Simultaneous achieving color-tuning long persistent luminescence and phosphorescent quantum yield of 81.05% in 2D organic metal halide perovskite

Zheng Wang , Chen-Qi Li , Jun-Ting Mo , Mei Pan

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e696

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e696 DOI: 10.1002/agt2.696
RESEARCH ARTICLE

Simultaneous achieving color-tuning long persistent luminescence and phosphorescent quantum yield of 81.05% in 2D organic metal halide perovskite

Author information +
History +
PDF

Abstract

Ionically bonded organic metal halide perovskite-like luminescent materials, which incorporate organic cations and metal halides, have emerged as a versatile multicomponent material system. However, these materials still face challenges in terms of low phosphorescence quantum yields and limited long persistent luminescence (LPL) colors. Herein, we present the design and synthesis of an intraligand chargetransfer organic-based metal halide perovskite-like material, in which organic cations form a compact supramolecular hydrogen-bonded organic framework (HOF) structure, exhibiting crystallization-induced phosphorescence emission of ligand, while metal halides form a unique two-dimensional (2D) structure that displays intrinsic self-trapped excitons (STE) emission under the radiation of UV light. Notably, the metal halide hybrid is found to exhibit enhanced phosphorescent photoluminescence efficiency of up to 81.05% and tunable LPL from cyan to orange compared to the pristine organic phosphor, due to the structural distortion and scaffolding effects of 2D metal halides as well as a well-packed HOF structure. Optical characterizations and theoretical calculations reveal that charge transfer from organic cations and halogen to ligand as well as STE from inorganic layers are responsible for the tunable LPL. Meanwhile, the high-efficiency phosphorescent quantum yield is attributed to stronger hydrogen bond stacking as well as structural distortion of metal halogen bands. Thus, the obtained LPL provides potentials in anti-counterfeiting, security systems, and so on.

Keywords

color-tuning long persistent luminescence / high phosphorescent quantum yield / ligand emission / organic metal halide perovskite / self-trapped exciton emission

Cite this article

Download citation ▾
Zheng Wang, Chen-Qi Li, Jun-Ting Mo, Mei Pan. Simultaneous achieving color-tuning long persistent luminescence and phosphorescent quantum yield of 81.05% in 2D organic metal halide perovskite. Aggregate, 2025, 6(2): e696 DOI:10.1002/agt2.696

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 15589.

[2]

Z. Yang, Z. Mao, X. Zhang, D. Ou, Y. Mu, Y. Zhang, C. Zhao, S. Liu, Z. Chi, J. Xu, Y. C. Wu, P. Y. Lu, A. Lien, M. R. Bryce, Angew. Chem. Int. Ed. 2016, 55, 2181.

[3]

Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205.

[4]

Bolton, D. Lee, J. Jung, J. Kim, Chem. Mater. 2014, 26, 6644.

[5]

M. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. Int. Ed. 2014, 53, 11177.

[6]

R. Gao, D. Yan, Chem. Sci. 2017, 8, 590.

[7]

D. Li, F. Lu, J. Wang, W. Hu, X.-M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 2018, 140, 1916.

[8]

M. S. Kwon, Y. Yu, C. Coburn, A.W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947.

[9]

J. C. Blancon, J. Even, C. C. Stoumpos, M. G. Kanatzidis, A. D. Mohite, Nat. Nanotechnol. 2020, 15, 969.

[10]

H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.

[11]

W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, Science 2015, 347, 522.

[12]

F. P. Garcıade Arquer, A. Armin, P. Meredith, E. H. Sargent, Nat. Rev. Mater. 2017, 2, 16100.

[13]

D. Li, X. Liu, W. Wu, Y. Peng, S. Zhao, L. Li, M. Hong, J. Luo, Angew. Chem. Int. Ed. 2021, 60, 8415.

[14]

M. Li, Z. Xia, Chem. Soc. Rev. 2021, 50, 2626.

[15]

M. D. Smith, H. I. Karunadasa, Acc. Chem. Res. 2018, 51, 619.

[16]

X. Jiang, S. Xia, J. Zhang, D. Ju, Y. Liu, X. Hu, L. Wang, Z. Chen, X. Tao, ChemSusChem 2019, 12, 5228.

[17]

F. Ge, B. H. Li, P. Cheng, G. Li, Z. Ren, J. Xu, X. H. Bu, Angew. Chem. Int. Ed. 2022, 61, e202115024.

[18]

P. Gong, F. Liang, L. Kang, X. Chen, J. Qin, Y. Wu, Z. Lin, Coord. Chem. Rev. 2019, 380, 83.

[19]

X. Han, P. X. Cheng, R. C. Shi, Y. S. Zheng, S. M. Qi, J. L. Xu, X. H. Bu, Mater. Horiz. 2023, 10, 1005.

[20]

J. Xu, X. Li, J. Xiong, C. Yuan, S. Semin, T. Rasing, X. H. Bu, Adv. Mater. 2020, 32, 1806736.

[21]

Y. Wan, Y. Cui, Y. Yang, G. Qian, Chin. Chem. Lett. 2021, 32, 1511.

[22]

D. Fu, J. Xin, Y. He, S. Wu, X. Zhang, X. M. Zhang, J. Luo, Angew. Chem. Int. Ed. 2021, 60, 20021.

[23]

Zhou, H. R. Lin, M. Worku, J. Neu, Y. Zhou, Y. Tian, S. Lee, P. Djurovich, T. Siegrist, B. Ma, J. Am. Chem. Soc. 2018, 140, 13181.

[24]

S. S. Li, P. F. Cheng, H. X. Liu, J. T. Li, S. J. Wang, C. L. Xiao, J. Y. Liu, J. S. Chen, K. F. Wu, Angew. Chem. Int. Ed. 2024, 63, e202319969.

[25]

J. C. Jin, Y. Z. Wang, K. Han, Z. G. Xia, Angew. Chem. Int. Ed. 2024, e202408653.

[26]

X. Yang, D. Yan, Chem. Sci. 2016, 7, 4519.

[27]

Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685.

[28]

Y. H. Lin, S. Y. Liu, D. P. Yan, Research 2023, 6, 0259.

[29]

B. Zhou, D.P. Yan, Matter 2024, 7, 1950.

[30]

C. Xing, B. Zhou, D. P. Yan, W. H. Fang, CCS Chem. 2023, 5, 2866.

[31]

F. Nie, D. P. Yan, Nat. Commun. 2024, 15, 5519.

[32]

T. H. Chen, D. P. Yan, Nat. Commun. 2024, 15, 5281.

[33]

F. Nie, D. P. Yan, Angew. Chem. Int. Ed. 2023, 62, e202302751.

[34]

S. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920.

[35]

T. H. Chen, Y. J. Ma, D. P. Yan, Adv. Funct. Mater. 2023, 33, 2214962.

[36]

M. Chaaban, A. B. Akacha, M. Worku, S. Lee, J. Neu, X. S. Lin, J. S. Raaj VelloreWinfred, C. J. Delzer, J. P. Hayward, M. H. Du, T. Siegrist, B. W. Ma, J. Phys. Chem. Lett. 2021, 12, 8229.

[37]

Z. Wang, J. T. Mo, J. J. Pan, M. Pan, Adv. Funct. Mater. 2023, 33, 2300021.

[38]

B. Zhou, Z. Qi, M. Dai, C. Xing, D. Yan, Angew. Chem. Int. Ed. 2023, 62, e202309913.

[39]

L. J. Xu, A. Plaviak, X. S. Lin, M. Worku, Q. Q. He, M. Chaaban, B. J. Kim, B. W. Ma, Angew. Chem. Int. Ed. 2020, 59, 23067.

[40]

B. Zhou, D. P. Yan, Angew. Chem. Int. Ed. 2019, 58, 15128.

[41]

Z. Wang, C. Y. Zhu, J. T. Mo, X. Y. Xu, J. Ruan, M. Pan, C. Y. Su, Angew. Chem. Int. Ed. 2021, 60, 2526.

[42]

Z. P. Xiong, X. X. Zhang, L. X. Liu, Q. Z. Zhu, Z. N. Wang, H. Feng, Z. S. Qian, Chem. Sci. 2021, 12, 10710.

[43]

M. Li, M. S. Molokeev, J. Zhao, Z. Xia, Adv. Opt. Mater. 2020, 8, 1902114.

[44]

Z. K. Qi, Y. L. Chen, Y. Guo, X. L. Yang, F. Q. Zhang, G. J. Zhou, X. M. Zhang, J. Mater. Chem. C 2021, 9, 88.

[45]

L. Mao, P. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even, R. D. Schaller, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 13078.

[46]

X. B. Han, C. Q. Jing, H. Y. Zu, W. Zhang, J. Am. Chem. Soc. 2022, 144, 18595.

[47]

H. Gao, Z. Lu, X. Zhao, K. Zhang, X. Zhu, R. Cheng, S.-L. Li, Z. Qi, X.-M. Zhang, J. Mater. Chem. C 2023, 11, 9023.

[48]

S. Wang, Z. Liang, X. Song, X. Huang, L. Liu, X. Jiang, Z. Lin, H. Liu, Inorg. Chem. 2023, 62, 21451.

[49]

S. Fang, A. Du, B. Zhou, Z. Liu, J. Nie, Y. Wang, H. Zhong, H. Hu, H. Li, Y. Shi, Adv. Opt. Mater. 2023, 11, 2202952.

[50]

H. Peng, Y. Tian, X. Wang, T. Dong, Z. Yu, Y. Xiao, Z. Zhang, J. Wang, B. Zou, J. Phys. Chem. C 2022, 126, 8545.

[51]

Q. Q. Huang, S. M. Yang, S.W. Feng, H. Y. Zhen, Z. H. Lin, Q. D. Lin, J. Phys. Chem. Lett. 2021, 12, 1040.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

217

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/