Methyl group tuning crystalline covalent triazine frameworks towards organogel

Lingqi Huang , Xinfang Cui , Fei Zhang , Wenqing He , Jingfei Li , Zhihang An , Ziyang Chang , Shengwei Xiao , Wenrui Zheng , Shangru Zhai , Heyang Liu , Wei Feng

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e687

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e687 DOI: 10.1002/agt2.687
RESEARCH ARTICLE

Methyl group tuning crystalline covalent triazine frameworks towards organogel

Author information +
History +
PDF

Abstract

Covalent triazine frameworks (CTFs), known as highly conjugated layered solids, have garnered significant interest due to their distinctive structural and property characteristics. However, the exfoliation of CTF solids towards nanoCTFs in high yields is currently inadequate and inefficient, limiting their utility. This study presents the design and synthesis of CTFs containing non-crystalline regions and their random stacks using a methyl-containing nitrile monomer. Incorporating in-plane methyl groups enhances the polarity of CTFs and disrupts layered interactions, facilitating smooth exfoliation under competing solvent-layer interactions and producing nanocolloids in dilute dispersions. Furthermore, CTFs can rapidly disperse in DMF at a high concentration, enabling the formation of CTF organogel for the first time. Additionally, the designed CTF nanocolloids allow for the first simple physical modification of carbon nanotubes. The assembly, associated with conjugated features, enables the fabrication of CTF/carbon nanotube organogel.

Keywords

covalent triazine frameworks / dispersions / methyl groups / nanocolloids / organogels

Cite this article

Download citation ▾
Lingqi Huang, Xinfang Cui, Fei Zhang, Wenqing He, Jingfei Li, Zhihang An, Ziyang Chang, Shengwei Xiao, Wenrui Zheng, Shangru Zhai, Heyang Liu, Wei Feng. Methyl group tuning crystalline covalent triazine frameworks towards organogel. Aggregate, 2025, 6(2): e687 DOI:10.1002/agt2.687

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Yang, H. Chen, S. Wang, W. Guo, T. Wang, X. Suo, D. Jiang, X. Zhu, I. Popovs, S. Dai, J. Am. Chem. Soc. 2020, 142, 6856.

[2]

L. Huang, Z. Luo, Y.-N. Zhou, Q. Zhang, H. Zhu, S. Zhu, Mater. Today Chem. 2021, 20, 100475.

[3]

N. Du, G. P. Robertson, I. Pinnau, M. D. Guiver, Macromolecules 2014, 47, 2875.

[4]

S. Pourebrahimi, M. Pirooz, M. Kazemeini, L. Vafajoo, J. Porous Mater. 2024, 31, 643.

[5]

X. Liu, J. Du, Y. Ye, Y. Liu, S. Wang, X. Meng, X. Song, Z. Liang, W. Yan, Chinese J. Chem. Eng. 2022, 42, 64.

[6]

W. Huang, Q. He, Y. Hu, Y. Li, Angew. Chem. Int. Ed. 2019, 58, 8676.

[7]

R. Luo, W. Xu, M. Chen, X. Liu, Y. Fang, H. Ji, ChemSusChem 2020, 13, 6509.

[8]

C. Ayed, W. Huang, K. A. I. Zhang, Front. Chem. Sci. Eng. 2020, 14, 397.

[9]

W.-J. Wang, K. Chen, Chin. Chem. Lett. 2024.

[10]

T. Zhou, Y. Zhao, J. W. Choi, A. Coskun, Angew. Chem. Int. Ed. 2019, 58, 16795.

[11]

P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450.

[12]

M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 2202.

[13]

C. Krishnaraj, H. S. Jena, K. Leus, P. Van Der Voort, Green Chem. 2020, 22, 1038.

[14]

M. Liu, K. Jiang, X. Ding, S. Wang, C. Zhang, J. Liu, Z. Zhan, G. Cheng, B. Li, H. Chen, S. Jin, B. Tan, Adv. Mater. 2019, 31, 1807865.

[15]

N. Wang, G. Cheng, L. Guo, B. Tan, S. Jin, Adv. Funct. Mater. 2019, 29, 1904781.

[16]

E. Troschke, S. Grätz, T. Lübken, L. Borchardt, Angew. Chem. Int. Ed. 2017, 56, 6859.

[17]

L. Liao, M. Li, Y. Yin, J. Chen, Q. Zhong, R. Du, S. Liu, Y. He, W. Fu, F. Zeng, ACS Omega 2023, 8, 4527.

[18]

S. Yano, K. Sato, J. Suzuki, H. Imai, Y. Oaki, Commun. Chem. 2019, 2, 97.

[19]

T. Sun, Y. Liang, Y. Xu, Angew. Chem. Int. Ed. 2022, 61, e202113926.

[20]

Y. Zhu, M. Qiao, W. Peng, Y. Li, G. Zhang, F. Zhang, Y. Li, X. Fan, J. Mater. Chem. A 2017, 5, 9272.

[21]

Y. Zhu, X. Chen, Y. Cao, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, Chem. Commun. 2019, 55, 1434.

[22]

J. Liu, W. Zan, K. Li, Y. Yang, F. Bu, Y. Xu, J. Am. Chem. Soc. 2017, 139, 11666.

[23]

M. A. Khayum, S. Kandambeth, S. Mitra, S. B. Nair, A. Das, S. S. Nagane, R. Mukherjee, R. Banerjee, Angew. Chem. Int. Ed. 2016, 55, 15604.

[24]

J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P. M. Ajayan, Nano Lett. 2015, 15, 5449.

[25]

J. Liu, P. Lyu, Y. Zhang, P. Nachtigall, Y. Xu, Adv. Mater. 2018, 30, 1705401.

[26]

Z. Peng, B. A. Haag, P. Knochel, J. Org. Chem. 2014, 79, 7012.

[27]

M. I. Amer, B. L. Booth, G. F. M. Noori, M. Fernanda, J. R. P. Proença, J. Chem. Soc., Perkin Trans. 1 1983, 1983, 1075.

[28]

K. Cui, X. Tang, X. Xu, M. Kou, P. Lyu, Y. Xu, Angew. Chem. Int. Ed. 2024, 63, e202317664.

[29]

G. Jiang, W. Zou, Z. Ou, L. Zhang, W. Zhang, X. Wang, H. Song, Z. Cui, Z. Liang, L. Du, Angew. Chem. Int. Ed. 2022, 61, e202208086.

[30]

Q. An, H. Wang, G. Zhao, S. Wang, L. Xu, H. Wang, Y. Fu, H. Guo, Energy Environ. Mater. 2023, 6, e12345.

[31]

X. Zhu, C. Tian, S. M. Mahurin, S.-H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H. Liu, S. Dai, J. Am. Chem. Soc. 2012, 134, 10478.

[32]

X. Hu, Z. Zhan, J. Zhang, I. Hussain, B. Tan, Nat. Commun. 2021, 12, 6596.

[33]

R. Gomes, P. Bhanja, A. Bhaumik, Chem. Commun. 2015, 51, 10050.

[34]

C. Yi, T. Yuan, H. Xiao, H. Ren, H. Zhai, Colloids Surf. A: Physicochem. Eng. Asp. 2023, 666, 131245.

[35]

Y. Deng, Q. Guan, L. He, J. Li, L. Peng, J. Zhang, Carbohyd. Polym. 2021, 263, 117981.

[36]

J. E. McIsaac Jr., R. E. Ball, E. J. Behrman, J. Org. Chem. 1971, 36, 3048.

[37]

X. Gao, J. Chorover, Environ. Chem. 2012, 9, 148.

[38]

B. Lesiak, L. Kövér, J. Tóth, J. Zemek, P. Jiricek, A. Kromka, N. Rangam, Appl. Surf. Sci. 2018, 452, 223.

[39]

E.T. Kang, K.G. Neoh, K.L. Tan, Prog. Polym. Sci. 1998, 23, 277.

[40]

L.-L. Zheng, X. Li, D. Wang, Y. Chen, Q. Fu, D.-S. Wu, X.-Z. Liu, J.-P. Zou, Nanoscale 2024, 16, 6010.

[41]

S. Li, L. Guo, Y. Xia, D. Chen, X. Jiao, Sep. Purif. Technol. 2023, 323, 124385.

[42]

L. Huang, Z. Gu, J. Gu, F. Zhang, J. Zhuang, Q. Ma, T. Zhang, J. Li, H. Liu, W. Feng, Green Chem. 2024, 26, 10196

[43]

C. Yin, Z. Zhang, J. Zhou, Y. Wang, ACS Appl. Mater. Interfaces 2020, 12, 18944.

[44]

J. Cui, Z. Shen, X. Wan, Chem. Mater. 2024, 36, 2799.

[45]

B. Lotz, S. Z.D. Cheng, Polymers 2005, 46, 577.

[46]

L. Huang, Z. Ye, R. Berry, ACS Sustainable Chem. Eng. 2016, 4, 4937.

[47]

F. Hu, Z. Hu, Y. Liu, K. C. Tam, R. Liang, Q. Xie, Z. Fan, C. Pan, J. Tang, G. Yu, W. Zhang, J. Am. Chem. Soc. 2023, 145, 27718.

[48]

Z. Gao, Y. Jian, S. Yang, Q. Xie, C. J. R. Mcfadzean, B. Wei, J. Tang, J. Yuan, C. Pan, G. Yu, Angew. Chem. Int. Ed. 2023, 62, e202304173.

[49]

M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2007, 19, 661.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/