Constructing benzothiadiazole-based donor‒acceptor covalent organic frameworks for efficient photocatalytic H2 evolution

Yanchang Huang , Bin Gao , Qihang Huang , De-Li Ma , Hongwei Wu , Cheng Qian

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e669

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e669 DOI: 10.1002/agt2.669
RESEARCH ARTICLE

Constructing benzothiadiazole-based donor‒acceptor covalent organic frameworks for efficient photocatalytic H2 evolution

Author information +
History +
PDF

Abstract

Donor‒acceptor covalent organic frameworks (D‒A COFs) have been regarded as promising materials for photocatalytic water splitting because of their tunable band gaps. However, their efficiency is hindered by fast charge recombination and low photostability. Herein, we proposed a donor structural engineering strategy for improving the photocatalytic activity of D‒A COFs to tackle these problems. Two benzothiadiazole-based D‒A COFs (DHU-COF-BB and DHU-COF-BP) with distinct donors were prepared for photocatalytic H2 evolution reaction (HER). As a comparison, DHU-COF-TB without benzothiadiazole moieties was also designed and synthesized. Impressively, the photocatalytic H2 production rate of DHU-COFBB reaches 12.80 mmol g–1 h–1 under visible light irradiation (≥420 nm), which was nearly 2.0 and 3.1 times higher than that of DHU-COF-BP (6.47 mmol g–1 h–1) and DHU-COF-TB (4.06 mmol g–1 h–1), respectively. In addition, the apparent quantum efficiency (AQE) of DHU-COF-BB was up to 5.04% at 420 nm. Photocatalytic and electrochemical measurements indicate that the enhanced hydrogen evolution activity of DHU-COF-BB can be ascribed to the introduction of appropriate benzene moiety into the donors, which increases the charge separation efficiency and thereby suppresses the electron‒hole recombination. Density functional theory (DFT) calculations revealed that both triphenylamine and benzothiadiazole units are the main active sites for HER over the DHU-COF-BB. This work provides new insight into the photocatalytic hydrogen production activity of D‒A COFs by a donor structural engineering strategy.

Keywords

benzothiadiazole / covalent organic framework / donor‒acceptor / photocatalytic hydrogen evolution

Cite this article

Download citation ▾
Yanchang Huang, Bin Gao, Qihang Huang, De-Li Ma, Hongwei Wu, Cheng Qian. Constructing benzothiadiazole-based donor‒acceptor covalent organic frameworks for efficient photocatalytic H2 evolution. Aggregate, 2025, 6(1): e669 DOI:10.1002/agt2.669

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.

[2]

A. Fujishima, K. Honda, Nature 1972, 238, 37.

[3]

C. Shu, C. Han, X. Yang, C. Zhang, Y. Chen, S. Ren, F. Wang, F. Huang, J.-X. Jiang, Adv. Mater. 2021, 33, 2008498.

[4]

C. Han, S. Xiang, P. Xie, P. Dong, C. Shu, C. Zhang, J.-X. Jiang, Adv. Funct. Mater. 2022, 32, 2109423.

[5]

H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 2012, 24, 229.

[6]

T. Banerjee, F. Podjaski, J. Kroeger, B. P. Biswal, B. V. Lotsch, Nat. Rev. Mater. 2021, 6, 168.

[7]

S. J. Lyle, P. J. Waller, O. M. Yaghi, Trends Chem. 2019, 1, 172.

[8]

C. Qian, W. L. Teo, Q. Gao, H. Wu, Y. Liao, Y. Zhao, Mater. Today 2023, 71, 91.

[9]

C. Qian, X. Li, W. L. Teo, Q. Gao, W. Wei, Adv. Funct. Mater. 2024, 34, 2313905.

[10]

Z. Zhang, C. Kang, S. B. Peh, D. Shi, F. Yang, Q. Liu, D. Zhao, J. Am. Chem. Soc. 2022, 144, 14992.

[11]

H. Li, F. Chen, X. Guan, J. Li, C. Li, B. Tang, V. Valtchev, Y. Yan, S. Qiu, Q. Fang, J. Am. Chem. Soc. 2021, 143, 2654.

[12]

L. Chen, C. Gong, X. Wang, F. Dai, M. Huang, X. Wu, C.-Z. Lu, Y. Peng, J. Am. Chem. Soc. 2021, 143, 10243.

[13]

H. Lyu, H. Li, N. Hanikel, K. Wang, O. M. Yaghi, J. Am. Chem. Soc. 2022, 144, 12989.

[14]

L. Zhang, L. Yi, Z. J. Sun, H. Deng, Aggregate 2021, 2, e24.

[15]

M. Yang, H. Hanayama, L. Fang, M. A. Addicoat, Y. Guo, R. Graf, K. Harano, J. Kikkawa, E. Jin, A. Narita, K. Müllen, J. Am. Chem. Soc. 2023, 14, 14417.

[16]

Y. Liu, X. Guan, Q. Fang, Aggregate 2021, 2, e34.

[17]

L. Wei, T. Sun, Z. Shi, Z. Xu, W. Wen, S. Jiang, Y. Zhao, Y. Ma, Y. B. Zhang, Nat. Commun. 2022, 13, 7936.

[18]

Q. Huang, P. Wu, X. F. Li, Y. R. Wang, D. Tian, Y. Q. Lan, Aggregate 2024, 5, e525.

[19]

H. Pang, G. Liu, D. Huang, Y. Zhu, X. Zhao, W. Wang, Y. Xiang, Angew. Chem. Int. Ed. 2023, 62, e202313520.

[20]

A. Basak, S. Karak, R. Banerjee, J. Am. Chem. Soc. 2023, 145, 7592.

[21]

Y. Zhang, J. Guo, P. VanNatta, Y. Jiang, J. Phipps, R. Roknuzzaman, H. Rabaâ, K. Tan, T. AlShahrani, S. Ma, J. Am. Chem. Soc. 2023, 146, 979.

[22]

C. Qian, W. Zhou, J. Qiao, D. Wang, X. Li, W. L. Teo, X. Shi, H. Wu, J. Di, H. Wang, G. Liu, L. Gu, J. Liu, L. Feng, Y. Liu, S. Y. Quek, K. P. Loh, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 18138.

[23]

G. Wang, Y. Ouyang, S. J. Guo, Y. B. Xiao, Q. H. Zeng, D. X. Li, Y. F. Xie, Q. Zhang, S. M. Huang, Angew. Chem. Int. Ed. 2023, 62, e202302505.

[24]

L. H. Zhong, C. F. Wang, J. He, Z. Q. Lin, X. D. Yang, R. Li, S. Zhan, L. W. Zhao, D. Wu, H. Chen, Z. J. Tang, C. Y. Zhi, H. M. Lv, Adv. Mater. 2024, 36, 2314050.

[25]

C. Q. Niu, W. J. Luo, C. M. Dai, C. B. Yu, Y. X. Xu, Angew. Chem. Int. Ed. 2021, 60, 24915.

[26]

C. Jain, R. K. Kushwaha, D. Rase, P. Shelke, D. Sonwani, T. G. Ajithkumar, C. P. Vinod, R. Vaidhyanathan, J. Am. Chem. Soc. 2023, 146, 487.

[27]

F. Mehvari, V. Ramezanzade, P. Asadi, N. Singh, J. Kim, M. Dinari, J. S. Kim, Aggregate 2024, 5, e480.

[28]

V. Sridhar, E. Yildiz, A. R. Camargo, X. L. Lyu, L. Yao, P. Wrede, A. Aghakhani, B. M. Akolpoglu, F. Podjaski, B. V. Lotsch, M. Sitti, Adv. Mater. 2023, 35, 2301126.

[29]

J. Liu, D. W. Kang, Y. J. Fan, G. T. Nash, X. M. Jiang, R. R. Weichselbaum, W. B. Lin, J. Am. Chem. Soc. 2024, 146, 849.

[30]

L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789.

[31]

J. Yang, A. Acharjya, M. Y. Ye, J. Rabeah, S. Li, Z. Kohcovski, S. Youk, J. Roeser, J. Gruneberg, C. Penschke, M. Schwarze, T. Y. Wang, Y. Lu, R. V. D. Krol, M. Oschatz, R. Schomacker, P. Saalfrank, A. Thomas, Angew. Chem. Int. Ed. 2021, 60, 19797.

[32]

W. B. Dong, Z. Y. Qin, K. X. Wang, Y. Y. Xiao, X. Y. Liu, S. J. Ren, Angew. Chem. Int. Ed. 2023, 62, e202216073.

[33]

H. Zhang, Z. Lin, P. Kidkhunthod, J. Guo, Angew. Chem. Int. Ed. 2023, 135, e202217527.

[34]

H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862.

[35]

J. Ming, A. Liu, J. Zhao, P. Zhang, H. Huang, H. Lin, Z. Xu, X. Zhang, X. Wang, J. Hofkens, Angew. Chem. 2019, 131, 18458.

[36]

X. Ren, C. Li, J. Liu, H. Li, L. Bing, S. Bai, G. Xue, Y. Shen, Q. Yang, ACS Appl. Mater. Interfaces 2022, 14, 6885.

[37]

K. Gottschling, G. Savasci, H. Vignolo-González, S. Schmidt, P. Mauker, T. Banerjee, P. Rovó, C. Ochsenfeld, B. V. Lotsch, J. Am. Chem. Soc. 2020, 142, 12146.

[38]

C. Li, J. Liu, H. Li, K. Wu, J. Wang, Q. Yang, Nat. Commun. 2022, 13, 2357.

[39]

Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang, H.-L. Jiang, Nat. Commun. 2023, 14, 3083.

[40]

Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S.-W. Yang, X. Liu, J. Am. Chem. Soc. 2023, 145, 8364.

[41]

S. Li, L. Li, Y. Li, L. Dai, C. Liu, Y. Liu, J. Li, J. Lv, P. Li, B. Wang, ACS Catal. 2020, 10, 8717.

[42]

R. Luo, H. Lv, Q. Liao, N. Wang, J. Yang, Y. Li, K. Xi, X. Wu, H. Ju, J. Lei, Nat. Commun. 2021, 12, 6808.

[43]

D. Chen, W. Chen, G. Zhang, S. Li, W. Chen, G. Xing, L. Chen, ACS Catal. 2022, 12, 616.

[44]

J. Zhao, J. Ren, G. Zhang, Z. Zhao, S. Liu, W. Zhang, L. Chen, Chem. Eur. J. 2021, 27, 10781.

[45]

C.-C. Gu, F.-H. Xu, W.-K. Zhu, R.-J. Wu, L. Deng, J. Zou, B.-C. Weng, R.-L. Zhu, Chem. Commun. 2023, 59, 7302.

[46]

C. Qian, L. Feng, W. L. Teo, J. Liu, W. Zhou, D. Wang, Y. Zhao, Nat. Rev. Chem. 2022, 6, 881.

[47]

W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 16902.

[48]

R. Chen, Y. Wang, Y. Ma, A. Mal, X. Y. Gao, L. Gao, L. Qiao, X. B. Li, L. Z. Wu, C. Wang, Nat. Commun. 2021, 12, 1354.

[49]

J. Yang, S. Ghosh, J. Roeser, A. Acharjya, C. Penschke, Y. Tsutsui, J. Rabeah, T. Wang, S. Y. D. Tameu, M. Y. Ye, J. Grüneberg, S. Li, C. Li, R. Schomäcker, R. V. D. Krol, S. Seki, P. Saalfrank, A. Thomas, Nat. Commun. 2022, 13, 6317.

[50]

X. Guan, Y. Qian, X. Zhang, H. L. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202306135.

[51]

S. Wei, F. Zhang, W. Zhang, P. Qiang, K. Yu, X. Fu, D. Wu, S. Bi, F. Zhang, J. Am. Chem. Soc. 2019, 141, 14272.

[52]

S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine, H. Suzuki, R. Abe, S. Seki, J. Am. Chem. Soc. 2020, 142, 9752.

[53]

W. Li, X. Ding, B. Yu, H. Wang, Z. Gao, X. Wang, X. Liu, K. Wang, J. Jiang, Adv. Funct. Mater. 2022, 32, 2207394.

[54]

B. P. Biswal, H. A. Vignolo-González, T. Banerjee, L. Grunenberg, G. Savasci, K. Gottschling, J. Nuss, C. Ochsenfeld, B. V. Lotsch, J. Am. Chem. Soc. 2019, 141, 11082.

[55]

L. Yao, A. M. Pütz, H. Vignolo-González, B. V. Lotsch, J. Am. Chem. Soc. 2024, 146, 9479.

[56]

T. He, W. Zhen, Y. Chen, Y. Guo, Z. Li, N. Huang, Z. Li, R. Liu, Y. Liu, X. Lian, C. Xue, T. C. Sum, W. Chen, D. Jiang, Nat. Commun. 2023, 14, 329.

[57]

D. Zhang, L. Chen, Y. Li, Q. Zuo, G. Ye, P. Ji, ACS Appl. Nano. Mater. 2024, 7, 9668.

[58]

W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y. B. Zhang, K. Wen, Angew. Chem. Int. Ed. 2021, 60, 1869.

[59]

Z. Xie, X. Yang, P. Zhang, X. Ke, X. Yuan, L. Zhai, W. Wang, N. Qin, C.-X. Cui, L. Qu, X. Chen. Chinese J. Catal. 2023, 47, 171.

[60]

G.-B. Wang, H.-P. Xu, K.-H. Xie, J.-L. Kan, J. Fan, Y.-J. Wang, Y. Geng, Y.-B. Dong, J. Mater. Chem. A 2023, 11, 4007.

[61]

Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang, Y. Chen, ACS Catal. 2021, 11, 2098.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

365

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/