Constructing benzothiadiazole-based donor‒acceptor covalent organic frameworks for efficient photocatalytic H2 evolution
Yanchang Huang , Bin Gao , Qihang Huang , De-Li Ma , Hongwei Wu , Cheng Qian
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e669
Constructing benzothiadiazole-based donor‒acceptor covalent organic frameworks for efficient photocatalytic H2 evolution
Donor‒acceptor covalent organic frameworks (D‒A COFs) have been regarded as promising materials for photocatalytic water splitting because of their tunable band gaps. However, their efficiency is hindered by fast charge recombination and low photostability. Herein, we proposed a donor structural engineering strategy for improving the photocatalytic activity of D‒A COFs to tackle these problems. Two benzothiadiazole-based D‒A COFs (DHU-COF-BB and DHU-COF-BP) with distinct donors were prepared for photocatalytic H2 evolution reaction (HER). As a comparison, DHU-COF-TB without benzothiadiazole moieties was also designed and synthesized. Impressively, the photocatalytic H2 production rate of DHU-COFBB reaches 12.80 mmol g–1 h–1 under visible light irradiation (≥420 nm), which was nearly 2.0 and 3.1 times higher than that of DHU-COF-BP (6.47 mmol g–1 h–1) and DHU-COF-TB (4.06 mmol g–1 h–1), respectively. In addition, the apparent quantum efficiency (AQE) of DHU-COF-BB was up to 5.04% at 420 nm. Photocatalytic and electrochemical measurements indicate that the enhanced hydrogen evolution activity of DHU-COF-BB can be ascribed to the introduction of appropriate benzene moiety into the donors, which increases the charge separation efficiency and thereby suppresses the electron‒hole recombination. Density functional theory (DFT) calculations revealed that both triphenylamine and benzothiadiazole units are the main active sites for HER over the DHU-COF-BB. This work provides new insight into the photocatalytic hydrogen production activity of D‒A COFs by a donor structural engineering strategy.
benzothiadiazole / covalent organic framework / donor‒acceptor / photocatalytic hydrogen evolution
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |