Aggregation-induced circularly polarized luminescence and delayed fluorescence enabled by activating high-level reverse intersystem crossing

Ke Wang , Xinwen Ou , Xiaofei Niu , Zhenghao Wang , Fengyan Song , Xiaobin Dong , Wu-jie Guo , Hui-Qing Peng , Zujin Zhao , Jacky W. Y. Lam , Jianwei Sun , Hongkai Wu , Shu-Yan Yu , Fei Li , Ben Zhong Tang

Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e667

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (1) : e667 DOI: 10.1002/agt2.667
RESEARCH ARTICLE

Aggregation-induced circularly polarized luminescence and delayed fluorescence enabled by activating high-level reverse intersystem crossing

Author information +
History +
PDF

Abstract

Circularly polarized luminescence (CPL) materials with delayed fluorescence have attracted much attention due to their ability to efficiently trap triplet state excitons, thereby improving the photoluminescence quantum yields of CPL materials. However, much effort has been normally focused on the utilization of T1 excitons but seldom on the utilization of higher excited triplet state Tn (n > 1) excitons. Rational manipulation of higher excited triplet state Tn (n > 1) excitons and suppression of Kasha’s rule of CPL materials remains a major challenge. Herein, two gold complex enantiomers ((R/S)-BPAuBC) based on axially chiral binaphthyls and 3,6-Di-tert-butylcarbazole groups are synthesized and systematically investigated. These materials exhibit aggregation-induced circularly polarized delayed fluorescence. Circularly polarized delayed fluorescence was found to be enabled by activating high-level reverse intersystem crossing (hRISC). The anti-Kasha phosphorescence at 77 K proves that the exciton has a large population in the high-lying triplet state T2, which allows the effective hRISC process to cross back to the singlet state S1 and emit delayed fluorescence. In addition, CPL “on–off” switching is further achieved in nanoparticles by acid–base stimulus, showing its potential as an acid–base responsive material.

Keywords

aggregation-induced emission / anti-Kasha / circularly polarized luminescence / delayed fluorescence / highlevel reverse intersystem crossing

Cite this article

Download citation ▾
Ke Wang, Xinwen Ou, Xiaofei Niu, Zhenghao Wang, Fengyan Song, Xiaobin Dong, Wu-jie Guo, Hui-Qing Peng, Zujin Zhao, Jacky W. Y. Lam, Jianwei Sun, Hongkai Wu, Shu-Yan Yu, Fei Li, Ben Zhong Tang. Aggregation-induced circularly polarized luminescence and delayed fluorescence enabled by activating high-level reverse intersystem crossing. Aggregate, 2025, 6(1): e667 DOI:10.1002/agt2.667

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Gong, Z. Li, Y. Zhong, Aggregate 2022, 3, e177.

[2]

Y. Li, J. Liang, S. Fu, H. Huang, S. Liu, L. Wang, Y. Liu, Aggregate 2024, e613.

[3]

J. Lin, R. Liu, P. Chen, Y. Lv, J. Hao, M. Chen, D. Zhang, R. Pan, Y. Li, X. Zhu, T. He, J. Cheng, Aggregate 2023, 4, e311.

[4]

C. Zhang, S. Li, X. Y. Dong, S. Q. Zang, Aggregate 2021, 2, e48.

[5]

T. Huang, L. Yuan, X. Lu, Y. Qu, C. Qu, Y. Xu, Y.-X. Zheng, Y. Wang, Chem. Sci. 2024.

[6]

D.-W. Zhang, M. Li, C.-F. Chen, Chem. Soc. Rev. 2020, 49, 1331.

[7]

J. Lu, B. Shao, R.-W. Huang, L. Gutiérrez-Arzaluz, S. Chen, Z. Han, J. Yin, H. Zhu, S. Dayneko, M. N. Hedhili, X. Song, P. Yuan, C. Dong, R. Zhou, M. I. Saidaminov, S.-Q. Zang, O. F. Mohammed, O. M. Bakr, J. Am. Chem. Soc. 2024, 146, 4144.

[8]

L. Wan, Y. Liu, M. J. Fuchter, B. Yan, Nat. Photonics 2023, 17, 193.

[9]

F. Furlan, J. M Moreno-Naranjo, N. Gasparini, S. Feldmann, J. Wade, M. J. Fuchter, Nat. Photonics 2024, 18, 658.

[10]

Y. Li, Y. Chen, J. Luo, Y. Quan, Y. Cheng, Adv. Mater. 2024, 36, 2312331.

[11]

D.-Y. Liu, H.-Y. Li, R.-P. Han, H.-L. Liu, S.-Q. Zang, Angew. Chem. Int. Ed. 2023, 62, e202307875.

[12]

D. Han, X. Yang, J. Han, J. Zhou, T. Jiao, P. Duan, Nat. Commun. 2020, 11, 5659.

[13]

R. D. Richardson, M. G. J. Baud, C. E. Weston, H. S. Rzepa, M. K. Kuimova, M. J. Fuchter, Chem. Sci. 2015, 6, 3853.

[14]

F. Gao, M. Sun, W. Ma, X. Wu, L. Liu, H. Kuang, C. Xu, Adv. Mater. 2017, 29, 1606864.

[15]

N. Sharma, E. Spuling, C. M. Mattern, W. Li, O. Fuhr, Y. Tsuchiya, C. Adachi, S. Brase, I. D. W. Samuel, E. Zysman-Colman, Chem. Sci. 2019, 10, 6689.

[16]

Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.

[17]

N. Aizawa, Y.-J. Pu, Y. Harabuchi, A. Nihonyanagi, R. Ibuka, H. Inuzuka, B. Dhara, Y. Koyama, K.-i. Nakayama, S. Maeda, F. Araoka, D. Miyajima, Nature 2022, 609, 502.

[18]

S.-Y. Yang, Y.-K. Wang, C.-C. Peng, Z.-G. Wu, S. Yuan, Y.-J. Yu, H. Li, T.-T. Wang, H.-C. Li, Y.-X. Zheng, Z.-Q. Jiang, L.-S. Liao, J. Am. Chem. Soc. 2020, 142, 17756.

[19]

A. M. T Muthig, O. Mrózek, T. Ferschke, M. Rödel, B. Ewald, J. Kuhnt, C. Lenczyk, J. Pflaum, A. Steffen, J. Am. Chem. Soc. 2023, 145, 4438.

[20]

L. Xu, H. Liu, X. Peng, P. Shen, B. Z. Tang, Z. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202300492.

[21]

W.-C. Guo, W.-L. Zhao, K.-K. Tan, M. Li, C.-F. Chen, Angew. Chem. Int. Ed. 2024, 63, e202401835.

[22]

K. Veys, D. Escudero, Acc. Chem. Res. 2022, 55, 2698.

[23]

J. Franz, M. Oelschlegel, J. P. Zobel, S.-A. Hua, J.-H. Borter, L. Schmid, G. Morselli, O. S. Wenger, D. Schwarzer, F. Meyer, L. González, J. Am. Chem. Soc. 2024, 146, 11272.

[24]

Q.-S. Zhang, S.-C. Wang, X.-H. Xiong, P.-Y. Fu, X.-D. Zhang, Y.-N. Fan, M. Pan, Angew. Chem. Int. Ed. 2022, 61, e202205556.

[25]

W. Xie, W. Huang, J. Li, Z. He, G. Huang, B. S. Li, B. Z. Tang, Nat. Commun. 2023, 14, 8098.

[26]

M. Kasha, Discuss. Faraday Soc. 1950, 9, 14.

[27]

X. Zhang, C. Chen, W. Zhang, N. Yin, B. Yuan, G. Zhuang, X.-Y. Wang, P. Du, Nat. Commun. 2024, 15, 2684.

[28]

X. Tang, R. Pan, X. Zhao, W. Jia, Y. Wang, C. Ma, L. Tu, Z. Xiong, Adv. Funct. Mater. 2020, 30, 2005765.

[29]

J. Chen, H. Liu, J. Guo, J. Wang, N. Qiu, S. Xiao, J. Chi, D. Yang, D. Ma, Z. Zhao, B. Z. Tang, Angew. Chem. Int. Ed. 2022, 61, e202116810.

[30]

J. Li, X. Li, G. Wang, X. Wang, M. Wu, J. Liu, K. Zhang, Nat. Commun. 2023, 14, 1987.

[31]

P. Chen, G. Shan, Q. Nie, Y. Yan, P. Zhang, Z. Zhao, H.-T. Feng, B. Z. Tang, Sci. China: Chem. 2024, 67, 1740.

[32]

Y. Shen, B. Wang, P. Wang, Y. Chen, Z. Xu, W. Huang, D. Wu, Inorg. Chem. 2024, 63, 12073.

[33]

X.-Y. Wang, Z. Peng, D. B. Fu, Y. Wang, J. Zhang, S. H. Liu, Dyes Pigm. 2024, 228, 112234.

[34]

W.-J. Guo, T. Peng, W. Zhu, S. Ma, G. Wang, Y. Li, B. Liu, H.-Q. Peng, Aggregate 2022, 4, e297.

[35]

H. W. Tseng, J. Y. Shen, T. Y. Kuo, T. S. Tu, Y. A. Chen, A. P. Demchenko, P. T. Chou, Chem. Sci. 2016, 7, 655.

[36]

H. Yuan, X. Guo, J. Zhang, Mater. Chem. Front. 2019, 3, 1225.

[37]

W.-L. Zhao, K.-K. Tan, W.-C. Guo, C.-H. Guo, M. Li, C.-F. Chen. Adv. Sci. 2024, 11, 2309031.

[38]

A. Salij, R. H. Goldsmith, R. Tempelaar, J. Am. Chem. Soc. 2021, 143, 21519.

[39]

G. Albano, M. Lissia, G. Pescitelli, L. A. Aronica, L. D. Bari, Mater. Chem. Front. 2017, 1, 2047.

[40]

F. Song, Z. Zhao, Z. Liu, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. C 2020, 8, 3284.

[41]

M. Nishio, Phys. Chem. Chem. Phys. 2011, 13, 13873.

[42]

M. Nishio, Y. Umezawa, J. Fantini, M. S. Weiss, P. Chakrabarti, Phys. Chem. Chem. Phys. 2014, 16, 12648.

[43]

O. Takahashi, Y. Kohno, M. Nishio, Chem. Rev. 2010, 110, 6049.

[44]

S. K. Rajagopal, A. M. Philip, K. Nagarajan, M. Hariharan, Chem. Commun. 2014, 50, 8644.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/