Mechanism of hierarchical plasmonic biomaterials engineered through peptide-directed self-assembly

Lubna Amer , Maurice Retout , Zhicheng Jin , Sumathi Kakanar , Jesse V. Jokerst

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e677

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e677 DOI: 10.1002/agt2.677
RESEARCH ARTICLE

Mechanism of hierarchical plasmonic biomaterials engineered through peptide-directed self-assembly

Author information +
History +
PDF

Abstract

Hierarchical plasmonic biomaterials constructed from small nanoparticles (NPs) that combine into larger micron-sized structures exhibit unique properties that can be harnessed for various applications. Using diffusion-limited aggregation (DLA) and defined peptide sequences, we developed fractal silver biomaterials with a Brownian tree structure. This method avoids complex redox chemistry and allows precise control of interparticle distance and material morphology through peptide design and concentration. Our systematic investigation revealed how peptide charge, length, and sequence impact biomaterial morphology, confirming that peptides act as bridging motifs between particles and induce coalescence. Characterization through spectroscopy and microscopy demonstrated that arginine-based peptides are optimal for fractal assembly based on both quantitative and qualitative measurements. Additionally, our study of diffusion behavior confirmed the effect of particle size, temperature, and medium viscosity on nanoparticle mobility. This work also provides insights into the facet distribution in silver NPs and their assembly mechanisms, offering potential advancements in the design of materials for medical, environmental, and electronic applications.

Keywords

diffusion-limited aggregation / fractal / peptides / self-assembly / silver nanoparticles

Cite this article

Download citation ▾
Lubna Amer, Maurice Retout, Zhicheng Jin, Sumathi Kakanar, Jesse V. Jokerst. Mechanism of hierarchical plasmonic biomaterials engineered through peptide-directed self-assembly. Aggregate, 2025, 6(2): e677 DOI:10.1002/agt2.677

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Baig, Compos. Part A: Appl. Sci. Manuf. 2023, 165, 107362.

[2]

R. D. Prasad, R. S. Prasad, R. B. Prasad, S. R. Prasad, S. B. Singha, A. An, D. Singha, R. J. Prasad, P. Sinha, S. Saxena, A. K. Vaidya, S. Shivan, B. Teli, U. R. Saxena, A. Harale, M. B. Deshmukh, M. N. Padvi, G. J. Navathe, ES Energy Environ. 2024, 23, 1087.

[3]

A. M El-Khawaga, A. Zidan, A. I. A. A. El-Mageed, J. Mol. Struct. 2023, 1281, 135148.

[4]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, J. Phys. Chem. B 2000, 104, 45.

[5]

J. Chen, S. Shi, R. Su, W. Qi, R. Huang, M. Wang, L. Wang, Z. He, Sensors 2015, 15, 6.

[6]

P. K. Jain, S. Eustis, M. A El-Sayed, J. Phys. Chem. B 2006, 110, 37.

[7]

J. Mock, M. Barbic, D. Smith, D. Schultz, S. J. Schultz. J. Chem. Phys. 2002, 116.

[8]

J. Polte, T. T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A. F. Thünemann, R. Kraehnert, J. Am. Chem. Soc. 2010, 132, 1296.

[9]

J. Polte, Cryst. Eng. Comm. 2015, 17, 36.

[10]

N. G. Khlebtsov, L. A. Dykman, J. Quant. Spectrosc. Radiat. Transfer. 2010, 111, 1.

[11]

S. Link, M. A El-Sayed, J. Phys. Chem. B 1999, 103, 40.

[12]

H. Wang, H. Rao, M. Luo, X. Xue, Z. Xue, X. Lu. Coord. Chem. Rev. 2019, 398.

[13]

S. Xu, L. Jiang, Y. Liu, P. Liu, W. Wang, X. Luo. Anal. Chim. Acta 2019, 1071.

[14]

M. Retout, B. Gosselin, A. Mattiuzzi, I. Ternad, I. Jabin, G. Bruylants. ChemPlusChem 2022, 87, 4.

[15]

A. Sen, H. Poulsen, S. Sondhauss, J. M. Hodgkiss, ACS Sens. 2023, 8, 4.

[16]

Z. Jin, W. Yim, M. Retout, E. Housel, W. Zhong, J. Zhou, M. S. Strano, J. V. Jokerst, Chem. Soc. Rev. 2024, 53, 7681.

[17]

Y. Ziai, C. Rinoldi, F. Petronella, A. Zakrzewska, L. De Sio, F. Pierini, Nanoscale 2024, 16, 13492.

[18]

M. Retout, I. Jabin, G. Bruylants, ACS Omega 2021, 6, 19675.

[19]

P. K. Jain, X. Huang, I. H El-Sayed, M. A. El-Sayed, Plasmonics 2007, 2, 107.

[20]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668.

[21]

A. Böker, J. He, T. Emrick, T. P. Russell, Soft Matter 2007, 3, 1231.

[22]

Y. Bi, C. Cheng, Z. Zhang, R. Liu, J. Wei, Z. Yang, J. Am. Chem. Soc. 2023, 145, 15.

[23]

L. Huang, Y. Zhang, T. Liao, K. Xu, C. Jiang, D. Zhuo, Y. Wang, H.-M. Wen, J. Wang, L. Ao, J. Hu, Small 2021, 17, 25.

[24]

C. Gong, S. Sun, Y. Zhang, L. Sun, Z. Su, A. Wu, G. Wei, Nanoscale 2019, 11, 10.

[25]

C. Zeng, Y. Chen, K. Kirschbaum, K. J. Lambright, R. Jin, Science 2016, 354, 1580.

[26]

A. H. Gröschel, A. Walther, T. I. Löbling, F. H. Schacher, H. Schmalz, A. H. E. Müller, Nature 2013, 503, 247.

[27]

Y. Zhou, R. L. Marson, G. van Anders, J. Zhu, G. Ma, P. Ercius, K. Sun, B. Yeom, S. C. Glotzer, N. A. Kotov, ACS Nano 2016, 10, 3.

[28]

Z. Liu, W. R. Leow, X. Chen, Small Methods 2019, 3, 3.

[29]

D. Wang, S. L. Capehart, S. Pal, M. Liu, L. Zhang, P. J. Schuck, Y. Liu, H. Yan, M. B. Francis, J. J. De Yoreo. ACS Nano 2014, 8, 8.

[30]

C. Hamon, S. Novikov, L. Scarabelli, L. Basabe-Desmonts, L. M. Liz-Marzán, ACS Nano 2014, 8, 10694.

[31]

L. Amer, M. Retout, J. V. Jokerst, Theranostics 2024, 14, 1781.

[32]

R.-R. Bao, C.-Y. Zhang, X.-J. Zhang, X.-M. Ou, C.-S. Lee, J.-S. Jie, X.-H. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 12.

[33]

P. Zhang, A. Tang, B. Zhu, L. Zhu, H. Zeng, Adv. Mater. Interfaces 2017, 4, 11.

[34]

J. J. Richardson, J. Cui, M. Björnmalm, J. A. Braunger, H. Ejima, F. Caruso, Chem. Rev. 2016, 116, 14828.

[35]

A. Gonzàlez-Rosell, S. Malola, R. Guha, N. R. Arevalos, M. F. Matus, M. E. Goulet, E. Haapaniemi, B. B. Katz, T. Vosch, J. Kondo, H. Häkkinen, S. M. Copp, J. Am. Chem. Soc. 2023, 145, 10721.

[36]

D. Luo, C. Yan, T. Wang, Small 2015, 11, 45.

[37]

A. F. De Fazio, A. H El-Sagheer, J. S. Kahn, I. Nandhakumar, M. R. Burton, T. Brown, O. L. Muskens, O. Gang, A. G. Kanaras, ACS Nano 2019, 13, 5.

[38]

M. Retout, Y. Mantri, Z. Jin, J. Zhou, G. Noël, B. Donovan, W. Yim, J. V. Jokerst, ACS Nano 2022, 16, 6165.

[39]

Z. Fusco, T. Tran-Phu, A. Cembran, A. Kiy, P. Kluth, D. Nisbet, A. Tricoli, Adv. Photonics Res. 2021, 2, 7.

[40]

M. Sun, SPIE 2022, 12163, 121633G.

[41]

M. H. Abdellatif, G. N. Abdelrasoul, A. Scarpellini, S. Marras, A. Diaspro, J. Colloid Interface Sci. 2015, 458, 266.

[42]

M. Retout, L. Amer, W. Yim, M. N. Creyer, B. Lam, D. F. Trujillo, J. Potempa, A. J. O’Donoghue, C. Chen, J. V. Jokerst, ACS Nano 2023, 17, 17308

[43]

W. Yim, M. Retout, A. A. Chen, C. Ling, L. Amer, Z. Jin, Y.-C. Chang, S. Chavez, K. Barrios, B. Lam, Z. Li, J. Zhou, L. Shi, T. A. Pascal, J. V. Jokerst, ACS Appl. Mater. Interfaces 2023, 15, 36.

[44]

Z. Jin, C. Ling, W. Yim, Y.-C. Chang, T. He, K. Li, J. Zhou, Y. Cheng, Y. Li, J. Yeung, R. Wang, P. Fajtová, L. Amer, H. Mattoussi, A. J. O’Donoghue, J. V. Jokerst, ACS Nano 2023, 17, 17.

[45]

M. Retout, Z. Jin, J. Tsujimoto, Y. Mantri, R. Borum, M. N. Creyer, W. Yim, T. He, Y.-C. Chang, J. V. Jokerst, ACS Appl. Mater. Interfaces 2022, 14, 52553.

[46]

U. Das, R. Biswas, N. Mazumder, Eur. Phys. J. Plus 2022, 137, 11.

[47]

Y. Xu, X. Zhao, A. Li, Y. Yue, J. Jiang, X. Zhang, Nanoscale 2019, 11, 16.

[48]

M. M. Bradford, Anal. Biochem. 1976, 72, 248.

[49]

S. J. Compton, C. G. Jones. Anal. Biochem. 1985, 151, 369.

[50]

Z. Jin, J. Yeung, J. Zhou, M. Retout, W. Yim, P. Fajtová, B. Gosselin, I. Jabin, G. Bruylants, H. Mattoussi, A. J. O’Donoghue, J. V. Jokerst, ACS Appl. Mater. Interfaces 2023, 15, 16.

[51]

B. Viswanath, P. Kundu, A. Halder, N. Ravishankar, J. Phys. Chem. C 2009, 113, 16866.

[52]

M. José-Yacamán, C. Gutierrez-Wing, M. Miki, D. Q. Yang, K. N. Piyakis, E. Sacher, J. Phys. Chem. B 2005, 109, 19.

[53]

F. L. Braga, O. A. Mattos, V. S. Amorin, A. B. Souza, Physica A: Stat. Mech. Appl. 2015, 429.

[54]

F. Gentile, M. L. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, G. Das, C. Dorigoni, P. Candeloro, E. Di Fabrizio, Microelectron. Eng. 2012, 98, 359.

[55]

M. K. Temgire, S. S. Joshi, Radiat. Phys. Chem. 2004, 71, 1039.

[56]

E. S. Ameh, J. Adv. Manuf. Tech. 2019, 105, 3289.

[57]

J. Helmlinger, O. Prymak, K. Loza, M. Gocyla, M. Heggen, M. Epple, Cryst. Growth Des. 2016, 16, 3677.

[58]

B. Sun, A. S. Barnard, Nanoscale 2017, 9, 34.

[59]

C. Xiao, B.-A. Lu, P. Xue, N. Tian, Z.-Y. Zhou, X. Lin, W.-F. Lin, S.-G. Sun, Joule 2020, 4, 2562.

[60]

E. Ringe, R. P. Van Duyne, L. D. Marks, J. Phys. Chem. C 2013, 117, 15859.

[61]

M. Maillard, P. Huang, L. Brus, Nano Lett. 2003, 3, 1611.

[62]

S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 2010, 4, 1943.

[63]

M. Ye, L. Song, Y. Ye, Z. Deng, J. Am. Chem. Soc. 2023, 145, 47.

[64]

M. A. Moret, G. F. Zebende, Phys. Rev. E 2007, 75, 011920.

[65]

M. Charton, B. I. Charton, J. Theor. Biol. 1982, 99, 629.

[66]

A. Karperien, Fraclac for ImageJ. 1999–2013.

[67]

W. S. Rasband, ImageJ. 1997–2018. https://imagej.net/ij/

[68]

J.H. Zhang, Z. H. Liu, J. Pet. Sci. Eng. 1998, 21, 1.

[69]

D. Liu, W. Zhou, X. Song, Z. Qiu, Fractal Fract. 2017, 1, 12.

[70]

J. R. Nicolás-Carlock, J. L Carrillo-Estrada, Sci. Rep. 2019, 9, 1120.

[71]

T. Chen, S.M. D’Addio, M. T. Kennedy, A. Swietlow, I. G. Kevrekidis, A. Z. Panagiotopoulos, R. K. Prud’homme, Nano Lett. 2009, 9, 6.

[72]

I. Chakraborty, G. Rahamim, R. Avinery, Y. Roichman, R. Beck, Nano Lett. 2019, 19, 6524.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/