Self-assembled small molecule spherulites under mild conditions: High solid-state quantum yield and unique interconnected structural and fluorescent colors

Cheng Li , Oriol Arteaga , Florian Ehlers , Marcel Krüsmann , Bianjing Sun , Jade Poisson , Matthias Karg , Philipp Vana , Kai Zhang

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e695

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e695 DOI: 10.1002/agt2.695
RESEARCH ARTICLE

Self-assembled small molecule spherulites under mild conditions: High solid-state quantum yield and unique interconnected structural and fluorescent colors

Author information +
History +
PDF

Abstract

Spherulites are generally fabricated from cooling polymer melts, while their fabrication under mild conditions or from small molecule materials has been barely reported. Besides, organic luminescent molecules typically suffer from low quantum yields in a solid state. Moreover, preparing material with interconnected and simultaneous changes in structural and fluorescent colors is challenging. Here, we present the first solution-derived spherulites with unique interconnected structural and fluorescent colors, self-assembled from stearoylated monosaccharides at room temperature. D-galactose stearoyl ester self-assembled into banded spherulites, containing twisted nanoplates and interconnected simultaneously changing structural and fluorescent colors. In comparison, D-mannose stearoyl ester can only form nonbanded spherulites, which contain oriented nanoplates and uniform structural and fluorescent colors. Such materials revealed a novel negative correlation between fluorescence and birefringence, termed alignment-promoted quenching propensity. Remarkably, the solid-state fluorescence quantum yields of galactose and mannosederived spherulites are as high as 49 ± 2% and 51 ± 2% respectively, approximately ten times higher than those of unmodified monosaccharides. These quantum yield values are among the highest of reported organic nonconventional fluorophores and even comparable to those of conventional aromatic chromophores. Moreover, these spherulites manifested an unexpected excitation-dependent multicolor photoluminescence with a broad-spectrum emission (410–620 nm). They show multiple peaks in the photoluminescent emission spectra and broad fluorescence lifetime distributions, which should be attributed to the clustering of a variety of oxygen-containing functional groups as emissive moieties.

Keywords

nonconventional luminophores / quantum yield / self-assembly / spherulite / structural color

Cite this article

Download citation ▾
Cheng Li, Oriol Arteaga, Florian Ehlers, Marcel Krüsmann, Bianjing Sun, Jade Poisson, Matthias Karg, Philipp Vana, Kai Zhang. Self-assembled small molecule spherulites under mild conditions: High solid-state quantum yield and unique interconnected structural and fluorescent colors. Aggregate, 2025, 6(2): e695 DOI:10.1002/agt2.695

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297.

[2]

Z. Zhang, Z. Chen, L. Shang, Y. Zhao, Adv. Mater. Technol. 2021, 6, 2100296.

[3]

X. Wang, D. Xu, B. Jaquet, Y. Yang, J. Wang, H. Huang, Y. Chen, C. Gerhard, K. Zhang, ACS Nano 2020, 14, 16832.

[4]

S. Tang, T. Yang, Z. Zhao, T. Zhu, Q. Zhang, W. Hou, W. Z. Yuan, Chem. Soc. Rev. 2021, 50, 12616.

[5]

Y. Zhang, J. Pan, C. Zhang, H. Wang, G. Zhang, L. Kong, Y. Tian, J. Yang, Dyes Pigm. 2015, 123, 257.

[6]

Q. Zhou, T. Yang, Z. Zhong, F. Kausar, Z. Wang, Y. Zhang, W. Z. Yuan, Chem. Sci. 2020, 11, 2926.

[7]

J. Poisson, K. Zhang, Acc. Mater. Res. 2024, 5, 920.

[8]

J. Wu, Y. Wang, P. Jiang, X. Wang, X. Jia, F. Zhou, Nat. Commun. 2024, 15, 3482.

[9]

Y. Feng, T. Bai, H. Yan, F. Ding, L. Bai, W. Feng, Macromolecules 2019, 52, 3075.

[10]

S. Bera, S. Mondal, S. Rencus-Lazar, E. Gazit, Acc. Chem. Res. 2018, 51, 2187.

[11]

K. Tao, P. Makam, R. Aizen, E. Gazit, Science 2017, 358, eaam9756.

[12]

J. Kopecek, J. Yang, Angew. Chem. Int. Ed. 2012, 51, 7396.

[13]

J. Kopeček, J. Yang, Angew. Chem. 2012, 124, 7512.

[14]

C. Li, Q. Li, Y. V. Kaneti, D. Hou, Y. Yamauchi, Y. Mai, Chem. Soc. Rev. 2020, 49, 4681.

[15]

V. Polshettiwar, B. Baruwati, R. S. Varma, ACS Nano 2009, 3, 728.

[16]

A. G. Shtukenberg, Y. O. Punin, E. Gunn, B. Kahr, Chem. Rev. 2012, 112, 1805.

[17]

A. G. Shtukenberg, Y. O. Punin, A. Gujral, B. Kahr, Angew. Chem. Int. Ed. 2014, 53, 672.

[18]

A. G. Shtukenberg, Y. O. Punin, A. Gujral, B. Kahr, Angew. Chem. 2014, 126, 686.

[19]

L. Li, C.-M. Chan, K. L. Yeung, J.-X. Li, K.-M. Ng, Y. Lei, Macromolecules 2001, 34, 316.

[20]

N. N. Geveling, S. B. Maslenkov, Met. Sci. Heat Treat. 1976, 18, 755.

[21]

A. D. Fowler, B. Berger, M. Shore, M. I. Jones, J. Ropchan, Precambrian Res. 2002, 115, 311.

[22]

K. He, H. R. Daniels, A. Brown, R. Brydson, D. V. Edmonds, Acta. Mater. 2007, 55, 2919.

[23]

L.-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminksy, B. Kahr, Proc. Natl. Acad. Sci. USA 2003, 100, 15294.

[24]

B. Crist, J. M. Schultz, Prog. Polym. Sci. 2016, 56, 1.

[25]

Q. Song, Y. Li, Z. Jin, H. Liu, M. N. Creyer, W. Yim, Y. Huang, X. Hu, T. He, Y. Li, S. O. Kelley, L. Shi, J. Zhou, J. V. Jokerst, J. Am. Chem. Soc. 2023, 145, 25664.

[26]

X. Cui, A. L. Rohl, A. Shtukenberg, B. Kahr, J. Am. Chem. Soc. 2013, 135, 3395.

[27]

M. Rosenthal, G. Portale, M. Burghammer, G. Bar, E. T. Samulski, D. A. Ivanov, Macromolecules 2012, 45, 7454.

[28]

A. P. Demchenko, Luminescence 2002, 17, 19.

[29]

O. Berger, L. Adler-Abramovich, M. Levy-Sakin, A. Grunwald, Y. Liebes-Peer, M. Bachar, L. Buzhansky, E. Mossou, V. T. Forsyth, T. Schwartz, Y. Ebenstein, F. Frolow, L. J. Shimon, F. Patolsky, E. Gazit, Nat. Nanotechnol. 2015, 10, 353.

[30]

A. Chattopadhyay, S. Haldar, Acc. Chem. Res. 2014, 47, 12.

[31]

Z. Hu, C. J. Margulis, Acc. Chem. Res. 2007, 40, 1097.

[32]

W. Su, J. Yin, R. Wang, M. Shi, P. Liu, Z. Qin, R. Xing, T. Jiao, Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125993.

[33]

S. Li, H. Wang, H. Lu, X. Liang, H. Wang, M. Zhang, K. Xia, Z. Yin, Y. Zhang, X. Zhang, Y. Zhang, Small 2021, 17, 2103623.

[34]

Q. Zhou, J. Cui, T. Yang, C. Hu, Z. Zhong, Z. Sun, Y. Gong, S. Pei, Y. Zhang, Sci. China: Chem. 2020, 63, 833.

[35]

X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B. Z. Tang, Y. Zhang, W. Z. Yuan, Biomacromolecules 2018, 19, 2014.

[36]

S. Zheng, T. Hu, X. Bin, Y. Wang, Y. Yi, Y. Zhang, W. Z. Yuan, Chem. Phys. Chem. 2020, 21, 36.

[37]

Q. Zhou, B. Cao, C. Zhu, S. Xu, Y. Gong, W. Z. Yuan, Y. Zhang, Small 2016, 12, 6586.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/