A combination of covalent and noncovalent restricted-intramolecular-rotation strategy for supramolecular AIE-type photosensitizer toward photodynamic therapy

Qingfang Li , Peijuan Zhang , Pingxia Wang , Chaochao Yan , Kaige Wang , Wanni Yang , Dongfeng Dang , Liping Cao

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e676

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e676 DOI: 10.1002/agt2.676
RESEARCH ARTICLE

A combination of covalent and noncovalent restricted-intramolecular-rotation strategy for supramolecular AIE-type photosensitizer toward photodynamic therapy

Author information +
History +
PDF

Abstract

Photodynamic therapy (PDT) is a promising noninvasive method for targeted cancer cell destruction. Still, its effectiveness is often hindered by the aggregation-caused quenching effect of organic photosensitizer (PS) in aqueous environments. Here, we have employed a combination of covalent and noncovalent restricted-intramolecularrotation strategies to develop supramolecular PSs with aggregation-induced emission (AIE) characteristics. Firstly, a water-soluble octacationic molecular cage (1) with a bilayer tetraphenylethene (TPE) structure has been designed and synthesized, which minimizes intramolecular rotation of TPE moieties and achieves the single-molecule-level aggregation by the covalent restriction of intramolecular rotation (RIR) via molecular engineering synthesis. Compared with its single-layer TPE analog, 1 exhibits superior efficiency in generating reactive oxygen species (ROS) including superoxide radical (O2–•) and singlet oxygen (1O2) upon whitelight irradiation. Subsequently, by forming a 1:4 host–guest complex (1@CB[8]4) between 1 and cucurbit[8]uril (CB[8]), O2–• generation can be further enhanced by the noncovalent RIR via the host–guest assembly. Additionally, 1@CB[8]4 as a photocatalyst promotes rapid oxidation of nicotinamide adenine dinucleotide (NADH) in water. Given its Type-I ROS generation and catalytic activity for NADH oxidation, 1@CB[8]4 acts as a supramolecular AIE-type PS to exhibit strong photo-induced cytotoxicity upon white-light irradiation under hypoxic conditions, showcasing its potential for synergistic PDT.

Keywords

aggregation-induced emission / cage compounds / cucurbit[8]uril / photodynamic therapy / supramolecular photosensitizer

Cite this article

Download citation ▾
Qingfang Li, Peijuan Zhang, Pingxia Wang, Chaochao Yan, Kaige Wang, Wanni Yang, Dongfeng Dang, Liping Cao. A combination of covalent and noncovalent restricted-intramolecular-rotation strategy for supramolecular AIE-type photosensitizer toward photodynamic therapy. Aggregate, 2025, 6(2): e676 DOI:10.1002/agt2.676

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) S. Antoni, J. Ferlay, I. Soerjomataram, A. Znaor, A. Jemal, F. Bray, Eur. Urol. 2017, 71, 96;b) F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, CA-Cancer J. Clin. 2018, 68, 394.

[2]

a) D. D. Ruysscher, G. Niedermann, N. G. Burnet, S. Siva, A. W. M. Lee, F. Hegi-Johnson, Nat. Rev. Dis. Primers. 2019, 5, 13;b) S. N. Weingart, L. Zhang, M. Sweeney, M. Hassett, Lancet Oncol. 2018, 19, e191;c) P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregate 2023, 4, e352.

[3]

a) J. Lin, M. Wang, H. Hu, X. Yang, B. Wen, Z. Wang, O. Jacobson, J. Song, G. Zhang, G. Niu, P. Huang, X. Chen, Adv. Mater. 2016, 28, 3273;b) D. Wang, M. M. S. Lee, G. Shan, R. T. K. Kwok, J.W. Y. Lam, H. Su, Y. Cai, B. Z. Tang, Adv. Mater. 2018, 30, 1802105; c) K. Wen, H. Tan, Q. Peng, H. Chen, H. Ma, L. Wang, A. Peng, Q. Shi, X. Cai, H. Huang, Adv. Mater. 2022, 34, 2108146; d) Z. J. Zhou, J. B. Song, L. M. Nie, X. Y. Chen, Chem. Soc. Rev. 2016, 45, 6597;e) Q. Sun, Q. Su, Y. Gao, K. Zhou, W. Song, P. Quan, X. Yang, Z. Ge, Y. Zhang, G. He, Aggregate 2023, 4, e298.

[4]

a) S. S. Lucky, K. C. Soo, Y. Zhang, Chem. Rev. 2015, 115, 1990;b) Y. Zhu, Q. Wu, C. Chen, G. Yang, H. Cao, Y. Gao, L. Jiao, E. Hao, W. Zhang, Sci. China Mater. 2021, 64, 3101;c) M. Zhu, H. Zhang, G. Ran, Y. Yao, Z. S. Yang, Y. Ning, Y. Yu, R. Zhang, X. X. Peng, J. Wu, Z. Jiang, W. Zhang, B. W. Wang, S. Gao, J. L. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202204330; d) T. C. Pham, V. N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 2021, 121, 13454.

[5]

a) Y. Huang, W. Chen, J. Chung, J. Yin, J. Yoon, Chem. Soc. Rev. 2021, 50, 7725;b) Z. Zhuang, J. Li, P. Shen, Z. Zhao, B. Z. Tang, Aggregate 2024, 5, e540; c) X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174.

[6]

a) Y. Duo, G. Luo, W. Zhang, R. Wang, G. G. Xiao, Z. Li, X. Li, M. Chen, J. Yoon, B. Z. Tang, Chem. Soc. Rev. 2023, 52, 1024;b) D. Mao, F. Hu, Kenry, S. Ji, W. Wu, D. Ding, D. Kong, B. Liu, Adv. Mater. 2018, 30, 1706831; c) F. Hu, S. Xu, B. Liu, Adv. Mater. 2018, 30, 1801350; d) Y. Pan, M. Suo, Q. Huang, M. Lyu, Y. Jiang, S. Wang, W. Tang, S. Ning, T. Zhang, Aggregate 2024, 5, e432.

[7]

Z. Zheng, D. Li, Z. Liu, H. Peng, H. H. Y. Sung, R. T. K. Kwok, I. D. Williams, J. W. Y. Lam, J. Qian, B. Z. Tang, Adv. Mater. 2019, 31, 1904799.

[8]

a) J.-B. Xiong, H.-T. Feng, J.-P. Sun, W.-Z. Xie, D. Yang, M. H. Liu, Y.-S. Zheng, J. Am. Chem. Soc. 2016, 138, 11469;b) H. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142;c) H. Duan, Y. Li, Q. Li, P. Wang, X. Liu, L. Cheng, Y. Yu, L. Cao, Angew. Chem. Int. Ed. 2020, 59, 10101;d) C. Zhang, Z. Wang, L. X. Tan, T. L. Zhai, S. Wang, B. Tan, Y.-S. Zheng, X. L. Yang, H. B. Xu, Angew. Chem. Int. Ed. 2015, 54, 9244.

[9]

a) X. Zheng, W. Zhu, C. Zhang, Y. Zhang, C. Zhong, H. Li, G. Xie, X. Wang, C. Yang, J. Am. Chem. Soc. 2019, 141, 4704;b) S. Maji, J. Samanta, K. Samanta, R. Natarajan, Chem. Eur. J. 2023, 29, e202301985; c) L. A. Pérez-Márquez, M. D. Perretti, R. García-Rodríguez, F. Lahoz, R. Carrillo, Angew. Chem. Int. Ed. 2022, 61, e202205403; d) Y. Li, K. Wang, R. Feng, J. Wang, X.-J. Xi, F. Lang, Q. Li, W. Li, B. Zou, J. Pang, X.-H. Bu, Angew. Chem. Int. Ed. 2024, 63, e202403646; e) H. Duan, F. Cao, M. Zhang, M. Gao, L. Cao, Chin. Chem. Lett. 2022, 33, 2459.

[10]

a) K.-X. Teng, L.-Y. Niu, Q.-Z. Yang, J. Am. Chem. Soc. 2023, 145, 4081;b) W. Zhu, Y. Li, S. Guo, W.-J. Guo, T. Peng, H. Li, B. Liu, H.-Q. Peng, B. Z. Tang, Nat. Commun. 2022, 13, 7046; c) H.-T. Feng, Y. Li, X. Duan, X. Wang, C. Qi, J. W. Y. Lam, D. Ding, B. Z. Tang, J. Am. Chem. Soc. 2020, 142, 15966;d) H.-Q. Peng, X. Zheng, T. Han, R. T. K. Kwok, J. W. Y. Lam, X. Huang, B. Z. Tang, J. Am. Chem. Soc. 2017, 139, 10150;e) K.-X. Teng, L.-Y. Niu, N. Xie, Q.-Z. Yang, Nat. Commun. 2022, 13, 6179; f) K.-X. Teng, L.-Y. Niu, Q.-Z. Yang, Chem. Sci. 2022, 13, 5951.

[11]

a) K.-D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A. C.-H. Sue, T.-Y. Zhou, L. Zhang, X. Zhao, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 2013, 135, 17913;b) J. Tian, T.-Y. Zhou, S.-C. Zhang, S. Aloni, M. V. Altoe, S.-H. Xie, H. Wang, D.-W. Zhang, X. Zhao, Y. Liu, Z.-T. Li, Nat. Commun. 2014, 5, 5574;c) M. Raeisi, K. Kotturi, I. del Valle, J. Schulz, P. Dornblut, E. Masson, J. Am. Chem. Soc. 2018, 140, 3371;d) C. Yan, Q. Li, X. Miao, Y. Zhao, Y. Li, P. Wang, K. Wang, H. Duan, L. Zhang, L. Cao, Angew. Chem. Int. Ed. 2023, 62, e202308029.

[12]

a) J. Li, J. Wang, H. Li, N. Song, D. Wang, B. Z. Tang, Chem. Soc. Rev. 2020, 49, 1144;b) S. Naghibi, T. Chen, A. Jamshidi Ghahfarokhi, Y. Tang, Aggregate 2021, 2, e41; c) Y. Li, Q. Li, X. Miao, C. Qin, D. Chu, L. Cao, Angew. Chem. Int. Ed. 2021, 60, 6744;d) H. Duan, T. Yang, Q. Li, F. Cao, P. Wang, L. Cao, Chin. Chem. Lett. 2023, 34, 108878.

[13]

H.-T. Feng, Y.-X. Yuan, J.-B. Xiong, Y.-S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 7452.

[14]

T. Zhang, Y. Li, Z. Zheng, R. Ye, Y. Zhang, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 5612.

[15]

a) J. Zhuang, B. Wang, H. Chen, K. Zhang, N. Li, N. Zhao, B. Z. Tang, ACS Nano 2023, 17, 9110;b) J. Zhuang, Z. Ma, N. Li, H. Chen, L. Yang, Y. Lu, K. Guo, N. Zhao, B. Z. Tang, Adv. Mater. 2023, 2309488; c) S. Xu, Y. Yuan, X. Cai, C.-J. Zhang, F. Hu, J. Liang, G. Zhang, D. Zhang, B. Liu, Chem. Sci. 2015, 6, 5824.

[16]

a) J. Li, Z. Zhuang, Z. Zhao, B. Z. Tang, View 2022, 3, 20200121; b) Y. L. Wan, L. H. Fu, C. Y. Li, J. Lin, P. Huang, Adv. Mater. 2021, 33, 2103978; c) M. L. Li, K. H. Gebremedhin, D. D. Ma, Z. J. Pu, T. Xiong, Y. J. Xu, J. S. Kim, X. J. Peng, J. Am. Chem. Soc. 2022, 144, 163.

[17]

W. Ying, Antioxid. Redox Signaling 2008, 10, 179.

[18]

a) A. Chiarugi, C. Dölle, R. Felici, M. Ziegler, Nat. Rev. Cancer 2012, 12, 741;b) H. Huang, S. Banerjee, K. Qiu, P. Zhang, O. Blacque, T. Malcomson, M. J. Paterson, G. J. Clarkson, M. Staniforth, V. G. Stavros, G. Gasser, H. Chao, P. J. Sadler, Nat. Chem. 2019, 11, 1041.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/