Integrating self-assembled supramolecular organic frameworks with inorganic semiconductors for infrared photodetection

Zheng Gao , Shu-Yan Jiang , Peihao Huang , Yao Chen , Qiao-Yan Qi , Hongquan Zhao , Xingzhan Wei , Haofei Shi , Xin Zhao , Zeyun Xiao

Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e673

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (2) : e673 DOI: 10.1002/agt2.673
RESEARCH ARTICLE

Integrating self-assembled supramolecular organic frameworks with inorganic semiconductors for infrared photodetection

Author information +
History +
PDF

Abstract

The surface coverage of two-dimensional (2D) materials has been a challenge, requiring facile growth of conformal 2D materials as well as considerations for transparency, energy level, and interface contact. Self-assembly holds promise for addressing this challenge by constructing precisely structured 2D assemblies using intentionally designed building blocks, guided by diverse noncovalent interactions. In this study, we utilize a self-assembled 2D supramolecular organic framework (SOF) to cloak inorganic semiconductors and form composite materials for infrared photodetection. The charged SOF backbone regulates the energy levels, facilitating the migration of electrons at the organic-inorganic interface. Additionally, the oxygen (O) of the ethylene glycol chains forms coordination bonds with the Pb(II) in the inorganic semiconductor, establishing ohmic contacts. The composite device shows excellent detectivity under 500 K blackbody and 1550 nm infrared illumination, achieving D*bb(500 K) of 6.3 × 109 Jones under 500 K blackbody radiation. Moreover, the device exhibits low noise due to the SOF potential barrier impeding the photogenerated and/or thermally excited holes, and high stability as a result of bonding and passivation of vacancy defects. This study showcases the versatile functionality of 2D SOF materials in the field of optoelectronics, opening doors to innovative advancements in composite devices through a self-assembled organic–inorganic approach.

Keywords

carrier dynamics / organic-inorganic interface / photodetector / self-assembly / supramolecular organic framework

Cite this article

Download citation ▾
Zheng Gao, Shu-Yan Jiang, Peihao Huang, Yao Chen, Qiao-Yan Qi, Hongquan Zhao, Xingzhan Wei, Haofei Shi, Xin Zhao, Zeyun Xiao. Integrating self-assembled supramolecular organic frameworks with inorganic semiconductors for infrared photodetection. Aggregate, 2025, 6(2): e673 DOI:10.1002/agt2.673

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Yin, H. M. T. Choi, C. R. Calvert, N. A. Pierce, Nature 2008, 451, 318.

[2]

W. Liu, J. F. Stoddart, Chem 2021, 7, 29.

[3]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, Nat. Photon. 2013, 7, 883.

[4]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, Q. J. Wang, Nat. Commun. 2013, 4, 1811.

[5]

J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, D. N. Basov, Nat. Rev. Mater. 2019, 4, 552.

[6]

T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 2014, 7, 209.

[7]

S. Hong, C.-S. Lee, M.-H. Lee, Y. Lee, K. Y. Ma, G. Kim, S. I. Yoon, K. Ihm, K.-J. Kim, T. J. Shin, S. W. Kim, E.-C. Jeon, H. Jeon, J.-Y. Kim, H.-I. Lee, Z. Lee, A. Antidormi, S. Roche, M. Chhowalla, H.-J. Shin, H. S. Shin, Nature 2020, 582, 511.

[8]

D. S. Kim, R. C. Dominguez, R. Mayorga-Luna, D. Ye, J. Embley, T. Tan, Y. Ni, Z. Liu, M. Ford, F. Y. Gao, S. Arash, K. Watanabe, T. Taniguchi, S. Kim, C.-K. Shih, K. Lai, W. Yao, L. Yang, X. Li, Y. Miyahara, Nat. Mater. 2024, 23, 65.

[9]

T. Zhang, H. Qi, Z. Liao, Y. D. Horev, L. A Panes-Ruiz, P. St Petkov, Z. Zhang, R. Shivhare, P. Zhang, K. Liu, V. Bezugly, S. Liu, Z. Zheng, S. Mannsfeld, T. Heine, G. Cuniberti, H. Haick, E. Zschech, U. Kaiser, R. Dong, X. Feng, Nat. Commun. 2019, 10, 4225.

[10]

X. Wen, R. Zhang, Y. Hu, L. Wu, H. Bai, D. Song, Y. Wang, R. An, J. Weng, S. Zhang, R. Wang, L. Qiu, J. Lin, G. Gao, H. Liu, Z. Guo, D. Ye, Nat. Commun. 2023, 14, 800.

[11]

M. Kumar, N. L. Ing, V. Narang, N. K. Wijerathne, A. I. Hochbaum, R. V. Ulijn, Nat. Chem. 2018, 10, 696.

[12]

L.-P. Wu, D. Ahmadvand, J. Su, A. Hall, X. Tan, Z. S. Farhangrazi, S. M. Moghimi, Nat. Commun. 2019, 10, 4635.

[13]

M. Herran, S. Juergensen, M. Kessens, D. Hoeing, A. Köppen, A. Sousa-Castillo, W. J. Parak, H. Lange, Nat. Catal. 2023, 6, 1205.

[14]

J. Jiao, Z. Li, Z. Qiao, X. Li, Y. Liu, J. Dong, J. Jiang, Y. Cui, Nat. Commun. 2018, 9, 4423.

[15]

D. Philp, J. F. Stoddart, Angew Chem. Int. Ed. 1996, 35, 1154.

[16]

D. Zhao, D. Kim, S. Ghosh, G. Wang, W. Huang, Z. Zhu, T. J. Marks, I. Zozoulenko, A. Facchetti, Adv. Funct. Mater. 2024, 34, 2310071.

[17]

M. Wang, C. Nie, J. Liu, S. Wu, Nat. Commun. 2023, 14, 1000.

[18]

T. Vijayakanth, D. J. Liptrot, E. Gazit, R. Boomishankar, C. R. Bowen, Adv. Funct. Mater. 2022, 32, 2109492.

[19]

Y. Chen, X. Zhuang, E. A. Goldfine, V. P. Dravid, M. J. Bedzyk, W. Huang, A. Facchetti, T. J. Marks, Adv. Funct. Mater. 2020, 30, 2005069.

[20]

P. Xiong, Y. Wu, Y. Liu, R. Ma, T. Sasaki, X. Wang, J. Zhu, Energy Environ. Sci. 2020, 13, 4834.

[21]

J. Qiu, L. Su, L. L. McDowell, Q. Phan, Y. Liu, G. Zhang, Y. Yang, Z. Shi, ACS Appl. Mater. Interfaces 2023, 15, 24541.

[22]

X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Adv. Mater. 2015, 27, 403.

[23]

X. Feng, A. D. Schlüter, Angew. Chem. Int. Ed. 2018, 57, 13748.

[24]

J. Tian, T.-Y. Zhou, S.-C. Zhang, S. Aloni, M. V. Altoe, S.-H. Xie, H. Wang, D.-W. Zhang, X. Zhao, Y. Liu, Z.-T. Li, Nat. Commun. 2014, 5, 5574.

[25]

G. Zhang, B. Li, Y. Zhou, X. Chen, B. Li, Z.-Y. Lu, L. Wu, Nat. Commun. 2020, 11, 425.

[26]

Z. Li, X. Sun, X. Zheng, B. Li, D. Gao, S. Zhang, X. Wu, S. Li, J. Gong, J. M. Luther, Z. Li, Z. Zhu, Science 2023, 382, 284.

[27]

M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, V. Podzorov, Nat. Mater. 2008, 7, 84.

[28]

Z.-J. Yin, S.-Y. Jiang, N. Liu, Q.-Y. Qi, Z.-Q. Wu, T.-G. Zhan, X. Zhao, CCS Chem. 2022, 4, 141.

[29]

M.-H. Jang, S.-S. Yoo, M. T. Kramer, N. K. Dhar, M. C Gupta, Semicond. Sci. Technol. 2019, 34, 065009.

[30]

Y. Suh, S.-H. Suh, Proc. SPIE 2016, 9974, 997405.

[31]

M. C. Torquemada, M. T. Rodrigo, G. Vergara, F. J. Sánchez, R. Almazán, M. Verdú, P. Rodrı'guez, V. Villamayor, L. J. Gómez, M. T. Montojo, A. Muñoz, Appl. Phys. Lett. 2003, 93, 1778.

[32]

A. Munoz, J. Melendez, M. C. Torquemada, M. T. Rodrigo, J. Cebrian, A. J. de Castro, J. Meneses, M. Ugarte, F. Lopez, G. Vergara, J. L. Hernandez, J. M. Martın, L. Adell, M. T. Montojo, Thin Solid Films 1998, 317, 425.

[33]

G. Tumen-Ulzii, C. Qin, D. Klotz, M. R. Leyden, P. Wang, M. Auffray, T. Fujihara, T. Matsushima, J.-W. Lee, S.-J. Lee, Y. Yang, C. Adachi, Adv. Mater. 2020, 32, 1905035.

[34]

W. Yin, H. Li, A. S. R. Chesman, B. Tadgell, A. D. Scully, M. Wang, W. Huang, C. R. McNeill, W. W. H. Wong, N. V. Medhekar, P. Mulvaney, J. J. Jasieniak, ACS Nano 2021, 15, 1454.

[35]

Z. Gao, C. Leng, H. Zhao, X. Wei, H. Shi, Z. Xiao, Adv. Mater. 2023, 12, e2304855.

[36]

J. T. Harrison, M. C. Gupta, J. Appl. Phys. 2022, 131, 025308.

[37]

H. Budzier, G. Gerlach, Thermal Infrared Sensors: Theory, Optimisation and Practice, first ed., Wiley-VCH, Dresden, Germany 2011, Ch.5.

[38]

H. Dortaj, M. Dolatyari, A. Zarghami, F. Alidoust, A. Rostami, S. Matloub, R. Yadipour, Sci. Rep. 2021, 11, 1533.

[39]

J. Park, M. M. Al Mahfuz, R. Huebner, D.-K. Ko, ACS Appl. Electron. Mater. 2023, 5, 2386.

[40]

M. Long, P. Wang, H. Fang, W. Hu, Adv. Funct. Mater. 2018, 29, 1803807.

[41]

Y. Ren, Y. Li, X. Liu, Phys. Status Solidi RRL 2021, 15, 2100406.

[42]

L. Gao, R. Wang, A. V. Kuklin, H. Zhang, H. Ågren, Adv. Funct. Mater. 2021, 31, 2010401.

[43]

K. Zhao, S. Feng, C. Yang, J. Shen, Y. Fu, Chin. Phys. B 2022, 31, 038504.

[44]

C. Hu, K. Xia, C. Fu, X. Zhao, T. Zhu, Energy Environ. Sci. 2022, 15, 1406.

[45]

F. Wang, T. Zhang, R. Xie, Z. Wang, W. Hu, Nat. Commun. 2023, 14, 2224.

[46]

M. Long, A. Gao, P. wang, H. Xia, C. Ott, C. Pan, Y. fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, Sci. Adv. 2017, 3, e1700589.

[47]

X. Qian, H. Wu, D. Wang, Y. Zhang, J. Wang, G. Wang, L. Zheng, S. J. Pennycook, L.-D. Zhao, Energy Environ. Sci. 2019, 12, 1969.

[48]

E. I. Rogacheva, T. V. Tavrina, S. N. Grigorov, O. N. Nashchekina, V. V. Volobuev, A. G. Fedorov, K. A. Nasedkin, M. S. Dresselhaus, J. Electron. Mater. 2002, 31, 298.

[49]

M.-H. Jang, P. M. Litwin, S.-S. Yoo, S. J. McDonnell, N. K. Dhar, M. C. Gupta, J. Appl. Phys. 2019, 126, 105701.

[50]

A. J. Morfa, G. Beane, B. Mashford, B. Singh, J. Phys. Chem. C 2010, 114, 19815.

[51]

H. Chen, H. Yan, Y. Cai, Chem. Mater. 2022, 34, 1020.

[52]

Y.-S. Kim, C.-H. Ri, Y.-H. Kye, U.-G. Jong, X. Wang, Y. Zhang, X. Niu, C.-J. Yu, J. Phys. Chem. C 2022, 126, 3671.

[53]

C. Liu, H. Su, Y. Pu, M. Guo, P. Zhai, Z. Liu, Z. Zhang, Nano Energy 2023, 118, 10890.

[54]

J. Liang, X. Hu, C. Wang, C. Liang, C. Chen, M. Xiao, J. Li, C. Tao, G. Xing, R. Yu, W. Ke, G. Fang, Joule 2022, 6, 816.

[55]

V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, M. M. Wienk, Adv. Funct. Mater. 2003, 13, 43.

[56]

M.-Q. Long, L. Tang, D. Wang, L. Wang, Z. Shuai, J. Am. Chem. Soc. 2009, 131, 17728.

[57]

L. Han, D. M. Balazs, A. G. Shulga, M. Abdu-Aguye, W. Ma, M. A. Loi, Adv. Electron. Mater. 2018, 4, 1700580.

[58]

L. K. J Vandamme, F. N. Hooge, IEEE Trans. Electron Devices 2008, 55, 3070.

[59]

V. Palenskis, K. Maknys, Sci. Rep. 2016, 5, 18305.

[60]

M. Kamada, W. Zeng, A. Laitinen, J. Sarkar, S.-S. Yeh, K. Tappura, H. Seppä, P. Hakonen, Commun. Phys. 2023, 6, 207.

[61]

W. D. Hu, X. S. Chen, Z. H. Ye, W. Lu, Appl. Phys. Lett. 2011, 99, 091101.

[62]

Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye, X. Chai, J. Ye, Y. Chen, R. Xie, Y. Zhou, Z. Hu, Q. Li, L. Zhang, F. Wang, P. Wang, J. Miao, J. Wang, X. Chen, W. Lu, P. Zhou, W. Hu, Nat. Electron. 2021, 4, 357.

[63]

P. Wu, L. Ye, L. Tong, P. Wang, Y. Wang, H. Wang, H. Ge, Z. Wang, Y. Gu, K. Zhang, Y. Yu, M. Peng, F. Wang, M. Huang, P. Zhou, W. Hu, Light: Sci. Appl. 2022, 11, 6.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/