Metal-coordinated amino acid/peptide/protein-based supramolecular self-assembled nanomaterials for anticancer applications

Maryam Shabbir , Atia Atiq , Jiahua Wang , Maria Atiq , Nyla Saeed , Ibrahim Yildiz , Xuehai Yan , Ruirui Xing , Manzar Abbas

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e672

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e672 DOI: 10.1002/agt2.672
REVIEW

Metal-coordinated amino acid/peptide/protein-based supramolecular self-assembled nanomaterials for anticancer applications

Author information +
History +
PDF

Abstract

Biomolecules with metals can form supramolecular nanomaterials through coordination assembly, opening new avenues for cancer theranostics and bringing unique insights into personalized nanomedicine. These biomaterials have been considered versatile and innovative nanoagents due to their structure‒function control, biological nature, and simple preparation methods. This review article summarized the recent developments in multicomponent nanomaterials formed from metal coordination interactions with amino acids, peptides, and proteins, together with anticancer drugs, for cancer theranostics. We discussed the role of functional groups anchored in building blocks for coordination interactions, and subsequently, the types of interactions were examined from a structure‒function perspective. Amino acids with different metals and anticancer drugs forming supramolecular nanomaterials and their anticancer mechanisms were highlighted. Peptides with different metals and anticancer drugs, proteins with metals and anticancer drugs used for material formations, and anticancer activity have been discussed. Ultimately, the conclusion and future outlook for multicomponent supramolecular nanomaterials offer fundamental insights into fabrication design and precision medicine.

Keywords

anticancer therapy / diagnostics / metal-peptides / self-assembly / supramolecular nanomaterials

Cite this article

Download citation ▾
Maryam Shabbir, Atia Atiq, Jiahua Wang, Maria Atiq, Nyla Saeed, Ibrahim Yildiz, Xuehai Yan, Ruirui Xing, Manzar Abbas. Metal-coordinated amino acid/peptide/protein-based supramolecular self-assembled nanomaterials for anticancer applications. Aggregate, 2025, 6(1): e672 DOI:10.1002/agt2.672

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, CA Cancer J. Clin. 2023, 73, 17.

[2]

B. S. Chhikara, K. Parang, Chem. Biol. Lett. 2023, 10, 451.

[3]

C. M. Neophytou, M. Panagi, T. Stylianopoulos, P. Papageorgis, Cancers 2021, 13, 2053.

[4]

C. Roma-Rodrigues, R. Mendes, P. V. Baptista, A. R. Fernandes, Int. J. Mol. Sci. 2019, 20, 840.

[5]

N. K. Pallegar, S. L. Christian, in Tumor Microenvironment: Non-Hematopoietic Cells (Ed: A. Birbrair), Springer International Publishing, Cham 2020.

[6]

W. Palm, C. B. Thompson, Nature 2017, 546, 234.

[7]

X. Li, X. Sun, P. Carmeliet, Cell Metab. 2019, 30, 414.

[8]

I. F. Tannock, Lancet 1998, 351, SII9.

[9]

M. T. Manzari, Y. Shamay, H. Kiguchi, N. Rosen, M. Scaltriti, D. A. Heller, Nat. Rev. Mater. 2021, 6, 351.

[10]

S. Ullah, M. Younas, S. Idrees, F. Rafiq, M. Saleem, M. Abbas, T. A. Tabish, Organic Nanomaterials for Cancer Phototheranostics, Elsevier 2024.

[11]

M. Abbas, M. Ovais, S. Mukherjee, A. Ali, M. Hanif, C. Chen, Biogenic Nanoparticles for Cancer Theranostics, Elsevier 2021.

[12]

P. Cen, J. Huang, C. Jin, J. Wang, Y. Wei, H. Zhang, M. Tian, Aggregate 2023, 4, e352.

[13]

M. Abbas, A. Atiq, M. Ovais, M. R. Hamblin, Organic Nanomaterials for Cancer Phototheranostics, Elsevier 2023.

[14]

M. Kang, Z. Zhang, N. Song, M. Li, P. Sun, X. Chen, D. Wang, B. Z. Tang, Aggregate 2020, 1, 80.

[15]

M. A. Khan, M. Atiq, K. Irshad, M. Abbas, Organic Nanomaterials for Cancer Phototheranostics, Elsevier 2024.

[16]

C. Zhou, M. Abbas, M. Zhang, Q. Zou, G. Shen, C. Chen, H. Peng, X. Yan, J. Nanosci. Nanotechnol. 2015, 15, 10141.

[17]

M. Abbas, R. Xing, N. Zhang, Q. Zou, X. Yan, ACS Biomater. Sci. Eng. 2017, 4, 2046.

[18]

J. Sun, X. He, Aggregate 2022, 3, e282.

[19]

M. Abbas, Q. Zou, S. Li, X. Yan, Adv. Mater. 2017, 29, 1605021.

[20]

F. Caputo, M. De Nicola, L. Ghibelli, Biochem. Pharmacol. 2014, 92, 112.

[21]

J. Cohen, G. DeLoid, G. Pyrgiotakis, P. Demokritou, Nanotoxicology 2013, 7, 417.

[22]

X. Zhong, X. Wang, J. Li, J. Hu, L. Cheng, X. Yang, Coord. Chem. Rev. 2021, 437, 213828.

[23]

M. Abbas, A. Atiq, R. Xing, X. Yan, J. Mater. Chem. B 2021, 9, 4444.

[24]

M. Rahman, K. Alam, A. Hafeez, R. Ilyas, S. Beg, Nanoformulation Strategies for Cancer Treatment, Elsevier 2021.

[25]

A. Sharma, A. K. Goyal, G. Rath, J. Drug Target. 2018, 26, 617.

[26]

L. Zhao, Y. Liu, R. Chang, R. Xing, X. Yan, Adv. Funct. Mater. 2019, 29, 1806877.

[27]

J. Heo, D. P. Murale, H. Y. Yoon, V. Arun, S. Choi, E. Kim, J. S. Lee, S. Kim, Aggregate 2022, 3, e159.

[28]

M. Ovais, A. Ali, S. Ullah, A. T. Khalil, A. Atiq, M. Atiq, N. Dogan, Z. K. Shinwari, M. Abbas, Colloids Surf. A: Physicochem. Eng. Asp. 2022, 651, 129708.

[29]

S. Cao, W. Fan, R. Chang, C. Yuan, X. Yan, CCS Chem. 2024.

[30]

P. Zhou, R. Shi, J.-F. Yao, C.-F. Sheng, H. Li, Coord. Chem. Rev. 2015, 292, 107.

[31]

R. Tian, Z. Wang, J. Liu, Q. Jiang, B. Ding, Aggregate 2021, 2, 133.

[32]

Y. Bai, Q. Luo, J. Liu, Chem. Soc. Rev. 2016, 45, 2756.

[33]

Y. Li, R. Tian, H. Shi, J. Xu, T. Wang, J. Liu, Aggregate 2023, 4, e317.

[34]

R. Xing, C. Yuan, W. Fan, X. Ren, X. Yan, Sci. Adv. 2023, 9, eadd8105.

[35]

M. Abbas, H. H. Susapto, C. A. Hauser, ACS Omega 2022, 7, 2082.

[36]

E. De Santis, M. G. Ryadnov, Chem. Soc. Rev. 2015, 44, 8288.

[37]

B. D. Ilieş, I. Yildiz, M. Abbas, ChemBioChem 2024, 25, e202300867.

[38]

R. Chang, C. Yuan, P. Zhou, R. Xing, X. Yan, Acc. Chem. Res. 2024, 57, 289.

[39]

M. Abbas, Peptide Self-Assembly and Engineering: Fundamentals, Structures, and Applications, Vol. 1, Wiley 2024.

[40]

I. W. Hamley, Angew. Chem. Int. Ed. 2014, 53, 6866.

[41]

F. Wang, Y. Wang, X. Zhang, W. Zhang, S. Guo, F. Jin, J. Controlled Release 2014, 174, 126.

[42]

X. Wang, Q. Wang, Acc. Chem. Res. 2021, 54, 1274.

[43]

Y. Zhang, L. Zhu, J. Tian, L. Zhu, X. Ma, X. He, K. Huang, F. Ren, W. Xu, Adv. Sci. 2021, 8, 2100216.

[44]

N. Habibi, N. Kamaly, A. Memic, H. Shafiee, Nano Today 2016, 11, 41.

[45]

J. Omar, D. Ponsford, C. A. Dreiss, T. C. Lee, X. J. Loh, Chem. Asian J. 2022, 17, e202200081.

[46]

J. Xu, J. Wang, J. Ye, J. Jiao, Z. Liu, C. Zhao, B. Li, Y. Fu, Adv. Sci. 2021, 8, 2101101.

[47]

M. Abbas, M. Ovais, A. Atiq, T. M. Ansari, R. Xing, E. Spruijt, X. Yan, Coord. Chem. Rev. 2022, 460, 214481.

[48]

M. Younis, S. Ahmad, A. Atiq, M. Amjad Farooq, M. H. Huang, M. Abbas, Chem. Rec. 2023, 23, e202300126.

[49]

M. Ovais, M. You, J. Ahmad, R. Djellabi, A. Ali, M. H. Akhtar, M. Abbas, C. Chen, TrAC, Trends Anal. Chem. 2022, 153, 116659.

[50]

M. Abbas, M. Ovais, C. Chen, Sci. Bull. 2020, 65, 2050.

[51]

I. Zmerli, J.-P. Michel, A. Makky, Multifunct. Mater. 2021, 4, 022001.

[52]

M. Rajora, J. Lou, G. Zheng, Chem. Soc. Rev. 2017, 46, 6433.

[53]

M. Elsabahy, G. S. Heo, S.-M. Lim, G. Sun, K. L. Wooley, Chem. Rev. 2015, 115, 10967.

[54]

Y. Liu, S. Xu, Q. Lyu, Y. Huang, W. Wang, Aggregate 2024, 5, e443.

[55]

Q. Zou, X. Yan, Chem. Eur. J. 2018, 24, 755.

[56]

Q. Zhang, R.-J. Xing, W.-Z. Wang, Y.-X. Deng, D.-H. Qu, H. Tian, iScience 2019, 19, 14.

[57]

L. Sun, C. Zheng, T. J. Webster, Int. J. Nanomed. 2017, 12, 73.

[58]

G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 2017, 46, 4661.

[59]

K. Liu, R. Xing, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem. Int. Ed. 2016, 128, 3088.

[60]

Y. Kumar, A. Sinha, K. Nigam, D. Dwivedi, J. S. Sangwai, Nanoscale 2023, 15, 6075.

[61]

M. Safdar, Y. Junejo, Food Chem. 2015, 173, 660.

[62]

C. Marsh, G. C. Shearer, B. T. Knight, J. Paul-Taylor, A. D. Burrows, Coord. Chem. Rev. 2021, 439, 213928.

[63]

G. Hotová, V. Slovák, T. Zelenka, R. Maršálek, A. Parchaňská, Sci. Total Environ. 2020, 711, 135436.

[64]

C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Chem. Rev. 2019, 120, 1184.

[65]

A. Rai, S. Seena, T. Gagliardi, P. Palma, Adv. Colloid Interface Sci. 2023, 318, 102951.

[66]

M. J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z. C. Westcott, V. Puddu, C. C. Perry, Chem. Rev. 2018, 118, 11118.

[67]

M. L. Zastrow, V. L. Pecoraro, Coord. Chem. Rev. 2013, 257, 2565.

[68]

A. A. Shemetov, I. Nabiev, A. Sukhanova, ACS Nano 2012, 6, 4585.

[69]

R. K. Sigel, A. M. Pyle, Chem. Rev. 2007, 107, 97.

[70]

I. Sovago, C. Kállay, K. Várnagy, Coord. Chem. Rev. 2012, 256, 2225.

[71]

M. Lukács, D. Csilla Pálinkás, G. Szunyog, K. Várnagy, Chemistry-Open 2021, 10, 451.

[72]

Y. Lu, S. M. Berry, T. D. Pfister, Chem. Rev. 2001, 101, 3047.

[73]

S. D. Zarić, D. M. Popović, E.W. Knapp, Chem. Eur. J. 2000, 6, 3935.

[74]

M. Abbas, W. P. Lipi'nski, J. Wang, E. Spruijt, Chem. Soc. Rev. 2021, 50, 3690.

[75]

J.-M. Lehn, Science 1993, 260, 1762.

[76]

J. N. Israelachvili, Intermolecular and Surface Forces. Academic Press 2011.

[77]

M. Rubinstein, R. H. Colby, Polymer Physics, Vol. 23, Oxford University Press, New York 2003.

[78]

R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Zhang, Q. Zou, G. Ma, X. Yan, Adv. Mater. 2016, 28, 3669.

[79]

M. González-Cuesta, C. O. Mellet, J. M. G. Fernández, Chem. Commun. 2020, 56, 5207.

[80]

M. Reches, E. Gazit, Science 2003, 300, 625.

[81]

G. Jiang, J. Yu, J. Wang, B. Z. Tang, Aggregate 2022, 3, e285.

[82]

A. J. McConnell, C. S. Wood, P. P. Neelakandan, J. R. Nitschke, Chem. Rev. 2015, 115, 7729.

[83]

A. I. Denesyuk, S. E. Permyakov, M. S. Johnson, E. A. Permyakov, K. Denessiouk, Biochem. Biophys. Res. Commun. 2017, 483, 958.

[84]

J. C. Lewis, ACS Catal. 2013, 3, 2954.

[85]

M. Albrecht, P. Stortz, Chem. Soc. Rev. 2005, 34, 496.

[86]

S. Zhang, Nat. Biotechnol. 2003, 21, 1171.

[87]

C. He, D. Liu, W. Lin, Chem. Rev. 2015, 115, 11079.

[88]

O. Bellotto, M. C. Cringoli, S. Perathoner, P. Fornasiero, S. Marchesan, Gels 2021, 7, 14.

[89]

Z. Qiao, J. Zhang, X. Hai, Y. Yan, W. Song, S. Bi, Biosens. Bioelectron. 2021, 176, 112898.

[90]

A. D. Merg, J. C. Boatz, A. Mandal, G. Zhao, S. Mokashi-Punekar, C. Liu, X. Wang, P. Zhang, P. C. van der Wel, N. L. Rosi, J. Am. Chem. Soc. 2016, 138, 13655.

[91]

H. Yu, H. Guo, H. Zu, H. Ding, S. Lin, Y. Wang, L. W. Zhang, Y. Wang, Aggregate 2022, 3, e194.

[92]

S. Jeong, K. Lee, S. H. Yoo, H. S. Lee, S. Kwon, ChemBioChem 2023, 24, e202200448.

[93]

I. Jahović, Y.-Q. Zou, S. Adorinni, J. R. Nitschke, S. Marchesan, Matter 2021, 4, 2123.

[94]

S. Dey, R. Misra, A. Saseendran, S. Pahan, H. N. Gopi, Angew. Chem. Int. Ed. 2021, 133, 9951.

[95]

M. Kieffer, A. M. Garcia, C. J. Haynes, S. Kralj, D. Iglesias, J. R. Nitschke, S. Marchesan, Angew. Chem. Int. Ed. 2019, 131, 8066.

[96]

H. Zhang, L. Kang, Q. Zou, X. Xin, X. Yan, Curr. Opin. Biotechnol. 2019, 58, 45.

[97]

J. Zhang, C.-Y. Su, Coord. Chem. Rev. 2013, 257, 1373.

[98]

T. R. Cook, V. Vajpayee, M. H. Lee, P. J. Stang, K.-W. Chi, Acc. Chem. Res. 2013, 46, 2464.

[99]

Y. Li, P. Sun, L. Zhao, X. Yan, D. K. Ng, P. C. Lo, Angew. Chem. Int. Ed. 2020, 59, 23228.

[100]

Y. Li, Q. Zou, C. Yuan, S. Li, R. Xing, X. Yan, Angew. Chem. Int. Ed. 2018, 57, 17084.

[101]

H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266.

[102]

B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan, Z. Li, Y. Kong, Y. Sang, H. Liu, W. Bu, J. Am. Chem. Soc. 2018, 141, 849.

[103]

J. Liu, M. Wu, Y. Pan, Y. Duan, Z. Dong, Y. Chao, Z. Liu, B. Liu, Adv. Funct. Mater. 2020, 30, 1908865.

[104]

H. Erdogăn, B. Karayavuz, M. Bacanlı, M. Sarper, O. Esim, S. Altuntaş, O. Erdem, Y. I. Özkan, ACS Appl. Nano Mater. 2023, 6, 6700.

[105]

S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, J. Am. Chem. Soc. 2018, 140, 10794.

[106]

R. Xing, Q. Zou, C. Yuan, L. Zhao, R. Chang, X. Yan, Adv. Mater. 2019, 31, 1900822.

[107]

S.-S. Xue, C.-P. Tan, M.-H. Chen, J.-J. Cao, D.-Y. Zhang, R.-R. Ye, L.-N. Ji, Z.-W. Mao, Chem. Comm. 2017, 53, 842.

[108]

D. Zhi, T. Yang, J. Yang, S. Fu, S. Zhang, Acta Biomater. 2020, 102, 13.

[109]

Y. Jiang, X. Zhao, J. Huang, J. Li, P. K. Upputuri, H. Sun, X. Han, M. Pramanik, Y. Miao, H. Duan, Nat. Commun. 2020, 11, 1857.

[110]

H. Xu, N. Yu, J. Zhang, Z. Wang, P. Geng, M. Wen, M. Li, H. Zhang, Z. Chen, Biomaterials 2020, 257, 120239.

[111]

C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang, H. Yao, Z. Wang, J. Shi, Angew. Chem. Int. Ed. 2016, 55, 2101.

[112]

S. Binita Chanu, M. K. Raza, S. Banerjee, P. R. Mina, D. Musib, M. Roy, Chem. Sci. J. 2019, 131, 1.

[113]

B. Kater, A. Hunold, H.-G. Schmalz, L. Kater, B. Bonitzki, P. Jesse, A. Prokop, J. Cancer Res. Clin. Oncol. 2011, 137, 639.

[114]

J. Wang, M. Abbas, Y. Huang, J. Wang, Y. Li, Commun. Chem. 2023, 6, 24.

[115]

A. G. Scrimgeour, M. L. Condlin, L. Otieno, M. E. Bovill, Nutrients, Dietary Supplements, and Nutriceuticals: Cost Analysis Versus Clinical Benefits, Humana Press 2011.

[116]

S. Gao, G. Wang, Z. Qin, X. Wang, G. Zhao, Q. Ma, L. Zhu, Biomaterials 2017, 112, 324.

[117]

M. Jia, Y. Liu, P. Wei, T. Yi, Aggregate 2024, 5, e533.

[118]

X. Lu, S. Gao, H. Lin, L. Yu, Y. Han, P. Zhu, W. Bao, H. Yao, Y. Chen, J. Shi, Adv. Mater. 2020, 32, 2002246.

[119]

L. Lai, D. Luo, T. Liu, W. Zheng, T. Chen, D. Li, ChemistryOpen 2019, 8, 434.

[120]

L. Shi, F. Hu, Y. Duan, W. Wu, J. Dong, X. Meng, X. Zhu, B. Liu, ACS Nano 2020, 14, 2183.

[121]

Q. Yang, J. Peng, K. Shi, Y. Xiao, Q. Liu, R. Han, X. Wei, Z. Qian, J. Control. Release 2019, 308, 29.

[122]

S. Wang, K. J. Chen, T. H. Wu, H. Wang, W. Y. Lin, M. Ohashi, P. Y. Chiou, H. R. Tseng, Angew. Chem. Int. Ed. 2010, 49, 3777.

[123]

S. Lu, J. Ke, X. Li, D. Tu, X. Chen, Aggregate 2021, 2, e59.

[124]

S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev. 2014, 114, 2343.

[125]

L. Li, R. Tong, M. Li, D. S. Kohane, Acta Biomater. 2016, 33, 34.

[126]

I. Kim, E. H. Han, J. Ryu, J.-Y. Min, H. Ahn, Y.-H. Chung, E. Lee, Biomacromolecules 2016, 17, 3234.

[127]

W. Jin, Q. Wang, M. Wu, Y. Li, G. Tang, Y. Ping, P. K. Chu, Biomaterials 2017, 129, 83.

[128]

Y. Dai, B. Wang, Z. Sun, J. Cheng, H. Zhao, K. Wu, P. Sun, Q. Shen, M. Li, Q. Fan, ACS Appl. Mater. Interfaces 2019, 11, 39410.

[129]

J. Yan, W. He, S. Yan, F. Niu, T. Liu, B. Ma, Y. Shao, Y. Yan, G. Yang, W. Lu, ACS Nano 2018, 12, 2017.

[130]

H. Jung, A. Dubey, H. J. Koo, V. Vajpayee, T. R. Cook, H. Kim, S. C. Kang, P. J. Stang, K. W. Chi, Chem. Eur. J. 2013, 19, 6709.

[131]

G. Gupta, A. Das, S. Panja, J. Y. Ryu, J. Lee, N. Mandal, C. Y. Lee, Chem. Eur. J. 2017, 23, 17199.

[132]

A. A. Adeyemo, A. Shettar, I. A. Bhat, P. Kondaiah, P. S. Mukherjee, Dalton Trans. 2018, 47, 8466.

[133]

G. I. Pascu, A. C. Hotze, C. Sanchez-Cano, B. M. Kariuki, M. J. Hannon, Angew. Chem. Int. Ed. 2007, 46, 4374.

[134]

C. Ducani, A. Leczkowska, N. J. Hodges, M. J. Hannon, Angew. Chem. Int. Ed. 2010, 49, 8942.

[135]

M. Martinez-Calvo, K. Orange, R. Elmes, Nanoscale 2016, 8, 563.

[136]

N. Cheng, Y. Chen, J. Yu, J.-J. Li, Y. Liu, Bioconjugate Chem. 2018, 29, 1829.

[137]

Y. Zhao, L. Zhang, X. Li, Y. Shi, R. Ding, M. Teng, P. Zhang, C. Cao, P. J. Stang, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 4090.

[138]

V. Vajpayee, Y. H. Song, Y. J. Yang, S. C. Kang, H. Kim, I. S. Kim, M. Wang, P. J. Stang, K.-W. Chi, Organometallics 2011, 30, 3242.

[139]

A. Dubey, J. W. Min, H. J. Koo, H. Kim, T. R. Cook, S. C. Kang, P. J. Stang, K. W. Chi, Chem. Eur. J. 2013, 19, 11622.

[140]

H. Vardhan, F. Verpoort, Polyhedron 2019, 157, 262.

[141]

X. Lin, J. Wang, X. Wu, Y. Luo, Y. Wang, Y. Zhao, Adv. Funct. Mater. 2023, 33, 2211323.

[142]

M. Zhou, X. Lin, L. Wang, C. Yang, Y. Yu, Q. Zhang, Small 2024, 20, 2309485.

[143]

K. Bian, X. Zhang, K. Liu, T. Yin, H. Liu, K. Niu, W. Cao, D. Gao, ACS Sustain. Chem. Eng. 2018, 6, 7574.

[144]

T. Yang, Y. A. Tang, L. Liu, X. Lv, Q. Wang, H. Ke, Y. Deng, H. Yang, X. Yang, G. Liu, ACS Nano 2017, 11, 1848.

[145]

F. Li, T. Li, D. Zhi, P. Xu, W. Wang, Y. Hu, Y. Zhang, S. Wang, J. M. Thomas, J. B. Norman, Biomaterials 2020, 256, 120219.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/