Photochemical synthesis of Ag12Cu7 nanocluster with cuprophilicity-related long-lived phosphorescence

Yu-Xin Wang , Fu-Qiang Zhang , Zhikai Qi , Xingxing Zhao , Nan Zhang , Hongjin Li , Huan Li , Xian-Ming Zhang

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e675

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e675 DOI: 10.1002/agt2.675
RESEARCH ARTICLE

Photochemical synthesis of Ag12Cu7 nanocluster with cuprophilicity-related long-lived phosphorescence

Author information +
History +
PDF

Abstract

Atomically precise alloyed nanoclusters (NCs) have attracted widespread attention due to synergistic effect but their controllable synthesis remains a challenge. Among them, Ag–Cu alloyed NCs are particularly limited due to significant difference in redox potential, and it is highly desirable to develop controllable and mild synthesis methods. This work proves the feasibility of photochemical synthesis method for Ag12Cu7(4-tBuPhC≡C)14(Dpppe)3Cl3(SbF6)2 (Ag12Cu7) alloyed NC that exhibits remarkable ligand-supported cuprophilic interaction. Experimental and time-dependent UV–Vis spectroscopy first reveals that the formation of Ag12Cu7 is a step-by-step process, in which light induces the reduction of Ag+ to Ag19 cluster containing two electrons, then CuCl incorporates into Ag NC to yield the target NC, providing an alternative pathway toward alloyed NCs. Remarkably, Cu···Cu interaction endows Ag12Cu7 with a strong long-lived red phosphorescence of 30 µs at room temperature, which is superior to the majority of Ag–Cu-alloyed NCs. Theoretical calculations indicate that the phosphorescence originates from cluster-centered triplet–excited state modified by cuprophilic interactions, mixed with ligand-to-metal charge transfer.

Keywords

cuprophilicity / metallophilicity / phosphorescence / photochemistry

Cite this article

Download citation ▾
Yu-Xin Wang, Fu-Qiang Zhang, Zhikai Qi, Xingxing Zhao, Nan Zhang, Hongjin Li, Huan Li, Xian-Ming Zhang. Photochemical synthesis of Ag12Cu7 nanocluster with cuprophilicity-related long-lived phosphorescence. Aggregate, 2025, 6(2): e675 DOI:10.1002/agt2.675

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208.

[2]

Y. Cao, S. Malola, M. F. Matus, T. Chen, Q. Yao, R. Shi, H. Häkkinen, J. Xie, Chem 2021, 7, 2227.

[3]

P. Aminfar, G. Yousefalizadeh, E. Steele, J. Chen, G. Zheng, K. G. Stamplecoskie, Nanoscale 2023, 15, 13561.

[4]

T. Jia, Z.-J. Guan, C. Zhang, X.-Z. Zhu, Y.-X. Chen, Q. Zhang, Y. Yang, D. Sun, J. Am. Chem. Soc. 2023, 145, 10355.

[5]

F. Hu, Z.-J. Guan, G. Yang, J.-Q. Wang, J.-J. Li, S.-F. Yuan, G.-J. Liang, Q.-M. Wang, J. Am. Chem. Soc. 2021, 143, 17059.

[6]

L.-L. Yan, V. W.-W. Yam, J. Am. Chem. Soc. 2023. 145, 7454.

[7]

Y. Jin, C. Zhang, X.-Y. Dong, S.-Q. Zang, T. C. W. Mak, Chem. Soc. Rev. 2021, 50, 2297.

[8]

X. Kang, M. Zhu, Chem. Soc. Rev. 2019, 48, 2422.

[9]

R. Jin, G. Li, S. Sharma, Y. Li, X. Du, Chem. Rev. 2021, 121, 567.

[10]

A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, T. P. Bigioni, Nature 2013, 501, 399.

[11]

X. Li, F. Zhang, X. Han, J.-H. Wang, X. Cui, P. Xing, H. Li, X.-M. Zhang, Nano Res. 2023, 16, 8003.

[12]

Z. Wang, H.-F. Su, Y.-Z. Tan, S. Schein, S.-C. Lin, W. Liu, S.-A. Wang, W.-G. Wang, C.-H. Tung, D. Sun, L.-S. Zheng, Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 12132.

[13]

Q. Wu, W. Zhou, H. Shen, R. Qin, Q. Hong, X. Yi, N. Zheng, CCS Chem. 2023, 5, 1215.

[14]

B. Yin, L. Jiang, X. Wang, Y. Liu, K. Kuang, M. Jing, C. Fang, C. Zhou, S. Chen, M. Zhu, Aggregate 2024, 5, e417.

[15]

S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, Angew. Chem. Int. Ed. 2014, 53, 2376.

[16]

S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi, T. Tsukuda, ACS Catal. 2012, 2, 1519.

[17]

G. Soldan, M. A. Aljuhani, M. S. Bootharaju, L. G. AbdulHalim, M. R. Parida, A.-H. Emwas, O. F. Mohammed, O. M. Bakr, Angew. Chem. Int. Ed. 2016, 55, 5749.

[18]

S. Takano, H. Hirai, T. Nakashima, T. Iwasa, T. Taketsugu, T. Tsukuda, J. Am. Chem. Soc. 2021, 143, 10560.

[19]

R. Juarez-Mosqueda, S. Malola, H. Häkkinen, Phys. Chem. Chem. Phys. 2017, 19, 13868.

[20]

D. Arima, M. Mitsui, J. Am. Chem. Soc. 2023, 145, 6994.

[21]

B. K. Teo, K. Keating, J. Am. Chem. Soc. 1984, 106, 2224.

[22]

C. Yao, J. Chen, M.-B. Li, L. Liu, J. Yang, Z. Wu, Nano Lett. 2015, 15, 1281.

[23]

M. Zhu, P. Wang, N. Yan, X. Chai, L. He, Y. Zhao, N. Xia, C. Yao, J. Li, H. Deng, Y. Zhu, Y. Pei, Z. Wu, Angew. Chem. Int. Ed. 2018, 57, 4500.

[24]

S. Wang, H. Abroshan, C. Liu, T.-Y. Luo, M. Zhu, H. J. Kim, N. L. Rosi, R. Jin, Nat. Commun. 2017, 8, 848.

[25]

X. Kang, M. Zhu, Chem. Mater. 2019, 31, 9939.

[26]

E. Khatun, P. Chakraborty, B. R. Jacob, G. Paramasivam, M. Bodiuzzaman, W. A. Dar, T. Pradeep, Chem. Mater. 2020, 32, 611.

[27]

S. Wang, Q. Li, X. Kang, M. Zhu, Acc. Chem. Res. 2018, 51, 2784.

[28]

T. U. Connell, S. Sandanayake, G. N. Khairallah, J. M. White, R. A. J. O’Hair, P. S. Donnelly, S. J. Williams, Dalton Trans. 2013, 42, 4903.

[29]

G. Deng, J. Kim, M. S. Bootharaju, F. Sun, K. Lee, Q. Tang, Y. J. Hwang, T. Hyeon, J. Am. Chem. Soc. 2023, 145, 3401.

[30]

G. Ma, F. Sun, L. Qiao, Q. Shen, L. Wang, Q. Tang, Z. Tang, Nano Res. 2023, 16, 10867.

[31]

G. Deng, K. Lee, H. Deng, M. S. Bootharaju, N. Zheng, T. Hyeon, J. Phys. Chem. C 2022, 126, 20577.

[32]

X. Sun, X. Tang, Y.-L. Gao, Y. Zhao, Q. Wu, D. Cao, H. Shen, Nanoscale 2023, 15, 2316.

[33]

S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, J. Am. Chem. Soc. 2022, 144, 11405.

[34]

G. Deng, K. Lee, H. Deng, S. Malola, M. S. Bootharaju, H. Häkkinen, N. Zheng, Hyeon, T. Angew. Chem. Int. Ed. 2023, 62, e202217483.

[35]

X. Sun, P. Wang, X. Yan, H. Guo, L. Wang, Q. Xu, B. Yan, S. Li, J. He, G. Chen, H. Shen, N. Zheng, iScience 2023, 26, 107850.

[36]

Y. Wang, J.-J. Yan, S. Hu, D. James Young, H.-X. Li, Z.-G. Ren, Chem. Asian J. 2021, 16, 2681.

[37]

M. Grzelczak, L. M Liz-Marzan, Chem. Soc. Rev. 2014, 43, 2089.

[38]

F. Kim, J. H. Song, P. Yang, J. Am. Chem. Soc. 2002, 124, 14316.

[39]

L. Maretti, P. S. Billone, Y. Liu, J. C. Scaiano, J. Am. Chem. Soc. 2009, 131, 13972.

[40]

M. R. Langille, M. L. Personick, C. A. Mirkin, Angew. Chem. Int. Ed. 2013, 52, 13910.

[41]

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001, 294, 1901.

[42]

Y.-X. Wang, J. Zhang, H.-F. Su, X. Cui, C.-Y. Wei, H. Li, X.-M. Zhang, ACS Nano 2023, 17, 11607.

[43]

M. Dahlen, M. Kehry, S. Lebedkin, M. M. Kappes, W. Klopper, P. W. Roesky, Dalton Trans. 2021, 50, 13412.

[44]

K. N. Jarzembska, R. Kami'nski, K. F. Dziubek, M. Citroni, D. Paliwoda, K. Durka, S. Fanetti, R. Bini, Inorg. Chem. 2018, 57, 8509.

[45]

A. A. Penney, V. V. Sizov, E. V. Grachova, D. V. Krupenya, V. V. Gurzhiy, G. L. Starova, S. P. Tunik, Inorg. Chem. 2016, 55, 4720.

[46]

L. Zhang, X.-X. Li, Z.-L. Lang, Y. Liu, J. Liu, L. Yuan, W.-Y. Lu, Y.-S. Xia, L.-Z. Dong, D.-Q. Yuan, Y.-Q. Lan, J. Am. Chem. Soc. 2021, 143, 3808.

[47]

G.-N. Liu, R.-D. Xu, J.-S. Guo, J.-L. Miao, M.-J. Zhang, C. Li, J. Mater. Chem. C 2021, 9, 8589.

[48]

M. Enomoto, A. Kishimura, T. Aida, J. Am. Chem. Soc. 2001, 123, 5608.

[49]

R. Peng, M. Li, D. Li, Coord. Chem. Rev. 2010, 254, 1.

[50]

J. Zhou, S. Yang, Y. Tan, H. Cheng, J. Chai, M. Zhu, Chem. Asian J. 2021, 16, 2973.

[51]

M.-B. Li, S.-K. Tian, Z. Wu, R. Jin, Chem. Commun. 2015, 51, 4433.

[52]

W.-M. He, J.-H. Hu, Y.-J. Cui, J. Li, Y.-B. Si, S.-B. Wang, Y.-J. Zhao, Z. Zhou, L.-F. Ma, S.-Q. Zang, Natl. Sci. Rev. 2024, 11, nwae174.

[53]

S.-K. Peng, Z. Lu, M. Xie, Y.-L. Huang, D. Luo, J.-N. Wang, X.-W. Zhu, X. Li, X.-P. Zhou, D. Li, Chem. Commun. 2020, 56, 4789.

[54]

S. C. K Hau, M. C.-L. Yeung, V. W.-W. Yam, T. C. W. Mak, J. Am. Chem. Soc. 2016, 138, 13732.

[55]

Y. Jiang, W.-J. Guo, D.-X. Kong, Y.-T. Wang, J.-Y. Wang, Q.-H. Wei, Dalton Trans. 2015, 44, 3941.

[56]

K. N. Jarzembska, R. Kami'nski, B. Fournier, E. Trzop, J. D. Sokolow, R. Henning, Y. Chen, P. Coppens, Inorg. Chem. 2014, 53, 10594.

[57]

W. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. Zou, Y. Pei, S. Wang, M. Zhu, J. Am. Chem. Soc. 2017, 139, 1618.

[58]

X. Gao, S. He, C. Zhang, C. Du, X. Chen, W. Xing, S. Chen, A. Clayborne, W. Chen, Adv. Sci. 2016, 3, 1600126.

[59]

W.-M. He, Z. Zhou, Z. Han, S. Li, Z. Zhou, L. Ma, S. Zang, Angew. Chem. Int. Ed. 2021, 60, 8505.

[60]

I. S. Kritchenkov, A. Yu Gitlina, I. O. Koshevoy, A. S. Melnikov, S. P. Tunik, Eur. J. Inorg. Chem. 2018, 2018, 3822.

[61]

X.-Y. Chang, G.-T. Xu, B. Cao, J.-Y. Wang, J.-S. Huang, C.-M. Che, Chem. Sci. 2017, 8, 7815.

[62]

Z.-H. Chen, L.-Y. Zhang, Z.-N. Chen, Organometallics 2012, 31, 256.

[63]

I. O. Koshevoy, A. J. Karttunen, Y.-C. Lin, C.-C. Lin, P.-T. Chou, S. P. Tunik, M. Haukka, T. A. Pakkanen, Dalton Trans. 2010, 39, 2395.

[64]

Y.-C. Wei, L.-Y. Hsu, J. Phys. Chem. Lett. 2023, 14, 2395.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/