Rapid and accurate identification of multiple metal ions using a bispyrene-based fluorescent sensor array with aggregation-induced enhanced emission property

Haoran Zheng , Hainan Ma , Haolin Sun , Lina Zhang , Xiaoyu Zhang , Ruimeng Sun , Han Wang , Guo-Yang Xu , Lei Wang , Yanfei Qi

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e678

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e678 DOI: 10.1002/agt2.678
RESEARCH ARTICLE

Rapid and accurate identification of multiple metal ions using a bispyrene-based fluorescent sensor array with aggregation-induced enhanced emission property

Author information +
History +
PDF

Abstract

Multiple metal ions are traditionally detected using inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry. Although thesemethods are sensitive and accurate, they depend on complex instruments and require highly trained operators, making low costly rapid detection challenging. It is urgent to develop a convenient, rapid and sensitive method to detect multiple metal ions. Herein, we designed a bispyrene derivative (BP) with aggregation-induced enhanced emission (AIEE) property to construct a high fluorescent sensor array to realize the effective identification of four metal ions (Fe3+, Cu2+, Co2+ and Cd2+). The differential coordination capability between metal ions and BP with the aid of acetate ions resulted the possibility of array-based sensing. The four heavy metal ions could be immediately classified in the concentration of 100 nM. The limit of detection (LOD) of Fe3+, Cu2+, Co2+, and Cd2+ were as low as 16.2, 21.8, 51.4, and 25.9 nM, respectively. Furthermore, the sensor array was applied for identification multiple heavy metal ions in environmental samples and iron ion in rat serums with identified of 100%. The sample consumption as low as 2 µL for each detection and the results could be extracted by smartphones under ultraviolet lamps. It provided a rapid, sensitive, low-cost, and on-site multiple metal ions detection method.

Keywords

bispyrene / environmental samples analysis / multiple metal ions / principal component analysis / sensor array

Cite this article

Download citation ▾
Haoran Zheng, Hainan Ma, Haolin Sun, Lina Zhang, Xiaoyu Zhang, Ruimeng Sun, Han Wang, Guo-Yang Xu, Lei Wang, Yanfei Qi. Rapid and accurate identification of multiple metal ions using a bispyrene-based fluorescent sensor array with aggregation-induced enhanced emission property. Aggregate, 2025, 6(2): e678 DOI:10.1002/agt2.678

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Sun, Y. Z. Fan, S. Z. Du, Y. Z. Yang, Y. Ling, N. B. Li, H. Q. Luo, Anal. Chem. 2020, 92, 7273.

[2]

R. L. Pérez, M. Y. Cong, S. R. Vaughan, C. E. Ayala, W. I. S. Galpothdeniya, J. K. Mathaga, I. M. Warner, ACS Sens. 2020, 5, 2422.

[3]

W. J. Miao, L. Wang, Q. Liu, S. Guo, L. Z. Zhao, J. J. Peng, Chem. Asian J. 2021, 16, 247.

[4]

A. D. Gill, B. L. Hickey, W. W. Zhong, R. J. Hooley, Chem. Commun. 2020, 56, 4352.

[5]

J. W. Li, L. Li, J. Zhang, D. Q. Huo, C. J. Hou, J. Zhou, H. B. Luo, Sens. Actuator B Chem. 2019, 297, 8.

[6]

B. Lam, M. Retout, A. E. Clark, A. F. Garretson, A. F. Carlin, J. V. Jokerst, ACS Appl. Nano Mater. 2024, 7, 9136.

[7]

H. Qiu, F. Pu, X. Ran, Y. Q. Song, C. Q. Liu, J. S. Ren, X. G. Qu, Sens. Actuator B Chem. 2018, 260, 183.

[8]

M. Qiao, J. M. Fan, L. P. Ding, Y. Fang, ACS Appl. Mater. Interfaces 2021, 13, 18395.

[9]

A. Srivastava, G. Mishra, A. K. Pathak, S. Pandey, C. Awasthi, M. D. Pandey, K. Behera, Chem. Select 2024, 9, 23.

[10]

R. Kumar, R. Bawa, P. Gahlyan, M. Dalela, K. Jindal, P. K. Jha, M. Tomar, V. Gupta, Dyes Pigm. 2019, 161, 162.

[11]

Y. Upadhyay, T. Anand, L. T. Babu, P. Paira, S. K. A. Kumar, R. Kumar, S. K. Sahoo, J. Photochem. Photobiol. A Chem. 2018, 361, 34.

[12]

Y. F. Tang, Y. Huang, L. X. Lu, C. Wang, T. M. Sun, J. L. Zhu, G. H. Zhu, J. Y. Pan, Y. L. Jin, A. L. Liu, M. Wang, Tetrahedron Lett. 2018, 59, 3916.

[13]

K. G. Harsha, E. Appalanaidu, N. R. Chereddy, T. R. Baggi, V. J. Rao, Sens. Actuator B Chem. 2018, 256, 528.

[14]

G. Prabakaran, I. David, R. Nandhakumar, J. Environ. Chem. Eng. 2023, 11, 33.

[15]

S. Bayindir, M. Toprak, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2019, 213, 6.

[16]

V. Tekuri, S. K. Sahoo, D. R. Trivedi, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2019, 218, 19.

[17]

A. A. Bowyer, C. Shen, E. J. New, Analyst 2020, 145, 1195.

[18]

L. J. Zhang, X. Y. Huang, Y. Cao, Y. H. Xin, L. P. Ding, ACS Sens. 2017, 2, 1821.

[19]

M. L. Chen, Z. L. Qi, W. T. Jin, Z. Xu, Y. H. Cheng, Z. H. Zhou, CrystEngComm 2021, 23, 7442.

[20]

J. X. Liu, S. N. Ding, Anal. Methods 2016, 8, 2170.

[21]

C. Liu, B. Tang, S. Zhang, M. M. Zhou, M. L. Yang, Y. F. Liu, Z. L. Zhang, B. Zhang, D. W. Pang, J. Phys. Chem. C 2018, 122, 3662.

[22]

Y. Z. Fu, S. J. Zhao, S. L. Wu, L. Huang, T. Xu, X. J. Xing, M. H. Lan, X. Z. Song, Dyes Pigm. 2020, 172, 8.

[23]

R. Fu, J. Li, W. Yang, J. Nanopart. Res. 2012, 14, 8.

[24]

N. Ratnarathorn, O. Chailapakul, W. Dungchai, Talanta 2015, 132, 613.

[25]

E. S. Karaman, S. Mitra, J. Young, Phys. Chem. Chem. Phys. 2021, 23, 21286.

[26]

X. D. Zhao, L. Pei, H. H. Fan, Y. Z. Zhang, B. S. Liu, X. L. Gao, Y. H. Wei, J. Solid State Chem. 2021, 302, 7.

[27]

B. An, H. Lee, S. Lee, S. H. Lee, J. W. Choi, J. Hazard. Mater. 2015, 298, 11.

[28]

Y. Yang, L. Wang, H. Q. Cao, Q. Li, Y. Li, M. J. Han, H. Wang, J. B. Li, Nano Lett. 2019, 19, 1821.

[29]

Z. Li, J. R. Askim, K. S. Suslick, Chem. Rev. 2019, 119, 231.

[30]

S. Dortez, A. G. Crevillen, A. Escarpa, Talanta 2023, 253, 7.

[31]

P. Alam, N. L. C. Leung, J. Zhang, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Coord. Chem. Rev. 2021, 429, 31.

[32]

Y. Jiang, J. H. Ma, Z. Y. Ran, H. Q. Zhong, D. H. Zhang, N. Hadjichristidis, Angew. Chem. Int. Ed. 2022, 61, 9.

[33]

S. Xie, A. Y. H. Wong, R. T. K. Kwok, Y. Li, H. F. Su, J. W. Y. Lam, S. J. Chen, B. Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 5750–5753.

[34]

S. Xie, S. Manuguri, G. Proietti, J. Romson, Y. Fu, A. K. Inge, B. Wu, Y. Zhang, D. Häll, O. Ramström, M. D. Yan, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 8464.

[35]

D. F. Feng, M. X. Xiao, P. H. Yang, Anal. Chem. 2023, 95, 766.

[36]

A. Zwolak, M. Sarzynska, E. Szpyrka, K. Stawarczyk, Water Air Soil Pollut. 2019, 230, 9.

[37]

V. Wulf, E. Bichachi, A. Hendler-Neumark, T. Massarano, A. B. Leshem, A. Lampel, G. Bisker, Adv. Funct. Mater. 2022, 32, 9.

[38]

T. L. Ma, J. X. Chen, P. Zhu, C. B. Zhang, Y. Zhou, J. X. Duan, Life Sci. 2022, 307, 13.

[39]

J. Liu, L. Y. Deng, L. P. Qu, X. F. Li, T. Wang, Y. Y. Chen, M. Jiang, W. J. Zou, J. Ethnopharmacol. 2024, 326, 25.

[40]

L. F. Chen, X. K. Tian, Y. Li, C. Yang, L. Q. Lu, Z. X. Zhou, Y. L. Nie, Dyes Pigm. 2019, 166, 1.

[41]

W. Fu, X. Q. Fu, Z. M. Li, Z. F. Liu, X. Li, Chem. Eng. J. 2024, 489, 16.

[42]

M. Serhan, D. Jackemeyer, M. Long, M. Sprowls, I. D. Perez, W. Maret, F. Chen, N. J. Tao, E. Forzani, IEEE J. Transl. Eng. Health Med. 2020, 8, 1.@

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/