Atomically precise Cu32 nanoclusters with selenide doping: Synthesis, bonding, and catalysis

Rong Huo , Rui Ren , Lin Wang , Qinghua Xu , Bingzheng Yan , Jiangwei Zhang , Qingxiang Guo , Zongjie Guan , Hui Shen , Nanfeng Zheng

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e679

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e679 DOI: 10.1002/agt2.679
RESEARCH ARTICLE

Atomically precise Cu32 nanoclusters with selenide doping: Synthesis, bonding, and catalysis

Author information +
History +
PDF

Abstract

Copper nanoclusters with stable compositions and precise structures have long been sought after, as they possess properties that are absent in gold and silver counterparts. However, the creation of copper nanoclusters with novel compositions, structures, and functionalities remains largely unexplored in the literature. In this study, we demonstrate that selenide doping is an effective method for fabricating stable copper nanostructures through controlled synthesis and structure determination of a copper– selenide nanocluster. The nanocluster of [Cu32Se7(BnSe)18(PPh3)6]+ (denoted as Cu32Se7, Bn is benzyl) has been prepared by reducing copper salts in the presence of organic diselenides. The atomic structure of the Cu32Se7 cluster, accurately determined through single-crystal X-ray diffraction, reveals a core–shell arrangement of Cu20Se7@Cu12(BnSe)18(PPh3)6, where Se2– anions are well dispersed in the Cu20 framework. Notably, this cluster represents a rare example of copper–selenide semiconductor nanoclusters. Experimental and theoretical analysis shows strong interactions between Se ligands and metal atoms, resulting in high stability of the Cu32Se7 cluster. Furthermore, the cluster exhibits excellent catalytic performance in the hydroboration reaction of alkynes, producing a range of vinylboron compounds with adjustable structures and functions. Importantly, the cluster undergoes no structural or nuclearity changes during the reaction, as confirmed by extended X-ray absorption fine structure and X-ray photoelectron spectroscopy studies. This study not only presents a molecular cluster model highlighting the effectiveness of selenide dopants in fabricating new copper nanostructures but also paves the way for utilizing stable copper nanoclusters in diverse and exciting areas beyond catalysis.

Keywords

copper / hydroboration reaction of alkynes / ligands / nanoclusters / selenide

Cite this article

Download citation ▾
Rong Huo, Rui Ren, Lin Wang, Qinghua Xu, Bingzheng Yan, Jiangwei Zhang, Qingxiang Guo, Zongjie Guan, Hui Shen, Nanfeng Zheng. Atomically precise Cu32 nanoclusters with selenide doping: Synthesis, bonding, and catalysis. Aggregate, 2025, 6(2): e679 DOI:10.1002/agt2.679

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346.

[2]

Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526.

[3]

Z. Li, C. Liu, H. Abroshan, D. R. Kauffman, G. Li, ACS Catal. 2017, 7, 3368.

[4]

L. Jin, D. S. Weinberger, M. Melaimi, C. E. Moore, A. L. Rheingold, G. Bertrand, Angew. Chem. Int. Ed. 2014, 53, 9059.

[5]

X. Kang, S. Wang, Y. Song, S. Jin, G. Sun, H. Yu, M. Zhu, Angew. Chem. Int. Ed. 2016, 55, 3611.

[6]

G. Li, X. Sui, X. Cai, W. Hu, X. Liu, M. Chen, Y. Zhu, Angew. Chem. Int. Ed. 2021, 60, 10573.

[7]

L. Liu, Z. Wang, Z. Wang, R. Wang, S. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2022, 61, e202205626.

[8]

K. Yonesato, S. Yamazoe, D. Yokogawa, K. Yamaguchi, K. Suzuki, Angew. Chem. Int. Ed. 2021, 60, 16994.

[9]

T. Jia, Z. Guan, C. Zhang, X. Zhu, Y. Chen, Q. Zhang, Y. Yang, D. Sun, J. Am. Chem. Soc. 2023, 145, 10355.

[10]

Y. Xiao, Z. Wu, Q. Yao, J. Xie, Aggregate 2021, 2, 114.

[11]

M. Zhao, A. Chen, D. Huang, Y. Zhuo, Y. Chai, R. Yuan, Anal. Chem. 2016, 88, 11527.

[12]

W. Wen, G. Liu, X. Wei, H. Huang, C. Wang, D. Zhu, J. Sun, H. Yan, X. Huang, W. Shi, X. Dai, J. Dong, L. Jiang, Y. Guo, H. Wang, Y. Liu, Nat. Commun. 2024, 15, 2397.

[13]

C. Dong, R. Huang, A. Sagadevan, P. Yuan, L. Gutiérrez-Arzaluz, A. Ghosh, S. Nematulloev, B. Alamer, O. F. Mohammed, I. Hussain, M. Rueping, O. M. Bakr, Angew. Chem. Int. Ed. 2023, 62, e202307140.

[14]

P. N. Gunawardene, J. Martin, J. M. Wong, Z. Ding, J. F. Corrigan, M. S. Workentin, Angew. Chem. Int. Ed. 2022, 61, e202205194.

[15]

H. Shen, Q. Wu, M. Asre Hazer, X. Tang, Y. Han, R. Qin, C. Ma, S. Malola, B. K. Teo, H. Häkkinen, N. F. Zheng, Chem 2022, 8, 2380.

[16]

Y. Fang, K. Bao, P. Zhang, H. Sheng, Y. Yun, S. X. Hu, D. Astruc, M. Zhu, J. Am. Chem. Soc. 2021, 143, 1768.

[17]

Z. Gao, K. Wei, T. Wu, J. Dong, D. Jiang, S. Sun, L. Wang, J. Am. Chem. Soc. 2022, 144, 5258.

[18]

K. Pyo, V. D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna, D. Lee, J. Am. Chem. Soc. 2015, 137, 8244.

[19]

H. Shen, Q. Wu, S. Malola, Y. Han, Z. Xu, R. Qin, X. Tang, Y. Chen, B. K. Teo, H. Häkkinen, N. F. Zheng, J. Am. Chem. Soc. 2022, 144, 10844.

[20]

S. Takano, H. Hirai, T. Nakashima, T. Iwasa, T. Taketsugu, T. Tsukuda, J. Am. Chem. Soc. 2021, 143, 10560.

[21]

Q. Tang, Y. Lee, D. Y. Li, W. Choi, C. W. Liu, D. Lee, D. Jiang, J. Am. Chem. Soc. 2017, 139, 9728.

[22]

S. F. Yuan, Z. J. Guan, Q. M. Wang, J. Am. Chem. Soc. 2022, 144, 11405.

[23]

Y. Zhang, S. He, Y. Yang, T. Zhang, Z. Zhu, W. Fei, M. Li, J. Am. Chem. Soc. 2023, 145, 12164.

[24]

X. Liu, G. Yao, X. Cheng, J. Xu, X. Cai, W. Hu, W. Xu, C. Zhang, Y. Zhu, Chem. Sci. 2021, 12, 3290.

[25]

X. Sun, X. Tang, Y. Gao, Y. Zhao, Q. Wu, D. Cao, H. Shen, Nanoscale 2023, 15, 2316.

[26]

M. R. Narouz, K.M. Osten, P. J. Unsworth, R.W. Y. Man, K. Salorinne, S. Takano, R. Tomihara, S. Kaappa, S. Malola, C. T. Dinh, J. D. Padmos, K. Ayoo, P. J. Garrett, M. Nambo, J. H. Horton, E. H. Sargent, H. Häkkinen, T. Tsukuda, C. M. Crudden, Nat. Chem. 2019, 11, 419.

[27]

P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430.

[28]

C. Zeng, Y. Chen, K. Kirschbaum, K. J. Lambright, R. Jin, Science 2016, 354, 1580.

[29]

C. Deng, B. Han, Z. Liu, Z. Pan, J. He, Y. Li, Z. Yang, G. Luo, C. Tung, D. Sun, L. Zheng, CCS Chem. 2024, 6, 2537.

[30]

Z. Wang, Y. Zhu, B. Han, Y. Li, C. Tung, D. Sun, Nat. Commun. 2023, 14, 5295.

[31]

C. Sun, N. Mammen, S. Kaappa, P. Yuan, G. Deng, C. Zhao, J. Yan, S. Malola, K. Honkala, H. Häkkinen, B. K. Teo, N. F. Zheng, ACS Nano 2019, 13, 5975.

[32]

Y. Li, J. Wang, P. Luo, X. Ma, X. Y. Dong, Z. Wang, C. X. Du, S. Q. Zang, T. C. W. Mak, Adv. Sci. 2019, 6, 1900833.

[33]

K. K. Chakrahari, J. Liao, S. Kahlal, Y. Liu, M. Chiang, J. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2016, 55, 14704.

[34]

M. Qu, F. Zhang, D. Wang, H. Li, J. Hou, X. Zhang, Angew. Chem. Int. Ed. 2020, 59, 6507.

[35]

Y. Bao, X. Wu, B. Yin, X. Kang, Z. Lin, H. Deng, H. Yu, S. Jin, S. Chen, M. Zhu, Chem. Sci. 2022, 13, 14357.

[36]

C. Liu, S. Yuan, S. Wang, Z. J. Guan, D. Jiang, Q. M. Wang, Nat. Commun. 2022, 13, 2082.

[37]

R. S. Dhayal, J. Liao, X. Wang, Y. Liu, M. Chiang, S. Kahlal, J. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2015, 54, 13604.

[38]

R.W. Huang, J. Yin, C. Dong, P. Maity, M. N. Hedhili, S. Nematulloev, B. Alamer, A. Ghosh, O. F. Mohammed, O. M. Bakr, ACS Mater. Lett. 2021, 3, 90.

[39]

T. D. Nguyen, Z. R. Jones, B. R. Goldsmith, W. R. Buratto, G. Wu, S. L. Scott, T. W. Hayton, J. Am. Chem. Soc. 2015, 137, 13319.

[40]

C. Zhang, Z. Wang, W. Si, L. Wang, J. Dou, Z. Gao, C. Tung, D. Sun, ACS Nano 2022, 16, 9598.

[41]

X. Fan, F. Yuan, J. Wang, Z. Cheng, S. Xiang, H. Yang, Z. Zhang, CCS Chem. 2022, 5, 350.

[42]

C. Liu, T. Liu, Z. Guan, S. Wang, Y. Dong, F. Hu, D. Jiang, Q. M. Wang, CCS Chem. 2023, 6, 1581.

[43]

S. Schneider, J. A. S. Roberts, M. R. Salata, T. J. Marks, Angew. Chem. Int. Ed. 2006, 45, 1733.

[44]

A. Baghdasaryan, C. Besnard, L. M. Lawson Daku, T. Delgado, T. Burgi, Inorg. Chem. 2020, 59, 2200.

[45]

C. Xu, Y. Jin, H. Fang, H. Zheng, J. C. Carozza, Y. Pan, P. Wei, Z. Zhang, Z. Wei, Z. Zhou, H. Han, J. Am. Chem. Soc. 2023, 145, 25673.

[46]

J. Ossowski, T.Wächter, L. Silies, M. Kind, A. Noworolska, F. Blobner, D. Gnatek, J. Rysz, M. Bolte, P. Feulner, A. Terfort, P. Cyganik, M. Zharnikov, ACS Nano 2015, 9, 4508.

[47]

J. Ossowski, G. Nascimbeni, T. Żaba, E. Verwüster, J. Rysz, A. Terfort, M. Zharnikov, E. Zojer, P. Cyganik, J. Phys. Chem. C 2017, 121, 28031.

[48]

A. Shaporenko, J. Müller, T. Weidner, A. Terfort, M. Zharnikov, J. Am. Chem. Soc. 2007, 129, 2232.

[49]

S. Han, S. Lee, K. Kim, Langmuir 2001, 17, 6981.

[50]

X. Kang, M. Zhu, Small 2019, 15, 1902703.

[51]

C. Zhang, W. Si, Z. Wang, A. Dinesh, Z. Gao, C. Tung, D. Sun, J. Am. Chem. Soc. 2024, 146, 10767.

[52]

M. Qu, H. Li, L. Xie, S. Yan, J. Li, J. Wang, C. Wei, Y. Wu, X. Zhang, J. Am. Chem. Soc. 2017, 139, 12346.

[53]

D. Cave, J. F. Corrigan, A. Eichhöfer, D. Fenske, C. M. Kowalchuk, H. Rösner, P. Scheer, J. Clust. Sci. 2007, 18, 157.

[54]

R. S. Dhayal, J. Liao, S. Kahlal, X. Wang, Y. Liu, M. Chiang, W. E. van Zyl, J. Saillard, C. W. Liu, Chem. Eur. J. 2015, 21, 8369.

[55]

S. Lee, M. S. Bootharaju, G. Deng, S. Malola, W. Baek, H. Häkkinen, N. F. Zheng, T. Hyeon, J. Am. Chem. Soc. 2020, 142, 13974.

[56]

K. Zheng, V. Fung, X. Yuan, D. Jiang, J. Xie, J. Am. Chem. Soc. 2019, 141, 18977.

[57]

Q. Yao, L. Liu, S. Malola, M. Ge, H. Xu, Z. Wu, T. Chen, Y. Cao, M. F. Matus, A. Pihlajamäki, Y. Han, H. Häkkinen, J. Xie, Nat. Chem. 2023, 15, 230.

[58]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian Inc., Wallingford CT, 2009.

[59]

M. Magre, B. Maity, A. Falconnet, L. Cavallo, M. Rueping, Angew. Chem. Int. Ed. 2019, 58, 7025.

[60]

M. Zhong, Y. Gagné, T. O. Hope, X. Pannecoucke, M. Frenette, P. Jubault, T. Poisson, Angew. Chem. Int. Ed. 2021, 60, 14498.

[61]

B. Alamer, A. Sagadevan, M. Bodiuzzaman, K. Murugesan, S. Alsharif, R. Huang, A. Ghosh, M. H. Naveen, C. Dong, S. Nematulloev, J. Yin, A. Shkurenko, M. Abulikemu, X. Dong, Y. Han, M. Eddaoudi, M. Rueping, O. M. Bakr, J. Am. Chem. Soc. 2024, 146, 16295.

[62]

J. V. Obligacion, P. J. Chirik, Nat. Rev. Chem. 2018, 2, 15.

[63]

W. Zhu, S. Zhang, W. Fan, Y. Yang, H. Zhao, W. Fei, H. Bi, J. He, M. Li, Z. Wu, Precis. Chem. 2023, 1, 175.

[64]

A. Ghosh, R. W. Huang, B. Alamer, E. Abou-Hamad, M. N. Hedhili, O. F. Mohammed, O. M. Bakr, ACS Mater. Lett. 2019, 1, 297.

[65]

B. Yan, X. You, X. Tang, J. Sun, Q. Xu, L. Wang, Z. Guan, F. Li, H. Shen, Chem. Mater. 2024, 36, 1004.

[66]

A. W. Cook, Z. R. Jones, G. Wu, S. L. Scott, T. W. Hayton, J. Am. Chem. Soc. 2018, 140, 394.

[67]

M. A. MacDonald, D. M. Chevrier, P. Zhang, H. Qian, R. Jin, J. Phys. Chem. C 2011, 115, 15282.

[68]

X. Cai, W. Hu, S. Xu, D. Yang, M. Chen, M. Shu, R. Si, W. Ding, Y. Zhu, J. Am. Chem. Soc. 2020, 142, 4141.

[69]

N. Chalotra, J. Kumar, T. Naqvi, B. A. Shah, Chem. Commun. 2021, 57, 11285.

[70]

G. M. Sheldrick, Acta Cryst. A 2015, 71, 3.

[71]

C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.

[72]

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.

[73]

D. Coskun, S. V. Jerome, R. A. Friesner, J. Chem. Theory Comput. 2016, 12, 1121.

[74]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

219

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/