Au···I coinage bonds: Boosting photoluminescence efficiency and solid-state molecular motion

Xueqian Zhao , Junyi Gong , Zikang Li , Herman H. Y. Sung , Ian D. Williams , Jacky W. Y. Lam , Zheng Zhao , Ben Zhong Tang , Wai-Yeung Wong , Linli Xu

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e686

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e686 DOI: 10.1002/agt2.686
RESEARCH ARTICLE

Au···I coinage bonds: Boosting photoluminescence efficiency and solid-state molecular motion

Author information +
History +
PDF

Abstract

Coinage bonds, a type of noncovalent interaction, occur between group 11 elements (Au, Ag, and Cu) with electron donor groups. Despite theoretical validation, empirical evidence remains limited. In this study, an aggregation-induced emission (AIE)-active Au(I) complex, ITCPAu, which exhibits Au···I coinage bonds, was revealed based on the single-crystal X-ray diffraction and theoretical calculations. Further examination of the luminescence properties of the ITCPAu revealed multiswitchable behavior, including mechanochromism and thermochromism. Nearly pure white-light emission was achieved with Commission Internationale de L’Eclairage (CIE) 1931 chromaticity coordinates of (0.30, 0.31) by grinding the green-emissive ITCPAu monomer crystals. Moreover, visualization and manipulation of solid-state molecular motion (SSMM) in the yellow-emissive ITCPAu dimer crystals, driven by the robust Au···I coinage bonds, were revealed through a combination of crystal engineering and luminescent properties. Furthermore, to support the robust Au···I coinage bonds, a versatile carrier for small solvent molecules in crystal lattices was developed for uptake and release. Our findings provide experimental and theoretical evidence for Au···I coinage bonds, highlighting their ability to boost photoluminescence quantum yield (PLQY) and trigger SSMM, emphasizing their potential in developing smart materials with stimuli-responsive properties.

Keywords

Au···I coinage bond / solid-state molecular motion / stimuli-responsive material / white-light emission

Cite this article

Download citation ▾
Xueqian Zhao, Junyi Gong, Zikang Li, Herman H. Y. Sung, Ian D. Williams, Jacky W. Y. Lam, Zheng Zhao, Ben Zhong Tang, Wai-Yeung Wong, Linli Xu. Au···I coinage bonds: Boosting photoluminescence efficiency and solid-state molecular motion. Aggregate, 2025, 6(2): e686 DOI:10.1002/agt2.686

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. He, Y. Jiang, T. Wang, Z. Liu, M. Wang, L. Pan, X. Chen, Aggregate 2022, 3, e57.

[2]

L. L. M Zhang, W.-Y. Wong, Aggregate 2023, 4, e266.

[3]

Y. J. Wang, X. Y. Shi, P. Xing, S. Q. Zang, JACS Au 2023, 3, 565.

[4]

Q. Zheng, S. Borsley, G. S. Nichol, F. Duarte, S. L. Cockroft, Angew. Chem. Int. Ed. 2019, 58, 12617.

[5]

N. Goswami, Q. Yao, Z. Luo, J. Li, T. Chen, J. Xie, J. Phys. Chem. Lett. 2016, 7, 962.

[6]

H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2012, 41, 370.

[7]

Z. Han, X. Zhao, P. Peng, S. Li, C. Zhang, M. Cao, K. Li, Z.-Y. Wang, S.-Q. Zang, Nano Res. 2020, 13, 3248.

[8]

K. T. Mahmudov, A. V. Gurbanov, V. A. Aliyeva, M. F. C. Guedes da Silva, G. Resnati, A. J. L. Pombeiro, Coord. Chem. Rev. 2022, 464, 214556.

[9]

M. K. Pandey, H. S. Kunchur, D. Mondal, L. Radhakrishna, B. S. Kote, M. S. Balakrishna, Inorg. Chem. 2020, 59, 3642.

[10]

M. L. N Pina, A. Frontera, A. Bauza, J. Phys. Chem. Lett. 2020, 11, 8259.

[11]

H. Schmidbaur, Angew. Chem. Int. Ed. 2019, 58, 5806.

[12]

A. Daolio, A. Pizzi, G. Terraneo, M. Ursini, A. Frontera, G. Resnati, Angew. Chem. Int. Ed. 2021, 60, 14385.

[13]

A. S. Mikherdov, M. Jin, H. Ito, Chem. Sci. 2023, 14, 4485.

[14]

A. S. Novikov, Inorg. Chim. Acta 2018, 471, 126.

[15]

A. Avramopoulos, M. G. Papadopoulos, A. J. Sadlej, Chem. Phys. Lett. 2003, 370, 765.

[16]

J. Yan, Y. Zeng, L. Meng, X. Li, X. Zhang, Phys. Chem. Chem. Phys. 2023, 25, 29155.

[17]

S. Yang, P. A. Yin, L. Li, Q. Peng, X. Gu, G. Gao, J. You, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 10136.

[18]

M. Jin, T. Sumitani, H. Sato, T. Seki, H. Ito, J. Am. Chem. Soc. 2018, 140, 2875.

[19]

H. Ito, M. Muromoto, S. Kurenuma, S. Ishizaka, N. Kitamura, H. Sato, T. Seki, Nat. Commun. 2013, 4, 2009.

[20]

T. Seki, K. Sakurada, M. Muromoto, H. Ito, Chem. Sci. 2015, 6, 1491.

[21]

S. Liu, Y. Cheng, Y. Li, M. Chen, J. W. Y. Lam, B. Z. Tang, ACS Nano 2020, 14, 2090.

[22]

H. Wang, Q. Li, J. Zhang, H. Zhang, Y. Shu, Z. Zhao, W. Jiang, L. Du, D. L. Phillips, J.W. Y. Lam, H. H. Y. Sung, I. D. Williams, R. Lu, B. Z. Tang, J. Am. Chem. Soc. 2021, 143, 9468.

[23]

J. Zhang, B. He, W. Wu, P. Alam, H. Zhang, J. Gong, F. Song, Z. Wang, H. H. Y. Sung, I. D. Williams, Z. Wang, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2020, 142, 14608.

[24]

Z. Zhao, H. Zhang, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 9888.

[25]

Z. Zhao, C. Chen, W. Wu, F. Wang, L. Du, X. Zhang, Y. Xiong, X. He, Y. Cai, R. T. K. Kwok, J. W. Y. Lam, X. Gao, P. Sun, D. L. Phillips, D. Ding, B. Z. Tang, Nat. Commun. 2019, 10, 768.

[26]

H. Ou, S. Dai, R. Liu, D. Ding, Sci. China Chem. 2019, 62, 929.

[27]

P. Alam, N. L. C. Leung, Y. Cheng, H. Zhang, J. Liu, W. Wu, R. T. K. Kwok, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Angew. Chem. Int. Ed. 2019, 58, 4536.

[28]

E. R. T Tiekink, J.-G. Kang, Coord. Chem. Rev. 2009, 253, 1627.

[29]

Y. Y. Liu, X. Zhang, K. Li, Q. C. Peng, Y. J. Qin, H. W. Hou, S. Q. Zang, B. Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 22417.

[30]

M. M. Zhang, K. Li, S. Q. Zang, Adv. Opt. Mater. 2020, 8, 1902152.

[31]

J. Zhang, H. Zhang, J. W. Y. Lam, B. Z. Tang, Chem. Res. Chin. Univ. 2021, 37, 1.

[32]

Y. R. Hristova, B. Kemper, P. Besenius, Tetrahedron 2013, 69, 10525.

[33]

X. Y. Wang, J. Gong, H. Zou, S. H. Liu, J. Zhang, Aggregate 2023, 4, e252.

[34]

X. Zhao, J. Gong, P. Alam, C. Ma, Y. Wang, J. Guo, Z. Zeng, Z. He, H. H. Y. Sung, I. D. Williams, K. S. Wong, S. Chen, J. W. Y. Lam, Z. Zhao, B. Z. Tang, CCS Chem. 2022, 4, 1912.

[35]

J. Zhang, X. Zhao, H. Shen, J. W. Lam, H. Zhang, B. Z. Tang, Adv. Photonics 2022, 4, 014001.

[36]

T. Seki, N. Tokodai, S. Omagari, T. Nakanishi, Y. Hasegawa, T. Iwasa, T. Taketsugu, H. Ito, J. Am. Chem. Soc. 2017, 139, 6514.

[37]

X. Zhao, P. Alam, J. Zhang, S. Lin, Q. Peng, J. Zhang, G. Liang, S. Chen, J. Zhang, H. H. Sung, CCS Chem. 2022, 4, 2570.

[38]

N. Glebko, T. M. Dau, A. S. Melnikov, E. V. Grachova, I. V. Solovyev, A. Belyaev, A. J. Karttunen, I. O. Koshevoy, Chem. Eur. J. 2018, 24, 3021.

[39]

Z. Wu, Y. Du, J. Liu, Q. Yao, T. Chen, Y. Cao, H. Zhang, J. Xie, Angew. Chem. Int. Ed. 2019, 58, 8139.

[40]

A. Terron, J. Buils, T. J. Mooibroek, M. Barcelo-Oliver, A. Garcia-Raso, J. J. Fiol, A. Frontera, Chem. Commun. 2020, 56, 3524.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/