansson, and S. J. Karlish, “Structure and Mechanism of Na,K-ATPase: Functional Sites and Their Interactions,” Annual Review of Physiology 65 (2003): 817.

[33]

C. Ghezzi, D. D. Loo, and E. M. Wright, “Physiology of Renal Glucose Handling via SGLT1, SGLT2 and GLUT2,” Diabetologia 61 (2018): 2087.

[34]

V. Vallon, K. A. Platt, R. Cunard, et al., “SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule,” Journal of the American Society of Nephrology 22 (2011): 104.

[35]

Y. Yoshimura, Y. Muto, N. Ledru, et al., “A Single-Cell Multiomic Analysis of Kidney Organoid Differentiation,” PNAS 120 (2023): e2219699120.

[36]

N. A. Mack and M. Georgiou, “The Interdependence of the Rho GTPases and Apicobasal Cell Polarity,” Small GTPases 5 (2014): e973768.

[37]

E. H. Kromann, A. P. Cearra, and J. F. Neves, “Organoids as a Tool to Study Homeostatic and Pathological Immune-Epithelial Interactions in the Gut,” Clinical and Experimental Immunology 218 (2024): 28-39, https://doi.org/10.1093/cei/uxad118.

[38]

M. M. Korsós, T. Bellák, E. Becskeházi, et al., “Mouse Organoid Culture Is a Suitable Model to Study Esophageal Ion Transport Mechanisms,” American Journal of Physiology Cell Physiology 321 (2021): C798.

[39]

W. Wang and D. L. Brautigan, “Phosphatase inhibitor 2 promotes acetylation of tubulin in the primary cilium of human retinal epithelial cells,” BMC Cell Biology [Electronic Resource] 9 (2008): 1.

[40]

L. B. Pedersen, J. M. Schroder, P. Satir, and S. T. Christensen, “The ciliary cytoskeleton,” Comprehensive Physiology 2 (2012): 779.

[41]

J. Rostgaard and L. Thuneberg, “Electron Microscopical Observations on the Brush Border of Proximal Tubule Cells of Mammalian Kidney,” Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie 132 (1972): 473.

[42]

W. L. Rice, A. N. Van Hoek, T. G. Păunescu, et al., “High Resolution Helium Ion Scanning Microscopy of the Rat Kidney,” PLoS One 8 (2013): e57051.

[43]

K.-J. Jang, A. P. Mehr, G. A. Hamilton, et al., “Human Kidney Proximal Tubule-on-a-Chip for Drug Transport and Nephrotoxicity Assessment,” Integrative Biology 5 (2013): 1119.

[44]

K. A. Homan, N. Gupta, K. T. Kroll, et al., “Flow-Enhanced Vascularization and Maturation of Kidney Organoids in Vitro,” Nature Methods 16 (2019): 255.

[45]

Y. Bai, C. Wei, P. Li, et al., “Primary Cilium in Kidney Development, Function and Disease,” Frontiers in Endocrinology 13 (2022): 952055.

[46]

M. Gekle, S. Mildenberger, R. Freudinger, and S. Silbernagl, “Functional Characterization of Albumin Binding to the Apical Membrane of OK Cells,” American Journal of Physiology Renal Physiology 271 (1996): F286.

[47]

X. Y. Zhai, R. Nielsen, H. Birn, et al., “Cubilin- and Megalin-Mediated Uptake of Albumin in Cultured Proximal Tubule Cells of Opossum Kidney,” Kidney International 58 (2000): 1523.

[48]

T. Suzuki, H. Yamaguchi, J. Ogura, M. Kobayashi, T. Yamada, and K. Iseki, “Megalin Contributes to Kidney Accumulation and Nephrotoxicity of Colistin,” Antimicrobial Agents and Chemotherapy 57 (2013): 6319.

[49]

D. M. Moss, M. Neary, and A. Owen, “The Role of Drug Transporters in the Kidney: Lessons from Tenofovir,” Frontiers in Pharmacology 5 (2014): 118145.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/