Finely tunable NIR-II organic scaffolds for fluorescence/photoacoustic duplex imaging–guided noninvasive photothermal therapy of glioblastoma

Yufei Song , Xingyu Tong , Yujie Han , Qi-Wei Zhang

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e680

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e680 DOI: 10.1002/agt2.680
RESEARCH ARTICLE

Finely tunable NIR-II organic scaffolds for fluorescence/photoacoustic duplex imaging–guided noninvasive photothermal therapy of glioblastoma

Author information +
History +
PDF

Abstract

Organic agents possessing NIR-II and photoacoustic duplex imaging capabilities, coupled with high-efficiency photothermal conversion, offer significant potential for noninvasive and precise phototheranostics of glioblastoma, which is further augmented when these agents can concurrently exhibit tumor targeting and blood–brain barrier (BBB) permeability. This study reports a series of finely tunable NIRII molecular luminophores based on the aza-BODIPY scaffold, featuring unique twisted and rotatable structures. They are further constructed to folate-decorated polymeric nanoparticles, exhibiting remarkable NIR-II/photoacoustic imaging performance and superior photothermal conversion efficiency (49.7%). Folate modification enables tumor targeting and BBB permeability through receptor-mediated transcytosis, allowing for precise and efficient phototherapy in 4T1-/glioblastomabearing mice after a single intravenous injection and irradiation. This study presents a rational molecular engineering approach and a versatile structural scaffold for designing NIR-II emitters with tailored photophysical properties and desirable phototherapeutic efficacy, thereby offering novel perspectives on the development of advanced depth imaging probes and brain tumor therapeutics.

Keywords

fluorescence imaging / glioblastoma / NIR-II / photoacoustic imaging / photothermal therapy

Cite this article

Download citation ▾
Yufei Song, Xingyu Tong, Yujie Han, Qi-Wei Zhang. Finely tunable NIR-II organic scaffolds for fluorescence/photoacoustic duplex imaging–guided noninvasive photothermal therapy of glioblastoma. Aggregate, 2025, 6(2): e680 DOI:10.1002/agt2.680

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Vasan, J. Baselga, D. M. Hyman, Nature 2019, 575, 299.

[2]

K. R. Taylor, T. Barron, A. Hui, A. Spitzer, B. Yalçin, A. E. Ivec, A. C. Geraghty, G. G. Hartmann, M. Arzt, S. M. Gillespie, Y. S. Kim, S. Maleki Jahan, H. Zhang, K. Shamardani, M. Su, L. Ni, P. P. Du, P. J. Woo, A. Silva-Torres, H. S. Venkatesh, R. Mancusi, A. Ponnuswami, S. Mulinyawe, M. B. Keough, I. Chau, R. Aziz-Bose, I. Tirosh, M. L. Suvà, M. Monje, Nature 2023, 623, 366.

[3]

S. Liang, D. Hu, G. Li, D. Gao, F. Li, H. Zheng, M. Pan, Z. Sheng, Sci. Bull. 2022, 67, 2316.

[4]

A. Galstyan, J. L. Markman, E. S. Shatalova, A. Chiechi, A. J. Korman, R. Patil, D. Klymyshyn, W. G. Tourtellotte, L. L. Israel, O. Braubach, V. A. Ljubimov, L. A. Mashouf, A. Ramesh, Z. B. Grodzinski, M. L. Penichet, K. L. Black, E. Holler, T. Sun, H. Ding, A. V. Ljubimov, J. Y. Ljubimova, Nat. Commun. 2019, 10, 3850.

[5]

H. Li, S. Zhou, M. Wu, R. Qu, X. Wang, W. Chen, Y. Jiang, X. Jiang, X. Zhen, Adv. Mater. 2023, 35, 2210920.

[6]

R. Chang, Q. Zou, L. Zhao, Y. Liu, R. Xing, X. Yan, Adv. Mater. 2022, 34, 2200139.

[7]

R. Sun, Y. Zhang, Y. Gao, M. Zhao, A. Wang, J. Zhu, X. Cheng, H. Shi, Chem. Sci. 2023, 14, 2369.

[8]

X. Zhou, C. Shi, S. Long, Q. Yao, H. Ma, K. Chen, J. Du, W. Sun, J. Fan, B. Liu, L. Wang, X. Chen, L. Sui, K. Yuan, X. Peng, ACS Cent. Sci. 2023, 9, 1679.

[9]

G.-Q. Jin, C. V. Chau, J. F. Arambula, S. Gao, J. L. Sessler, J.-L. Zhang, Chem. Soc. Rev. 2022, 51, 6177.

[10]

P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregate 2023, 4, e352.

[11]

C. Zhai, C. L. Schreiber, S. Padilla-Coley, A. G. Oliver, B. D. Smith, Angew. Chem. Int. Ed. 2020, 59, 23740.

[12]

H. Yan, Y. Wang, F. Huo, C. Yin, J. Am. Chem. Soc. 2023, 145, 3229.

[13]

Y. Han, L. Mao, Q. W. Zhang, Y. Tian, J. Am. Chem. Soc. 2023, 145, 23832.

[14]

Y. Hang, J. Boryczka, N. Wu, Chem. Soc. Rev. 2022, 51, 329.

[15]

A. Dong, K. He, B. Dudok, J. S. Farrell, W. Guan, D. J. Liput, H. L. Puhl, R. Cai, H. Wang, J. Duan, E. Albarran, J. Ding, D. M. Lovinger, B. Li, I. Soltesz, Y. Li, Nat. Biotechnol. 2022, 40, 787.

[16]

Z. Huang, X. Ma, Cell Rep. Phys. Sci. 2020, 1, 100167.

[17]

L. Wu, J. Liu, P. Li, B. Tang, T. D. James, Chem. Soc. Rev. 2021, 50, 702.

[18]

G. Xu, Q. Yan, X. Lv, Y. Zhu, K. Xin, B. Shi, R. Wang, J. Chen, W. Gao, P. Shi, C. Fan, C. Zhao, H. Tian, Angew. Chem. Int. Ed. 2018, 57, 3626.

[19]

S. Zhu, R. Tian, A. L. Antaris, X. Chen, H. Dai, Adv. Mater. 2019, 31, 1900321.

[20]

S. Wang, H. Shi, L. Wang, A. Loredo, S. M. Bachilo, W. Wu, Z. Tian, Y. Chen, R. B. Weisman, X. Zhang, Z. Cheng, H. Xiao, J. Am. Chem. Soc. 2022, 144, 23668.

[21]

Y. Yang, C. Sun, S. Wang, K. Yan, M. Zhao, B. Wu, F. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202117436.

[22]

Z. Chen, L. Su, Y. Wu, J. Liu, R. Wu, Q. Li, C. Wang, L. Liu, J. Song, Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2205186120.

[23]

H. Dai, Q. Shen, J. Shao, W. Wang, F. Gao, X. Dong, Innovation 2021, 2, 100082.

[24]

J. Li, Y. Liu, Y. Xu, L. Li, Y. Sun, W. Huang, Coord. Chem. Rev. 2020, 415, 213318.

[25]

Y. Zhu, P. Wu, S. Liu, J. Yang, F. Wu, W. Cao, Y. Yang, B. Zheng, H. Xiong, Angew. Chem. Int. Ed. 2023, 62, e202313166.

[26]

L. Zhao, H. Zhu, Y.-Y. Duo, D.-W. Pang, Z.-G. Wang, S.-L. Liu, Adv. Healthc. Mater. 2023, 12, 2301584.

[27]

J. Chen, L. Chen, Z. She, F. Zeng, S. Wu, Aggregate 2024, 5, e419.

[28]

J. Li, J. Wang, L. Xu, H. Chi, X. Liang, J. Yoon, W. Lin, Angew. Chem. Int. Ed. 2023, 63, e202312632.

[29]

C. Xu, R. Ye, H. Shen, J. W. Y. Lam, Z. Zhao, B.Z. Tang, Angew. Chem. Int. Ed. 2022, 61, e202204604.

[30]

J. Chen, A. C. Sedgwick, S. Sen, Y. Ren, Q. Sun, C. Chau, J. F. Arambula, T. Sarma, L. Song, J. L. Sessler, C. Liu, Chem. Sci. 2021, 12, 9916.

[31]

Y. Zhou, W. Zhang, X. Wang, P. Li, B. Tang, Chem. Asian J. 2022, 17, e202200155.

[32]

J. Du, S. Yang, Y. Qiao, H. Lu, H. Dong, Biosens. Bioelectron. 2021, 191, 113478.

[33]

B. Liu, F. Jiang, J. Sun, F. Wang, K. Liu, J. Mater. Chem. B 2021, 9, 7007.

[34]

A. Van de Walle, A. Figuerola, A. Espinosa, A. Abou-Hassan, M. Estrader, C. Wilhelm, Mater. Horiz. 2023, 10, 4757.

[35]

W. Ma, R. Sun, L. Tang, Z. Li, L. Lin, Z. Mai, G. Chen, Z. Yu, Adv. Mater. 2023, 35, 2303149.

[36]

K. Li, S. Xu, M. Xiong, S.-Y. Huan, L. Yuan, X.-B. Zhang, Chem. Soc. Rev. 2021, 50, 11766.

[37]

C. Li, C. Liu, Y. Fan, X. Ma, Y. Zhan, X. Lu, Y. Sun, RSC Chem. Bio. 2021, 2, 743.

[38]

Y. Zhu, H. Lai, H. Guo, D. Peng, L. Han, Y. Gu, Z. Wei, D. Zhao, N. Zheng, D. Hu, L. Xi, F. He, L. Tian, Angew. Chem. Int. Ed. 2022, 61, e202117433.

[39]

Z. Zhang, W. Xu, M. Kang, H. Wen, H. Guo, P. Zhang, L. Xi, K. Li, L. Wang, D. Wang, B. Z. Tang, Adv. Mater. 2020, 32, 2003210.

[40]

J.-C. Yang, L. Wu, L. Wang, R. Ren, P. Chen, C. Qi, H.-T. Feng, B. Z. Tang, Aggregate 2024, 5, e535.

[41]

Z. Chen, W. Li, M. A. Sabuj, Y. Li, W. Zhu, M. Zeng, C. S. Sarap, M.M. Huda, X. Qiao, X. Peng, D. Ma, Y. Ma, N. Rai, F. Huang, Nat. Commun. 2021, 12, 5889.

[42]

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

[43]

S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.

[44]

A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

[45]

D. Wu, Q. Chen, X. Chen, F. Han, Z. Chen, Y. Wang, Signal Transduct. Target. Ther. 2023, 8, 217.

[46]

G. C. Terstappen, A. H. Meyer, R. D. Bell, W. Zhang, Nat. Rev. Drug Discov. 2021, 20, 362.

[47]

E. McCord, S. Pawar, T. Koneru, K. Tatiparti, S. Sau, A. K. Iyer, ACS Omega 2021, 6, 4111.

[48]

Y. Wang, Y. Su, Y. Yang, H. Jin, M. Wu, Q. Wang, P. Sun, J. Zhang, X. Yang, X. Shu, Drug Deliv. 2022, 29, 3071.

[49]

P. Ebrahimnejad, A. Sodagar Taleghani, K. Asare-Addo, A. Nokhodchi, Drug Discov. Today 2022, 27, 471.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/